Ejemplo n.º 1
0
  FastMKSStat(const TreeType& node) :
      bound(-DBL_MAX),
      lastKernel(0.0),
      lastKernelNode(NULL)
  {
    // Do we have to calculate the centroid?
    if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
    {
      // If this type of tree has self-children, then maybe the evaluation is
      // already done.  These statistics are built bottom-up, so the child stat
      // should already be done.
      if ((tree::TreeTraits<TreeType>::HasSelfChildren) &&
          (node.NumChildren() > 0) &&
          (node.Point(0) == node.Child(0).Point(0)))
      {
        selfKernel = node.Child(0).Stat().SelfKernel();
      }
      else
      {
        selfKernel = sqrt(node.Metric().Kernel().Evaluate(
            node.Dataset().col(node.Point(0)),
            node.Dataset().col(node.Point(0))));
      }
    }
    else
    {
      // Calculate the centroid.
      arma::vec centroid;
      node.Centroid(centroid);

      selfKernel = sqrt(node.Metric().Kernel().Evaluate(centroid, centroid));
    }
  }
Ejemplo n.º 2
0
double FastMKSRules<KernelType, TreeType>::Score(TreeType& queryNode,
        TreeType& referenceNode)
{
    // Update and get the query node's bound.
    queryNode.Stat().Bound() = CalculateBound(queryNode);
    const double bestKernel = queryNode.Stat().Bound();

    // First, see if we can make a parent-child or parent-parent prune.  These
    // four bounds on the maximum kernel value are looser than the bound normally
    // used, but they can prevent a base case from needing to be calculated.

    // Convenience caching so lines are shorter.
    const double queryParentDist = queryNode.ParentDistance();
    const double queryDescDist = queryNode.FurthestDescendantDistance();
    const double refParentDist = referenceNode.ParentDistance();
    const double refDescDist = referenceNode.FurthestDescendantDistance();
    double adjustedScore = traversalInfo.LastBaseCase();

    const double queryDistBound = (queryParentDist + queryDescDist);
    const double refDistBound = (refParentDist + refDescDist);
    double dualQueryTerm;
    double dualRefTerm;

    // The parent-child and parent-parent prunes work by applying the same pruning
    // condition as when the parent node was used, except they are tighter because
    //    queryDistBound < queryNode.Parent()->FurthestDescendantDistance()
    // and
    //    refDistBound < referenceNode.Parent()->FurthestDescendantDistance()
    // so we construct the same bounds that were used when Score() was called with
    // the parents, except with the tighter distance bounds.  Sometimes this
    // allows us to prune nodes without evaluating the base cases between them.
    if (traversalInfo.LastQueryNode() == queryNode.Parent())
    {
        // We can assume that queryNode.Parent() != NULL, because at the root node
        // combination, the traversalInfo.LastQueryNode() pointer will _not_ be
        // NULL.  We also should be guaranteed that
        // traversalInfo.LastReferenceNode() is either the reference node or the
        // parent of the reference node.
        adjustedScore += queryDistBound *
                         traversalInfo.LastReferenceNode()->Stat().SelfKernel();
        dualQueryTerm = queryDistBound;
    }
    else
    {
        // The query parent could be NULL, which does weird things and we have to
        // consider.
        if (traversalInfo.LastReferenceNode() != NULL)
        {
            adjustedScore += queryDescDist *
                             traversalInfo.LastReferenceNode()->Stat().SelfKernel();
            dualQueryTerm = queryDescDist;
        }
        else
        {
            // This makes it so a child-parent (or parent-parent) prune is not
            // possible.
            dualQueryTerm = 0.0;
            adjustedScore = bestKernel;
        }
    }

    if (traversalInfo.LastReferenceNode() == referenceNode.Parent())
    {
        // We can assume that referenceNode.Parent() != NULL, because at the root
        // node combination, the traversalInfo.LastReferenceNode() pointer will
        // _not_ be NULL.
        adjustedScore += refDistBound *
                         traversalInfo.LastQueryNode()->Stat().SelfKernel();
        dualRefTerm = refDistBound;
    }
    else
    {
        // The reference parent could be NULL, which does weird things and we have
        // to consider.
        if (traversalInfo.LastQueryNode() != NULL)
        {
            adjustedScore += refDescDist *
                             traversalInfo.LastQueryNode()->Stat().SelfKernel();
            dualRefTerm = refDescDist;
        }
        else
        {
            // This makes it so a child-parent (or parent-parent) prune is not
            // possible.
            dualRefTerm = 0.0;
            adjustedScore = bestKernel;
        }
    }

    // Now add the dual term.
    adjustedScore += (dualQueryTerm * dualRefTerm);

    if (adjustedScore < bestKernel)
    {
        // It is not possible that this node combination can contain a point
        // combination with kernel value better than the minimum kernel value to
        // improve any of the results, so we can prune it.
        return DBL_MAX;
    }

    // We were unable to perform a parent-child or parent-parent prune, so now we
    // must calculate kernel evaluation, if necessary.
    double kernelEval = 0.0;
    if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
    {
        // For this type of tree, we may have already calculated the base case in
        // the parents.
        if ((traversalInfo.LastQueryNode() != NULL) &&
                (traversalInfo.LastReferenceNode() != NULL) &&
                (traversalInfo.LastQueryNode()->Point(0) == queryNode.Point(0)) &&
                (traversalInfo.LastReferenceNode()->Point(0) == referenceNode.Point(0)))
        {
            // Base case already done.
            kernelEval = traversalInfo.LastBaseCase();

            // When BaseCase() is called after Score(), these must be correct so that
            // another kernel evaluation is not performed.
            lastQueryIndex = queryNode.Point(0);
            lastReferenceIndex = referenceNode.Point(0);
        }
        else
        {
            // The kernel must be evaluated, but it is between points in the dataset,
            // so we can call BaseCase().  BaseCase() will set lastQueryIndex and
            // lastReferenceIndex correctly.
            kernelEval = BaseCase(queryNode.Point(0), referenceNode.Point(0));
        }

        traversalInfo.LastBaseCase() = kernelEval;
    }
    else
    {
        // Calculate the maximum possible kernel value.
        arma::vec queryCentroid;
        arma::vec refCentroid;
        queryNode.Centroid(queryCentroid);
        referenceNode.Centroid(refCentroid);

        kernelEval = kernel.Evaluate(queryCentroid, refCentroid);

        traversalInfo.LastBaseCase() = kernelEval;
    }
    ++scores;

    double maxKernel;
    if (kernel::KernelTraits<KernelType>::IsNormalized)
    {
        // We have a tighter bound for normalized kernels.
        const double querySqDist = std::pow(queryDescDist, 2.0);
        const double refSqDist = std::pow(refDescDist, 2.0);
        const double bothSqDist = std::pow((queryDescDist + refDescDist), 2.0);

        if (kernelEval <= (1 - 0.5 * bothSqDist))
        {
            const double queryDelta = (1 - 0.5 * querySqDist);
            const double queryGamma = queryDescDist * sqrt(1 - 0.25 * querySqDist);
            const double refDelta = (1 - 0.5 * refSqDist);
            const double refGamma = refDescDist * sqrt(1 - 0.25 * refSqDist);

            maxKernel = kernelEval * (queryDelta * refDelta - queryGamma * refGamma) +
                        sqrt(1 - std::pow(kernelEval, 2.0)) *
                        (queryGamma * refDelta + queryDelta * refGamma);
        }
        else
        {
            maxKernel = 1.0;
        }
    }
    else
    {
        // Use standard bound; kernel is not normalized.
        const double refKernelTerm = queryDescDist *
                                     referenceNode.Stat().SelfKernel();
        const double queryKernelTerm = refDescDist * queryNode.Stat().SelfKernel();

        maxKernel = kernelEval + refKernelTerm + queryKernelTerm +
                    (queryDescDist * refDescDist);
    }

    // Store relevant information for parent-child pruning.
    traversalInfo.LastQueryNode() = &queryNode;
    traversalInfo.LastReferenceNode() = &referenceNode;

    // We return the inverse of the maximum kernel so that larger kernels are
    // recursed into first.
    return (maxKernel > bestKernel) ? (1.0 / maxKernel) : DBL_MAX;
}
Ejemplo n.º 3
0
double FastMKSRules<KernelType, TreeType>::Score(const size_t queryIndex,
        TreeType& referenceNode)
{
    // Compare with the current best.
    const double bestKernel = products(products.n_rows - 1, queryIndex);

    // See if we can perform a parent-child prune.
    const double furthestDist = referenceNode.FurthestDescendantDistance();
    if (referenceNode.Parent() != NULL)
    {
        double maxKernelBound;
        const double parentDist = referenceNode.ParentDistance();
        const double combinedDistBound = parentDist + furthestDist;
        const double lastKernel = referenceNode.Parent()->Stat().LastKernel();
        if (kernel::KernelTraits<KernelType>::IsNormalized)
        {
            const double squaredDist = std::pow(combinedDistBound, 2.0);
            const double delta = (1 - 0.5 * squaredDist);
            if (lastKernel <= delta)
            {
                const double gamma = combinedDistBound * sqrt(1 - 0.25 * squaredDist);
                maxKernelBound = lastKernel * delta +
                                 gamma * sqrt(1 - std::pow(lastKernel, 2.0));
            }
            else
            {
                maxKernelBound = 1.0;
            }
        }
        else
        {
            maxKernelBound = lastKernel +
                             combinedDistBound * queryKernels[queryIndex];
        }

        if (maxKernelBound < bestKernel)
            return DBL_MAX;
    }

    // Calculate the maximum possible kernel value, either by calculating the
    // centroid or, if the centroid is a point, use that.
    ++scores;
    double kernelEval;
    if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
    {
        // Could it be that this kernel evaluation has already been calculated?
        if (tree::TreeTraits<TreeType>::HasSelfChildren &&
                referenceNode.Parent() != NULL &&
                referenceNode.Point(0) == referenceNode.Parent()->Point(0))
        {
            kernelEval = referenceNode.Parent()->Stat().LastKernel();
        }
        else
        {
            kernelEval = BaseCase(queryIndex, referenceNode.Point(0));
        }
    }
    else
    {
        const arma::vec queryPoint = querySet.unsafe_col(queryIndex);
        arma::vec refCentroid;
        referenceNode.Centroid(refCentroid);

        kernelEval = kernel.Evaluate(queryPoint, refCentroid);
    }

    referenceNode.Stat().LastKernel() = kernelEval;

    double maxKernel;
    if (kernel::KernelTraits<KernelType>::IsNormalized)
    {
        const double squaredDist = std::pow(furthestDist, 2.0);
        const double delta = (1 - 0.5 * squaredDist);
        if (kernelEval <= delta)
        {
            const double gamma = furthestDist * sqrt(1 - 0.25 * squaredDist);
            maxKernel = kernelEval * delta +
                        gamma * sqrt(1 - std::pow(kernelEval, 2.0));
        }
        else
        {
            maxKernel = 1.0;
        }
    }
    else
    {
        maxKernel = kernelEval + furthestDist * queryKernels[queryIndex];
    }

    // We return the inverse of the maximum kernel so that larger kernels are
    // recursed into first.
    return (maxKernel > bestKernel) ? (1.0 / maxKernel) : DBL_MAX;
}