TinyRendererVisualShapeConverterInternalData()
	:m_upAxis(2),
	m_swWidth(START_WIDTH),
	m_swHeight(START_HEIGHT),
	m_rgbColorBuffer(START_WIDTH,START_HEIGHT,TGAImage::RGB)
	{
	    m_depthBuffer.resize(m_swWidth*m_swHeight);
	    m_segmentationMaskBuffer.resize(m_swWidth*m_swHeight,-1);
	}
	TinyRendererGUIHelper( int swWidth, int swHeight) 
		: m_upAxis(1),
	 m_swWidth(swWidth),
    m_swHeight(swHeight),
	m_rgbColorBuffer(swWidth,swHeight,TGAImage::RGB),
	m_colObjUniqueIndex(0)
	{
		m_depthBuffer.resize(swWidth*swHeight);
	}
Ejemplo n.º 3
0
	ParticleInternalData()
		:
		m_clPositionBuffer(0),
		m_velocitiesGPU(0),
		m_simParamGPU(0),
		m_updatePositionsKernel(0),
		m_updatePositionsKernel2(0),
		m_updateAabbsKernel(0),
		m_collideParticlesKernel(0)
	{
		m_simParamCPU.resize(1);
	}
	SW_And_OpenGLGuiHelper(CommonGraphicsApp* glApp, bool useOpenGL2, int swWidth, int swHeight, GLPrimitiveRenderer* primRenderer)
		: OpenGLGuiHelper(glApp, useOpenGL2),
		  m_swWidth(swWidth),
		  m_swHeight(swHeight),
		  m_rgbColorBuffer(swWidth, swHeight, TGAImage::RGB),
		  m_primRenderer(primRenderer)
	{
		m_depthBuffer.resize(swWidth * swHeight);
		CommonRenderInterface* render = getRenderInterface();
		m_image = new unsigned char[m_swWidth * m_swHeight * 4];

		m_textureHandle = render->registerTexture(m_image, m_swWidth, m_swHeight);
	}
Ejemplo n.º 5
0
	TinyRendererSetupInternalData(int width, int height)
		:m_roll(0),
		m_pitch(0),
		m_yaw(0),

		m_width(width),
		m_height(height),
		m_rgbColorBuffer(width,height,TGAImage::RGB),
		m_textureHandle(0),
		m_animateRenderer(0)
	{
		m_depthBuffer.resize(m_width*m_height);

    }
inline int b3GpuPgsConstraintSolver::sortConstraintByBatch3(b3BatchConstraint* cs, int numConstraints, int simdWidth, int staticIdx, int numBodies)
{
	//int sz = sizeof(b3BatchConstraint);

	B3_PROFILE("sortConstraintByBatch3");

	static int maxSwaps = 0;
	int numSwaps = 0;

	curUsed.resize(2 * simdWidth);

	static int maxNumConstraints = 0;
	if (maxNumConstraints < numConstraints)
	{
		maxNumConstraints = numConstraints;
		//printf("maxNumConstraints  = %d\n",maxNumConstraints );
	}

	int numUsedArray = numBodies / 32 + 1;
	bodyUsed.resize(numUsedArray);

	for (int q = 0; q < numUsedArray; q++)
		bodyUsed[q] = 0;

	int curBodyUsed = 0;

	int numIter = 0;

#if defined(_DEBUG)
	for (int i = 0; i < numConstraints; i++)
		cs[i].m_batchId = -1;
#endif

	int numValidConstraints = 0;
	//	int unprocessedConstraintIndex = 0;

	int batchIdx = 0;

	{
		B3_PROFILE("cpu batch innerloop");

		while (numValidConstraints < numConstraints)
		{
			numIter++;
			int nCurrentBatch = 0;
			//	clear flag
			for (int i = 0; i < curBodyUsed; i++)
				bodyUsed[curUsed[i] / 32] = 0;

			curBodyUsed = 0;

			for (int i = numValidConstraints; i < numConstraints; i++)
			{
				int idx = i;
				b3Assert(idx < numConstraints);
				//	check if it can go
				int bodyAS = cs[idx].m_bodyAPtrAndSignBit;
				int bodyBS = cs[idx].m_bodyBPtrAndSignBit;
				int bodyA = abs(bodyAS);
				int bodyB = abs(bodyBS);
				bool aIsStatic = (bodyAS < 0) || bodyAS == staticIdx;
				bool bIsStatic = (bodyBS < 0) || bodyBS == staticIdx;
				int aUnavailable = 0;
				int bUnavailable = 0;
				if (!aIsStatic)
				{
					aUnavailable = bodyUsed[bodyA / 32] & (1 << (bodyA & 31));
				}
				if (!aUnavailable)
					if (!bIsStatic)
					{
						bUnavailable = bodyUsed[bodyB / 32] & (1 << (bodyB & 31));
					}

				if (aUnavailable == 0 && bUnavailable == 0)  // ok
				{
					if (!aIsStatic)
					{
						bodyUsed[bodyA / 32] |= (1 << (bodyA & 31));
						curUsed[curBodyUsed++] = bodyA;
					}
					if (!bIsStatic)
					{
						bodyUsed[bodyB / 32] |= (1 << (bodyB & 31));
						curUsed[curBodyUsed++] = bodyB;
					}

					cs[idx].m_batchId = batchIdx;

					if (i != numValidConstraints)
					{
						b3Swap(cs[i], cs[numValidConstraints]);
						numSwaps++;
					}

					numValidConstraints++;
					{
						nCurrentBatch++;
						if (nCurrentBatch == simdWidth)
						{
							nCurrentBatch = 0;
							for (int i = 0; i < curBodyUsed; i++)
								bodyUsed[curUsed[i] / 32] = 0;
							curBodyUsed = 0;
						}
					}
				}
			}
			m_gpuData->m_batchSizes.push_back(nCurrentBatch);
			batchIdx++;
		}
	}

#if defined(_DEBUG)
	//		debugPrintf( "nBatches: %d\n", batchIdx );
	for (int i = 0; i < numConstraints; i++)
	{
		b3Assert(cs[i].m_batchId != -1);
	}
#endif

	if (maxSwaps < numSwaps)
	{
		maxSwaps = numSwaps;
		//printf("maxSwaps = %d\n", maxSwaps);
	}

	return batchIdx;
}
b3Scalar b3GpuPgsConstraintSolver::solveGroupCacheFriendlySetup(b3OpenCLArray<b3RigidBodyData>* gpuBodies, b3OpenCLArray<b3InertiaData>* gpuInertias, int numBodies, b3OpenCLArray<b3GpuGenericConstraint>* gpuConstraints, int numConstraints, const b3ContactSolverInfo& infoGlobal)
{
	B3_PROFILE("GPU solveGroupCacheFriendlySetup");
	batchConstraints.resize(numConstraints);
	m_gpuData->m_gpuBatchConstraints->resize(numConstraints);
	m_staticIdx = -1;
	m_maxOverrideNumSolverIterations = 0;

	/*	m_gpuData->m_gpuBodies->resize(numBodies);
	m_gpuData->m_gpuBodies->copyFromHostPointer(bodies,numBodies);

	b3OpenCLArray<b3InertiaData> gpuInertias(m_gpuData->m_context,m_gpuData->m_queue);
	gpuInertias.resize(numBodies);
	gpuInertias.copyFromHostPointer(inertias,numBodies);
	*/

	m_gpuData->m_gpuSolverBodies->resize(numBodies);

	m_tmpSolverBodyPool.resize(numBodies);
	{
		if (useGpuInitSolverBodies)
		{
			B3_PROFILE("m_initSolverBodiesKernel");

			b3LauncherCL launcher(m_gpuData->m_queue, m_gpuData->m_initSolverBodiesKernel, "m_initSolverBodiesKernel");
			launcher.setBuffer(m_gpuData->m_gpuSolverBodies->getBufferCL());
			launcher.setBuffer(gpuBodies->getBufferCL());
			launcher.setConst(numBodies);
			launcher.launch1D(numBodies);
			clFinish(m_gpuData->m_queue);

			//			m_gpuData->m_gpuSolverBodies->copyToHost(m_tmpSolverBodyPool);
		}
		else
		{
			gpuBodies->copyToHost(m_gpuData->m_cpuBodies);
			for (int i = 0; i < numBodies; i++)
			{
				b3RigidBodyData& body = m_gpuData->m_cpuBodies[i];
				b3GpuSolverBody& solverBody = m_tmpSolverBodyPool[i];
				initSolverBody(i, &solverBody, &body);
				solverBody.m_originalBodyIndex = i;
			}
			m_gpuData->m_gpuSolverBodies->copyFromHost(m_tmpSolverBodyPool);
		}
	}

	//	int totalBodies = 0;
	int totalNumRows = 0;
	//b3RigidBody* rb0=0,*rb1=0;
	//if (1)
	{
		{
			//			int i;

			m_tmpConstraintSizesPool.resizeNoInitialize(numConstraints);

			//			b3OpenCLArray<b3GpuGenericConstraint> gpuConstraints(m_gpuData->m_context,m_gpuData->m_queue);

			if (useGpuInfo1)
			{
				B3_PROFILE("info1 and init batchConstraint");

				m_gpuData->m_gpuConstraintInfo1->resize(numConstraints);

				if (1)
				{
					B3_PROFILE("getInfo1Kernel");

					b3LauncherCL launcher(m_gpuData->m_queue, m_gpuData->m_getInfo1Kernel, "m_getInfo1Kernel");
					launcher.setBuffer(m_gpuData->m_gpuConstraintInfo1->getBufferCL());
					launcher.setBuffer(gpuConstraints->getBufferCL());
					launcher.setConst(numConstraints);
					launcher.launch1D(numConstraints);
					clFinish(m_gpuData->m_queue);
				}

				if (m_gpuData->m_batchSizes.size() == 0)
				{
					B3_PROFILE("initBatchConstraintsKernel");

					m_gpuData->m_gpuConstraintRowOffsets->resize(numConstraints);
					unsigned int total = 0;
					m_gpuData->m_prefixScan->execute(*m_gpuData->m_gpuConstraintInfo1, *m_gpuData->m_gpuConstraintRowOffsets, numConstraints, &total);
					unsigned int lastElem = m_gpuData->m_gpuConstraintInfo1->at(numConstraints - 1);
					totalNumRows = total + lastElem;

					{
						B3_PROFILE("init batch constraints");
						b3LauncherCL launcher(m_gpuData->m_queue, m_gpuData->m_initBatchConstraintsKernel, "m_initBatchConstraintsKernel");
						launcher.setBuffer(m_gpuData->m_gpuConstraintInfo1->getBufferCL());
						launcher.setBuffer(m_gpuData->m_gpuConstraintRowOffsets->getBufferCL());
						launcher.setBuffer(m_gpuData->m_gpuBatchConstraints->getBufferCL());
						launcher.setBuffer(gpuConstraints->getBufferCL());
						launcher.setBuffer(gpuBodies->getBufferCL());
						launcher.setConst(numConstraints);
						launcher.launch1D(numConstraints);
						clFinish(m_gpuData->m_queue);
					}
					//assume the batching happens on CPU, so copy the data
					m_gpuData->m_gpuBatchConstraints->copyToHost(batchConstraints);
				}
			}
			else
			{
				totalNumRows = 0;
				gpuConstraints->copyToHost(m_gpuData->m_cpuConstraints);
				//calculate the total number of contraint rows
				for (int i = 0; i < numConstraints; i++)
				{
					unsigned int& info1 = m_tmpConstraintSizesPool[i];
					//					unsigned int info1;
					if (m_gpuData->m_cpuConstraints[i].isEnabled())
					{
						m_gpuData->m_cpuConstraints[i].getInfo1(&info1, &m_gpuData->m_cpuBodies[0]);
					}
					else
					{
						info1 = 0;
					}

					totalNumRows += info1;
				}

				m_gpuData->m_gpuBatchConstraints->copyFromHost(batchConstraints);
				m_gpuData->m_gpuConstraintInfo1->copyFromHost(m_tmpConstraintSizesPool);
			}
			m_tmpSolverNonContactConstraintPool.resizeNoInitialize(totalNumRows);
			m_gpuData->m_gpuConstraintRows->resize(totalNumRows);

			//			b3GpuConstraintArray		verify;

			if (useGpuInfo2)
			{
				{
					B3_PROFILE("getInfo2Kernel");
					b3LauncherCL launcher(m_gpuData->m_queue, m_gpuData->m_getInfo2Kernel, "m_getInfo2Kernel");
					launcher.setBuffer(m_gpuData->m_gpuConstraintRows->getBufferCL());
					launcher.setBuffer(m_gpuData->m_gpuConstraintInfo1->getBufferCL());
					launcher.setBuffer(m_gpuData->m_gpuConstraintRowOffsets->getBufferCL());
					launcher.setBuffer(gpuConstraints->getBufferCL());
					launcher.setBuffer(m_gpuData->m_gpuBatchConstraints->getBufferCL());
					launcher.setBuffer(gpuBodies->getBufferCL());
					launcher.setBuffer(gpuInertias->getBufferCL());
					launcher.setBuffer(m_gpuData->m_gpuSolverBodies->getBufferCL());
					launcher.setConst(infoGlobal.m_timeStep);
					launcher.setConst(infoGlobal.m_erp);
					launcher.setConst(infoGlobal.m_globalCfm);
					launcher.setConst(infoGlobal.m_damping);
					launcher.setConst(infoGlobal.m_numIterations);
					launcher.setConst(numConstraints);
					launcher.launch1D(numConstraints);
					clFinish(m_gpuData->m_queue);

					if (m_gpuData->m_batchSizes.size() == 0)
						m_gpuData->m_gpuBatchConstraints->copyToHost(batchConstraints);
					//m_gpuData->m_gpuConstraintRows->copyToHost(verify);
					//m_gpuData->m_gpuConstraintRows->copyToHost(m_tmpSolverNonContactConstraintPool);
				}
			}
			else
			{
				gpuInertias->copyToHost(m_gpuData->m_cpuInertias);

				///setup the b3SolverConstraints

				for (int i = 0; i < numConstraints; i++)
				{
					const int& info1 = m_tmpConstraintSizesPool[i];

					if (info1)
					{
						int constraintIndex = batchConstraints[i].m_originalConstraintIndex;
						int constraintRowOffset = m_gpuData->m_cpuConstraintRowOffsets[constraintIndex];

						b3GpuSolverConstraint* currentConstraintRow = &m_tmpSolverNonContactConstraintPool[constraintRowOffset];
						b3GpuGenericConstraint& constraint = m_gpuData->m_cpuConstraints[i];

						b3RigidBodyData& rbA = m_gpuData->m_cpuBodies[constraint.getRigidBodyA()];
						//b3RigidBody& rbA = constraint.getRigidBodyA();
						//				b3RigidBody& rbB = constraint.getRigidBodyB();
						b3RigidBodyData& rbB = m_gpuData->m_cpuBodies[constraint.getRigidBodyB()];

						int solverBodyIdA = constraint.getRigidBodyA();  //getOrInitSolverBody(constraint.getRigidBodyA(),bodies,inertias);
						int solverBodyIdB = constraint.getRigidBodyB();  //getOrInitSolverBody(constraint.getRigidBodyB(),bodies,inertias);

						b3GpuSolverBody* bodyAPtr = &m_tmpSolverBodyPool[solverBodyIdA];
						b3GpuSolverBody* bodyBPtr = &m_tmpSolverBodyPool[solverBodyIdB];

						if (rbA.m_invMass)
						{
							batchConstraints[i].m_bodyAPtrAndSignBit = solverBodyIdA;
						}
						else
						{
							if (!solverBodyIdA)
								m_staticIdx = 0;
							batchConstraints[i].m_bodyAPtrAndSignBit = -solverBodyIdA;
						}

						if (rbB.m_invMass)
						{
							batchConstraints[i].m_bodyBPtrAndSignBit = solverBodyIdB;
						}
						else
						{
							if (!solverBodyIdB)
								m_staticIdx = 0;
							batchConstraints[i].m_bodyBPtrAndSignBit = -solverBodyIdB;
						}

						int overrideNumSolverIterations = 0;  //constraint->getOverrideNumSolverIterations() > 0 ? constraint->getOverrideNumSolverIterations() : infoGlobal.m_numIterations;
						if (overrideNumSolverIterations > m_maxOverrideNumSolverIterations)
							m_maxOverrideNumSolverIterations = overrideNumSolverIterations;

						int j;
						for (j = 0; j < info1; j++)
						{
							memset(&currentConstraintRow[j], 0, sizeof(b3GpuSolverConstraint));
							currentConstraintRow[j].m_angularComponentA.setValue(0, 0, 0);
							currentConstraintRow[j].m_angularComponentB.setValue(0, 0, 0);
							currentConstraintRow[j].m_appliedImpulse = 0.f;
							currentConstraintRow[j].m_appliedPushImpulse = 0.f;
							currentConstraintRow[j].m_cfm = 0.f;
							currentConstraintRow[j].m_contactNormal.setValue(0, 0, 0);
							currentConstraintRow[j].m_friction = 0.f;
							currentConstraintRow[j].m_frictionIndex = 0;
							currentConstraintRow[j].m_jacDiagABInv = 0.f;
							currentConstraintRow[j].m_lowerLimit = 0.f;
							currentConstraintRow[j].m_upperLimit = 0.f;

							currentConstraintRow[j].m_originalContactPoint = 0;
							currentConstraintRow[j].m_overrideNumSolverIterations = 0;
							currentConstraintRow[j].m_relpos1CrossNormal.setValue(0, 0, 0);
							currentConstraintRow[j].m_relpos2CrossNormal.setValue(0, 0, 0);
							currentConstraintRow[j].m_rhs = 0.f;
							currentConstraintRow[j].m_rhsPenetration = 0.f;
							currentConstraintRow[j].m_solverBodyIdA = 0;
							currentConstraintRow[j].m_solverBodyIdB = 0;

							currentConstraintRow[j].m_lowerLimit = -B3_INFINITY;
							currentConstraintRow[j].m_upperLimit = B3_INFINITY;
							currentConstraintRow[j].m_appliedImpulse = 0.f;
							currentConstraintRow[j].m_appliedPushImpulse = 0.f;
							currentConstraintRow[j].m_solverBodyIdA = solverBodyIdA;
							currentConstraintRow[j].m_solverBodyIdB = solverBodyIdB;
							currentConstraintRow[j].m_overrideNumSolverIterations = overrideNumSolverIterations;
						}

						bodyAPtr->internalGetDeltaLinearVelocity().setValue(0.f, 0.f, 0.f);
						bodyAPtr->internalGetDeltaAngularVelocity().setValue(0.f, 0.f, 0.f);
						bodyAPtr->internalGetPushVelocity().setValue(0.f, 0.f, 0.f);
						bodyAPtr->internalGetTurnVelocity().setValue(0.f, 0.f, 0.f);
						bodyBPtr->internalGetDeltaLinearVelocity().setValue(0.f, 0.f, 0.f);
						bodyBPtr->internalGetDeltaAngularVelocity().setValue(0.f, 0.f, 0.f);
						bodyBPtr->internalGetPushVelocity().setValue(0.f, 0.f, 0.f);
						bodyBPtr->internalGetTurnVelocity().setValue(0.f, 0.f, 0.f);

						b3GpuConstraintInfo2 info2;
						info2.fps = 1.f / infoGlobal.m_timeStep;
						info2.erp = infoGlobal.m_erp;
						info2.m_J1linearAxis = currentConstraintRow->m_contactNormal;
						info2.m_J1angularAxis = currentConstraintRow->m_relpos1CrossNormal;
						info2.m_J2linearAxis = 0;
						info2.m_J2angularAxis = currentConstraintRow->m_relpos2CrossNormal;
						info2.rowskip = sizeof(b3GpuSolverConstraint) / sizeof(b3Scalar);  //check this
						///the size of b3GpuSolverConstraint needs be a multiple of b3Scalar
						b3Assert(info2.rowskip * sizeof(b3Scalar) == sizeof(b3GpuSolverConstraint));
						info2.m_constraintError = &currentConstraintRow->m_rhs;
						currentConstraintRow->m_cfm = infoGlobal.m_globalCfm;
						info2.m_damping = infoGlobal.m_damping;
						info2.cfm = &currentConstraintRow->m_cfm;
						info2.m_lowerLimit = &currentConstraintRow->m_lowerLimit;
						info2.m_upperLimit = &currentConstraintRow->m_upperLimit;
						info2.m_numIterations = infoGlobal.m_numIterations;
						m_gpuData->m_cpuConstraints[i].getInfo2(&info2, &m_gpuData->m_cpuBodies[0]);

						///finalize the constraint setup
						for (j = 0; j < info1; j++)
						{
							b3GpuSolverConstraint& solverConstraint = currentConstraintRow[j];

							if (solverConstraint.m_upperLimit >= m_gpuData->m_cpuConstraints[i].getBreakingImpulseThreshold())
							{
								solverConstraint.m_upperLimit = m_gpuData->m_cpuConstraints[i].getBreakingImpulseThreshold();
							}

							if (solverConstraint.m_lowerLimit <= -m_gpuData->m_cpuConstraints[i].getBreakingImpulseThreshold())
							{
								solverConstraint.m_lowerLimit = -m_gpuData->m_cpuConstraints[i].getBreakingImpulseThreshold();
							}

							//						solverConstraint.m_originalContactPoint = constraint;

							b3Matrix3x3& invInertiaWorldA = m_gpuData->m_cpuInertias[constraint.getRigidBodyA()].m_invInertiaWorld;
							{
								//b3Vector3 angularFactorA(1,1,1);
								const b3Vector3& ftorqueAxis1 = solverConstraint.m_relpos1CrossNormal;
								solverConstraint.m_angularComponentA = invInertiaWorldA * ftorqueAxis1;  //*angularFactorA;
							}

							b3Matrix3x3& invInertiaWorldB = m_gpuData->m_cpuInertias[constraint.getRigidBodyB()].m_invInertiaWorld;
							{
								const b3Vector3& ftorqueAxis2 = solverConstraint.m_relpos2CrossNormal;
								solverConstraint.m_angularComponentB = invInertiaWorldB * ftorqueAxis2;  //*constraint.getRigidBodyB().getAngularFactor();
							}

							{
								//it is ok to use solverConstraint.m_contactNormal instead of -solverConstraint.m_contactNormal
								//because it gets multiplied iMJlB
								b3Vector3 iMJlA = solverConstraint.m_contactNormal * rbA.m_invMass;
								b3Vector3 iMJaA = invInertiaWorldA * solverConstraint.m_relpos1CrossNormal;
								b3Vector3 iMJlB = solverConstraint.m_contactNormal * rbB.m_invMass;  //sign of normal?
								b3Vector3 iMJaB = invInertiaWorldB * solverConstraint.m_relpos2CrossNormal;

								b3Scalar sum = iMJlA.dot(solverConstraint.m_contactNormal);
								sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
								sum += iMJlB.dot(solverConstraint.m_contactNormal);
								sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
								b3Scalar fsum = b3Fabs(sum);
								b3Assert(fsum > B3_EPSILON);
								solverConstraint.m_jacDiagABInv = fsum > B3_EPSILON ? b3Scalar(1.) / sum : 0.f;
							}

							///fix rhs
							///todo: add force/torque accelerators
							{
								b3Scalar rel_vel;
								b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(rbA.m_linVel) + solverConstraint.m_relpos1CrossNormal.dot(rbA.m_angVel);
								b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rbB.m_linVel) + solverConstraint.m_relpos2CrossNormal.dot(rbB.m_angVel);

								rel_vel = vel1Dotn + vel2Dotn;

								b3Scalar restitution = 0.f;
								b3Scalar positionalError = solverConstraint.m_rhs;  //already filled in by getConstraintInfo2
								b3Scalar velocityError = restitution - rel_vel * info2.m_damping;
								b3Scalar penetrationImpulse = positionalError * solverConstraint.m_jacDiagABInv;
								b3Scalar velocityImpulse = velocityError * solverConstraint.m_jacDiagABInv;
								solverConstraint.m_rhs = penetrationImpulse + velocityImpulse;
								solverConstraint.m_appliedImpulse = 0.f;
							}
						}
					}
				}

				m_gpuData->m_gpuConstraintRows->copyFromHost(m_tmpSolverNonContactConstraintPool);
				m_gpuData->m_gpuConstraintInfo1->copyFromHost(m_tmpConstraintSizesPool);

				if (m_gpuData->m_batchSizes.size() == 0)
					m_gpuData->m_gpuBatchConstraints->copyFromHost(batchConstraints);
				else
					m_gpuData->m_gpuBatchConstraints->copyToHost(batchConstraints);

				m_gpuData->m_gpuSolverBodies->copyFromHost(m_tmpSolverBodyPool);

			}  //end useGpuInfo2
		}

#ifdef B3_SUPPORT_CONTACT_CONSTRAINTS
		{
			int i;

			for (i = 0; i < numManifolds; i++)
			{
				b3Contact4& manifold = manifoldPtr[i];
				convertContact(bodies, inertias, &manifold, infoGlobal);
			}
		}
#endif  //B3_SUPPORT_CONTACT_CONSTRAINTS
	}

	//	b3ContactSolverInfo info = infoGlobal;

	//	int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
	//	int numConstraintPool = m_tmpSolverContactConstraintPool.size();
	//	int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size();

	return 0.f;
}
Ejemplo n.º 8
0
	bool checkData()
	{
		bool hasStatus = false;

		int serviceResult = enet_host_service(m_client, &m_event, 0);

		if (serviceResult > 0)
		{
			switch (m_event.type)
			{
			case ENET_EVENT_TYPE_CONNECT:
				printf("A new client connected from %x:%u.\n",
					m_event.peer->address.host,
					m_event.peer->address.port);

				m_event.peer->data = (void*)"New User";
				break;

			case ENET_EVENT_TYPE_RECEIVE:
			{
				if (gVerboseNetworkMessagesClient)
				{
					printf("A packet of length %lu containing '%s' was "
						"received from %s on channel %u.\n",
						m_event.packet->dataLength,
						(char*)m_event.packet->data,
						(char*)m_event.peer->data,
						m_event.channelID);
				}

				int packetSizeInBytes = b3DeserializeInt(m_event.packet->data);

				if (packetSizeInBytes == m_event.packet->dataLength)
				{

					SharedMemoryStatus* statPtr = (SharedMemoryStatus*)&m_event.packet->data[4];
					if (statPtr->m_type == CMD_STEP_FORWARD_SIMULATION_COMPLETED)
					{
						SharedMemoryStatus dummy;
						dummy.m_type = CMD_STEP_FORWARD_SIMULATION_COMPLETED;
						m_lastStatus = dummy;
						m_stream.resize(0);
					}
					else
					{

						m_lastStatus = *statPtr;
						int streamOffsetInBytes = 4 + sizeof(SharedMemoryStatus);
						int numStreamBytes = packetSizeInBytes - streamOffsetInBytes;
						m_stream.resize(numStreamBytes);
						for (int i = 0; i < numStreamBytes; i++)
						{
							m_stream[i] = m_event.packet->data[i + streamOffsetInBytes];
						}
					}
				}
				else
				{
					printf("unknown status message received\n");
				}
				enet_packet_destroy(m_event.packet);
				hasStatus = true;
				break;
			}
			case ENET_EVENT_TYPE_DISCONNECT:
			{
				printf("%s disconnected.\n", (char*)m_event.peer->data);

				break;
			}
			default:
				{
					printf("unknown event type: %d.\n", m_event.type);
				}
			}
		}
		else if (serviceResult > 0)
		{
			puts("Error with servicing the client");
		}

		return hasStatus;
	}
Ejemplo n.º 9
0
inline int b3GpuPgsContactSolver::sortConstraintByBatch2( b3Contact4* cs, int numConstraints, int simdWidth , int staticIdx, int numBodies)
{
	
	B3_PROFILE("sortConstraintByBatch2");
	

	
	bodyUsed2.resize(2*simdWidth);

	for (int q=0;q<2*simdWidth;q++)
		bodyUsed2[q]=0;

	int curBodyUsed = 0;

	int numIter = 0;
    
	m_data->m_sortData.resize(numConstraints);
	m_data->m_idxBuffer.resize(numConstraints);
	m_data->m_old.resize(numConstraints);
	
	unsigned int* idxSrc = &m_data->m_idxBuffer[0];
		
#if defined(_DEBUG)
	for(int i=0; i<numConstraints; i++)
		cs[i].getBatchIdx() = -1;
#endif
	for(int i=0; i<numConstraints; i++) 
		idxSrc[i] = i;
    
	int numValidConstraints = 0;
	int unprocessedConstraintIndex = 0;

	int batchIdx = 0;
    

	{
		B3_PROFILE("cpu batch innerloop");
		
		while( numValidConstraints < numConstraints)
		{
			numIter++;
			int nCurrentBatch = 0;
			//	clear flag
			for(int i=0; i<curBodyUsed; i++) 
				bodyUsed2[i] = 0;
            curBodyUsed = 0;

			for(int i=numValidConstraints; i<numConstraints; i++)
			{
				int idx = idxSrc[i];
				b3Assert( idx < numConstraints );
				//	check if it can go
				int bodyAS = cs[idx].m_bodyAPtrAndSignBit;
				int bodyBS = cs[idx].m_bodyBPtrAndSignBit;
				int bodyA = abs(bodyAS);
				int bodyB = abs(bodyBS);
				bool aIsStatic = (bodyAS<0) || bodyAS==staticIdx;
				bool bIsStatic = (bodyBS<0) || bodyBS==staticIdx;
				int aUnavailable = 0;
				int bUnavailable = 0;
				if (!aIsStatic)
				{
					for (int j=0;j<curBodyUsed;j++)
					{
						if (bodyA == bodyUsed2[j])
						{
							aUnavailable=1;
							break;
						}
					}
				}
				if (!aUnavailable)
				if (!bIsStatic)
				{
					for (int j=0;j<curBodyUsed;j++)
					{
						if (bodyB == bodyUsed2[j])
						{
							bUnavailable=1;
							break;
						}
					}
				}
                
				if( aUnavailable==0 && bUnavailable==0 ) // ok
				{
					if (!aIsStatic)
					{
						bodyUsed2[curBodyUsed++] = bodyA;
					}
					if (!bIsStatic)
					{
						bodyUsed2[curBodyUsed++] = bodyB;
					}

					cs[idx].getBatchIdx() = batchIdx;
					m_data->m_sortData[idx].m_key = batchIdx;
					m_data->m_sortData[idx].m_value = idx;

					if (i!=numValidConstraints)
					{
						b3Swap(idxSrc[i], idxSrc[numValidConstraints]);
					}

					numValidConstraints++;
					{
						nCurrentBatch++;
						if( nCurrentBatch == simdWidth )
						{
							nCurrentBatch = 0;
							for(int i=0; i<curBodyUsed; i++) 
								bodyUsed2[i] = 0;

							
							curBodyUsed = 0;
						}
					}
				}
			}
			
			batchIdx ++;
		}
	}
	{
		B3_PROFILE("quickSort");
		//m_data->m_sortData.quickSort(sortfnc);
	}

	{
        B3_PROFILE("reorder");
		//	reorder
		
		memcpy( &m_data->m_old[0], cs, sizeof(b3Contact4)*numConstraints);

		for(int i=0; i<numConstraints; i++)
		{
			b3Assert(m_data->m_sortData[idxSrc[i]].m_value == idxSrc[i]);
			int idx = m_data->m_sortData[idxSrc[i]].m_value;
			cs[i] = m_data->m_old[idx];
		}
	}
	
#if defined(_DEBUG)
    //		debugPrintf( "nBatches: %d\n", batchIdx );
	for(int i=0; i<numConstraints; i++)
    {
        b3Assert( cs[i].getBatchIdx() != -1 );
    }
#endif

	
	return batchIdx;
}
Ejemplo n.º 10
0
inline int b3GpuPgsContactSolver::sortConstraintByBatch( b3Contact4* cs, int n, int simdWidth , int staticIdx, int numBodies)
{
	
	B3_PROFILE("sortConstraintByBatch");
	int numIter = 0;
    
	sortData.resize(n);
	idxBuffer.resize(n);
	old.resize(n);
	
	unsigned int* idxSrc = &idxBuffer[0];
	unsigned int* idxDst = &idxBuffer[0];
	int nIdxSrc, nIdxDst;
    
	const int N_FLG = 256;
	const int FLG_MASK = N_FLG-1;
	unsigned int flg[N_FLG/32];
#if defined(_DEBUG)
	for(int i=0; i<n; i++)
		cs[i].getBatchIdx() = -1;
#endif
	for(int i=0; i<n; i++) 
		idxSrc[i] = i;
	nIdxSrc = n;
    
	int batchIdx = 0;
    
	{
		B3_PROFILE("cpu batch innerloop");
		while( nIdxSrc )
		{
			numIter++;
			nIdxDst = 0;
			int nCurrentBatch = 0;
            
			//	clear flag
			for(int i=0; i<N_FLG/32; i++) flg[i] = 0;
            
			for(int i=0; i<nIdxSrc; i++)
			{
				int idx = idxSrc[i];
				

				b3Assert( idx < n );
				//	check if it can go
				int bodyAS = cs[idx].m_bodyAPtrAndSignBit;
				int bodyBS = cs[idx].m_bodyBPtrAndSignBit;
                
				
                
				int bodyA = abs(bodyAS);
				int bodyB = abs(bodyBS);
                
				int aIdx = bodyA & FLG_MASK;
				int bIdx = bodyB & FLG_MASK;
                
				unsigned int aUnavailable = flg[ aIdx/32 ] & (1<<(aIdx&31));
				unsigned int bUnavailable = flg[ bIdx/32 ] & (1<<(bIdx&31));
                
				bool aIsStatic = (bodyAS<0) || bodyAS==staticIdx;
				bool bIsStatic = (bodyBS<0) || bodyBS==staticIdx;

                //use inv_mass!
				aUnavailable = !aIsStatic? aUnavailable:0;//
				bUnavailable = !bIsStatic? bUnavailable:0;
                
				if( aUnavailable==0 && bUnavailable==0 ) // ok
				{
					if (!aIsStatic)
						flg[ aIdx/32 ] |= (1<<(aIdx&31));
					if (!bIsStatic)
						flg[ bIdx/32 ] |= (1<<(bIdx&31));

					cs[idx].getBatchIdx() = batchIdx;
					sortData[idx].m_key = batchIdx;
					sortData[idx].m_value = idx;
                    
					{
						nCurrentBatch++;
						if( nCurrentBatch == simdWidth )
						{
							nCurrentBatch = 0;
							for(int i=0; i<N_FLG/32; i++) flg[i] = 0;
						}
					}
				}
				else
				{
					idxDst[nIdxDst++] = idx;
				}
			}
			b3Swap( idxSrc, idxDst );
			b3Swap( nIdxSrc, nIdxDst );
			batchIdx ++;
		}
	}
	{
		B3_PROFILE("quickSort");
		sortData.quickSort(sortfnc);
	}
	
	
	{
        B3_PROFILE("reorder");
		//	reorder
		
		memcpy( &old[0], cs, sizeof(b3Contact4)*n);
		for(int i=0; i<n; i++)
		{
			int idx = sortData[i].m_value;
			cs[i] = old[idx];
		}
	}
    
	
#if defined(_DEBUG)
    //		debugPrintf( "nBatches: %d\n", batchIdx );
	for(int i=0; i<n; i++)
    {
        b3Assert( cs[i].getBatchIdx() != -1 );
    }
#endif
	return batchIdx;
}
	EGLRendererVisualShapeConverterInternalData()
		: m_upAxis(2),
		  m_swWidth(START_WIDTH),
		  m_swHeight(START_HEIGHT),
		  m_rgbColorBuffer(START_WIDTH, START_HEIGHT, TGAImage::RGB),
		  m_lightDirection(btVector3(-5, 200, -40)),
		  m_hasLightDirection(false),
		  m_lightColor(btVector3(1.0, 1.0, 1.0)),
		  m_hasLightColor(false),
		  m_lightDistance(2.0),
		  m_hasLightDistance(false),
		  m_lightAmbientCoeff(0.6),
		  m_hasLightAmbientCoeff(false),
		  m_lightDiffuseCoeff(0.35),
		  m_hasLightDiffuseCoeff(false),
		  m_lightSpecularCoeff(0.05),
		  m_hasLightSpecularCoeff(false),
		  m_hasShadow(false),
		  m_flags(0)
	{
		m_depthBuffer.resize(m_swWidth * m_swHeight);
		m_shadowBuffer.resize(m_swWidth * m_swHeight);
		m_segmentationMaskBuffer.resize(m_swWidth * m_swHeight, -1);

		// OpenGL window
		bool allowRetina = true;
		m_window = new DefaultOpenGLWindow();
		m_window->setAllowRetina(allowRetina);
		b3gWindowConstructionInfo ci;
		ci.m_title = "Title";
		ci.m_width = m_swWidth;
		ci.m_height = m_swHeight;
		ci.m_renderDevice = 0;

		m_window->createWindow(ci);
		m_window->setWindowTitle(ci.m_title);
		b3Assert(glGetError() == GL_NO_ERROR);
		{
			printGLString("Version", GL_VERSION);
			printGLString("Vendor", GL_VENDOR);
			printGLString("Renderer", GL_RENDERER);
		}
		glClearColor(.7f, .7f, .8f, 1.f);

		m_window->startRendering();

		b3Assert(glGetError() == GL_NO_ERROR);

		glGetError();  //don't remove this call, it is needed for Ubuntu
		b3Assert(glGetError() == GL_NO_ERROR);
		int maxNumObjectCapacity = 128 * 1024;
		int maxShapeCapacityInBytes = 128 * 1024 * 1024;
		m_instancingRenderer = new GLInstancingRenderer(maxNumObjectCapacity, maxShapeCapacityInBytes);
		b3Assert(glGetError() == GL_NO_ERROR);
		m_instancingRenderer->init();
		b3Assert(glGetError() == GL_NO_ERROR);
		m_instancingRenderer->resize(m_swWidth, m_swHeight);
		m_instancingRenderer->InitShaders();
		b3Assert(glGetError() == GL_NO_ERROR);
		m_instancingRenderer->setActiveCamera(&m_camera);
		b3Assert(glGetError() == GL_NO_ERROR);
		m_instancingRenderer->updateCamera();
		b3Assert(glGetError() == GL_NO_ERROR);
		m_instancingRenderer->setLightPosition(m_lightDirection);
		m_window->endRendering();
	}