double BLSSS::log_model_prob(const Selector &g)const{
    // borrowed from MLVS.cpp
    double num = vpri_->logp(g);
    if(num==BOOM::negative_infinity() || g.nvars() == 0) {
      // If num == -infinity then it is in a zero support point in the
      // prior.  If g.nvars()==0 then all coefficients are zero
      // because of the point mass.  The only entries remaining in the
      // likelihood are sums of squares of y[i] that are independent
      // of g.  They need to be omitted here because they are omitted
      // in the non-empty case below.
      return num;
    }
    SpdMatrix ivar = g.select(pri_->siginv());
    num += .5*ivar.logdet();
    if(num == BOOM::negative_infinity()) return num;

    Vector mu = g.select(pri_->mu());
    Vector ivar_mu = ivar * mu;
    num -= .5*mu.dot(ivar_mu);

    bool ok=true;
    ivar += g.select(suf().xtx());
    Matrix L = ivar.chol(ok);
    if(!ok)  return BOOM::negative_infinity();
    double denom = sum(log(L.diag()));  // = .5 log |ivar|
    Vector S = g.select(suf().xty()) + ivar_mu;
    Lsolve_inplace(L,S);
    denom-= .5*S.normsq();  // S.normsq =  beta_tilde ^T V_tilde beta_tilde
    return num-denom;
  }
Ejemplo n.º 2
0
int main(int argc, char **argv) {
	SpdMatrix *pMat;

	/*
	 * 1st test
	 */
	pMat = new SpdMatrix(4, 0);

	pMat->setEntry(0, 0, 9);
	pMat->setEntry(0, 1, 3);
	pMat->setEntry(0, 2, -6);
	pMat->setEntry(0, 3, 12);
	pMat->setEntry(1, 1, 26);
	pMat->setEntry(1, 2, -7);
	pMat->setEntry(1, 3, -11);
	pMat->setEntry(2, 2, 9);
	pMat->setEntry(2, 3, 7);
	pMat->setEntry(3, 3, 65);

	cout << "Original matrix:" << endl;
	pMat->print();

	SquareMatrix l(pMat->chol());
	// L matrix should be:
	//  3   0   0   0
	//  1   5   0   0
	// -2  -1   2   0
	//  4  -3   6   2

	cout << "L matrix:" << endl;
	l.print();

	delete pMat;
}
Ejemplo n.º 3
0
Archivo: mvn.cpp Proyecto: cran/Boom
 Vector rmvn_ivar_mt(RNG &rng, const Vector &mu, const SpdMatrix &ivar) {
   // Draws a multivariate normal with mean mu and precision matrix
   // ivar.
   bool ok = false;
   Matrix U = ivar.chol(ok).transpose();
   if (!ok) {
     report_error("Cholesky decomposition failed in rmvn_ivar_mt.");
   }
   return rmvn_precision_upper_cholesky_mt(rng, mu, U);
 }
Ejemplo n.º 4
0
 Matrix chol(const SpdMatrix &S, bool & ok){return S.chol(ok);}
Ejemplo n.º 5
0
 Matrix chol(const SpdMatrix &S){ return S.chol();}
Ejemplo n.º 6
0
Archivo: mvn.cpp Proyecto: cran/Boom
 Vector rmvn_mt(RNG &rng, const Vector &mu, const SpdMatrix &V) {
   bool okay = true;
   Matrix L = V.chol(okay);
   if (okay) return rmvn_L_mt(rng, mu, L);
   return rmvn_robust_mt(rng, mu, V);
 }