Ejemplo n.º 1
0
bool SkDCubic::ComplexBreak(const SkPoint pointsPtr[4], SkScalar* t) {
    SkScalar d[3];
    SkCubicType cubicType = SkClassifyCubic(pointsPtr, d);
    if (cubicType == kLoop_SkCubicType) {
        // crib code from gpu path utils that finds t values where loop self-intersects
        // use it to find mid of t values which should be a friendly place to chop
        SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
        SkScalar ls = d[1] - tempSqrt;
        SkScalar lt = 2.f * d[0];
        SkScalar ms = d[1] + tempSqrt;
        SkScalar mt = 2.f * d[0];
        if (roughly_between(0, ls, lt) && roughly_between(0, ms, mt)) {
            ls = ls / lt;
            ms = ms / mt;
            SkASSERT(roughly_between(0, ls, 1) && roughly_between(0, ms, 1));
            *t = (ls + ms) / 2;
            SkASSERT(roughly_between(0, *t, 1));
            return *t > 0 && *t < 1;
        }
    } else if (kSerpentine_SkCubicType == cubicType || kCusp_SkCubicType == cubicType) {
        SkDCubic cubic;
        cubic.set(pointsPtr);
        double inflectionTs[2];
        int infTCount = cubic.findInflections(inflectionTs);
        if (infTCount == 2) {
            double maxCurvature[3];
            int roots = cubic.findMaxCurvature(maxCurvature);
#if DEBUG_CUBIC_SPLIT
            SkDebugf("%s\n", __FUNCTION__);
            cubic.dump();
            for (int index = 0; index < infTCount; ++index) {
                SkDebugf("inflectionsTs[%d]=%1.9g ", index, inflectionTs[index]);
                SkDPoint pt = cubic.ptAtT(inflectionTs[index]);
                SkDVector dPt = cubic.dxdyAtT(inflectionTs[index]);
                SkDLine perp = {{pt - dPt, pt + dPt}};
                perp.dump();
            }
            for (int index = 0; index < roots; ++index) {
                SkDebugf("maxCurvature[%d]=%1.9g ", index, maxCurvature[index]);
                SkDPoint pt = cubic.ptAtT(maxCurvature[index]);
                SkDVector dPt = cubic.dxdyAtT(maxCurvature[index]);
                SkDLine perp = {{pt - dPt, pt + dPt}};
                perp.dump();
            }
#endif
            for (int index = 0; index < roots; ++index) {
                if (between(inflectionTs[0], maxCurvature[index], inflectionTs[1])) {
                    *t = maxCurvature[index];
                    return *t > 0 && *t < 1;
                }
            }
        } else if (infTCount == 1) {
            *t = inflectionTs[0];
            return *t > 0 && *t < 1;
        }
    }
    return false;
}
// determine that slop required after quad/quad finds a candidate intersection
// use the cross of the tangents plus the distance from 1 or 0 as knobs
DEF_TEST(PathOpsCubicQuadSlop, reporter) {
    // create a random non-selfintersecting cubic
    // break it into quadratics
    // offset the quadratic, measuring the slop required to find the intersection
    if (!gPathOpCubicQuadSlopVerbose) {  // takes a while to run -- so exclude it by default
        return;
    }
    int results[101];
    sk_bzero(results, sizeof(results));
    double minCross[101];
    sk_bzero(minCross, sizeof(minCross));
    double maxCross[101];
    sk_bzero(maxCross, sizeof(maxCross));
    double sumCross[101];
    sk_bzero(sumCross, sizeof(sumCross));
    int foundOne = 0;
    int slopCount = 1;
    SkRandom ran;
    for (int index = 0; index < 10000000; ++index) {
        if (index % 1000 == 999) SkDebugf(".");
        SkDCubic cubic = {{
                {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
                {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
                {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
                {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}
        }};
        SkIntersections i;
        if (i.intersect(cubic)) {
            continue;
        }
        SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts;
        cubic.toQuadraticTs(cubic.calcPrecision(), &ts);
        double tStart = 0;
        int tsCount = ts.count();
        for (int i1 = 0; i1 <= tsCount; ++i1) {
            const double tEnd = i1 < tsCount ? ts[i1] : 1;
            SkDCubic part = cubic.subDivide(tStart, tEnd);
            SkDQuad quad = part.toQuad();
            SkReduceOrder reducer;
            int order = reducer.reduce(quad);
            if (order != 3) {
                continue;
            }
            for (int i2 = 0; i2 < 100; ++i2) {
                SkDPoint endDisplacement = {ran.nextRangeF(-100, 100), ran.nextRangeF(-100, 100)};
                SkDQuad nearby = {{
                        {quad[0].fX + endDisplacement.fX, quad[0].fY + endDisplacement.fY},
                        {quad[1].fX + ran.nextRangeF(-100, 100), quad[1].fY + ran.nextRangeF(-100, 100)},
                        {quad[2].fX - endDisplacement.fX, quad[2].fY - endDisplacement.fY}
                }};
                order = reducer.reduce(nearby);
                if (order != 3) {
                    continue;
                }
                SkIntersections locals;
                locals.allowNear(false);
                locals.intersect(quad, nearby);
                if (locals.used() != 1) {
                    continue;
                }
                // brute force find actual intersection
                SkDLine cubicLine = {{ {0, 0}, {cubic[0].fX, cubic[0].fY } }};
                SkIntersections liner;
                int i3;
                int found = -1;
                int foundErr = true;
                for (i3 = 1; i3 <= 1000; ++i3) {
                    cubicLine[0] = cubicLine[1];
                    cubicLine[1] = cubic.ptAtT(i3 / 1000.);
                    liner.reset();
                    liner.allowNear(false);
                    liner.intersect(nearby, cubicLine);
                    if (liner.used() == 0) {
                        continue;
                    }
                    if (liner.used() > 1) {
                        foundErr = true;
                        break;
                    }
                    if (found > 0) {
                        foundErr = true;
                        break;
                    }
                    foundErr = false;
                    found = i3;
                }
                if (foundErr) {
                    continue;
                }
                SkDVector dist = liner.pt(0) - locals.pt(0);
                SkDVector qV = nearby.dxdyAtT(locals[0][0]);
                double cubicT = (found - 1 + liner[1][0]) / 1000.;
                SkDVector cV = cubic.dxdyAtT(cubicT);
                double qxc = qV.crossCheck(cV);
                double qvLen = qV.length();
                double cvLen = cV.length();
                double maxLen = SkTMax(qvLen, cvLen);
                qxc /= maxLen;
                double quadT = tStart + (tEnd - tStart) * locals[0][0];
                double diffT = fabs(cubicT - quadT);
                int diffIdx = (int) (diffT * 100);
                results[diffIdx]++;
                double absQxc = fabs(qxc);
                if (sumCross[diffIdx] == 0) {
                    minCross[diffIdx] = maxCross[diffIdx] = sumCross[diffIdx] = absQxc;
                } else {
                    minCross[diffIdx] = SkTMin(minCross[diffIdx], absQxc);
                    maxCross[diffIdx] = SkTMax(maxCross[diffIdx], absQxc);
                    sumCross[diffIdx] +=  absQxc;
                }
                if (diffIdx >= 20) {
#if 01
                    SkDebugf("cubic={{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}"
                        " quad={{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}"
                        " {{{%1.9g,%1.9g}, {%1.9g,%1.9g}}}"
                        " qT=%1.9g cT=%1.9g dist=%1.9g cross=%1.9g\n",
                        cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY,
                        cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY,
                        nearby[0].fX, nearby[0].fY, nearby[1].fX, nearby[1].fY,
                        nearby[2].fX, nearby[2].fY,
                        liner.pt(0).fX, liner.pt(0).fY,
                        locals.pt(0).fX, locals.pt(0).fY, quadT, cubicT, dist.length(), qxc);
#else
                    SkDebugf("qT=%1.9g cT=%1.9g dist=%1.9g cross=%1.9g\n",
                        quadT, cubicT, dist.length(), qxc);
                    SkDebugf("<div id=\"slop%d\">\n", ++slopCount);
                    SkDebugf("{{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n"
                        "{{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n"
                        "{{{%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n",
                        cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY,
                        cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY,
                        nearby[0].fX, nearby[0].fY, nearby[1].fX, nearby[1].fY,
                        nearby[2].fX, nearby[2].fY,
                        liner.pt(0).fX, liner.pt(0).fY,
                        locals.pt(0).fX, locals.pt(0).fY);
                    SkDebugf("</div>\n\n");
#endif
                }
                ++foundOne;
            }
            tStart = tEnd;
        }
        if (++foundOne >= 100000) {
            break;
        }
    }
#if 01
    SkDebugf("slopCount=%d\n", slopCount);
    int max = 100;
    while (results[max] == 0) {
        --max;
    }
    for (int i = 0; i <= max; ++i) {
        if (i > 0 && i % 10 == 0) {
            SkDebugf("\n");
        }
        SkDebugf("%d ", results[i]);
    }
    SkDebugf("min\n");
    for (int i = 0; i <= max; ++i) {
        if (i > 0 && i % 10 == 0) {
            SkDebugf("\n");
        }
        SkDebugf("%1.9g ", minCross[i]);
    }
    SkDebugf("max\n");
    for (int i = 0; i <= max; ++i) {
        if (i > 0 && i % 10 == 0) {
            SkDebugf("\n");
        }
        SkDebugf("%1.9g ", maxCross[i]);
    }
    SkDebugf("avg\n");
    for (int i = 0; i <= max; ++i) {
        if (i > 0 && i % 10 == 0) {
            SkDebugf("\n");
        }
        SkDebugf("%1.9g ", sumCross[i] / results[i]);
    }
#else
    for (int i = 1; i < slopCount; ++i) {
        SkDebugf("        slop%d,\n", i);
    }
#endif
    SkDebugf("\n");
}
Ejemplo n.º 3
0
int SkDCubic::ComplexBreak(const SkPoint pointsPtr[4], SkScalar* t) {
    SkDCubic cubic;
    cubic.set(pointsPtr);
    if (cubic.monotonicInX() && cubic.monotonicInY()) {
        return 0;
    }
    SkScalar d[3];
    SkCubicType cubicType = SkClassifyCubic(pointsPtr, d);
    switch (cubicType) {
        case kLoop_SkCubicType: {
            // crib code from gpu path utils that finds t values where loop self-intersects
            // use it to find mid of t values which should be a friendly place to chop
            SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
            SkScalar ls = d[1] - tempSqrt;
            SkScalar lt = 2.f * d[0];
            SkScalar ms = d[1] + tempSqrt;
            SkScalar mt = 2.f * d[0];
            if (roughly_between(0, ls, lt) && roughly_between(0, ms, mt)) {
                ls = ls / lt;
                ms = ms / mt;
                SkASSERT(roughly_between(0, ls, 1) && roughly_between(0, ms, 1));
                t[0] = (ls + ms) / 2;
                SkASSERT(roughly_between(0, *t, 1));
                return (int) (t[0] > 0 && t[0] < 1);
            }
        }
        // fall through if no t value found
        case kSerpentine_SkCubicType:
        case kCusp_SkCubicType: {
            double inflectionTs[2];
            int infTCount = cubic.findInflections(inflectionTs);
            double maxCurvature[3];
            int roots = cubic.findMaxCurvature(maxCurvature);
    #if DEBUG_CUBIC_SPLIT
            SkDebugf("%s\n", __FUNCTION__);
            cubic.dump();
            for (int index = 0; index < infTCount; ++index) {
                SkDebugf("inflectionsTs[%d]=%1.9g ", index, inflectionTs[index]);
                SkDPoint pt = cubic.ptAtT(inflectionTs[index]);
                SkDVector dPt = cubic.dxdyAtT(inflectionTs[index]);
                SkDLine perp = {{pt - dPt, pt + dPt}};
                perp.dump();
            }
            for (int index = 0; index < roots; ++index) {
                SkDebugf("maxCurvature[%d]=%1.9g ", index, maxCurvature[index]);
                SkDPoint pt = cubic.ptAtT(maxCurvature[index]);
                SkDVector dPt = cubic.dxdyAtT(maxCurvature[index]);
                SkDLine perp = {{pt - dPt, pt + dPt}};
                perp.dump();
            }
    #endif
            if (infTCount == 2) {
                for (int index = 0; index < roots; ++index) {
                    if (between(inflectionTs[0], maxCurvature[index], inflectionTs[1])) {
                        t[0] = maxCurvature[index];
                        return (int) (t[0] > 0 && t[0] < 1);
                    }
                }
            } else {
                int resultCount = 0;
                // FIXME: constant found through experimentation -- maybe there's a better way....
                double precision = cubic.calcPrecision() * 2;
                for (int index = 0; index < roots; ++index) {
                    double testT = maxCurvature[index];
                    if (0 >= testT || testT >= 1) {
                        continue;
                    }
                    // don't call dxdyAtT since we want (0,0) results
                    SkDVector dPt = { derivative_at_t(&cubic.fPts[0].fX, testT),
                            derivative_at_t(&cubic.fPts[0].fY, testT) };
                    double dPtLen = dPt.length();
                    if (dPtLen < precision) {
                        t[resultCount++] = testT;
                    }
                }
                if (!resultCount && infTCount == 1) {
                    t[0] = inflectionTs[0];
                    resultCount = (int) (t[0] > 0 && t[0] < 1);
                }
                return resultCount;
            }
        }
        default:
            ;
    }
    return 0;
}