// constructor
// anchor, axis1 and axis2 are in world coordinate system
// axis1 must be orthogonal to axis2
btUniversalConstraint::btUniversalConstraint(btRigidBody& rbA, btRigidBody& rbB, const btVector3& anchor, const btVector3& axis1, const btVector3& axis2)
: btGeneric6DofConstraint(rbA, rbB, btTransform::getIdentity(), btTransform::getIdentity(), true),
 m_anchor(anchor),
 m_axis1(axis1),
 m_axis2(axis2)
{
	// build frame basis
	// 6DOF constraint uses Euler angles and to define limits
	// it is assumed that rotational order is :
	// Z - first, allowed limits are (-PI,PI);
	// new position of Y - second (allowed limits are (-PI/2 + epsilon, PI/2 - epsilon), where epsilon is a small positive number
	// used to prevent constraint from instability on poles;
	// new position of X, allowed limits are (-PI,PI);
	// So to simulate ODE Universal joint we should use parent axis as Z, child axis as Y and limit all other DOFs
	// Build the frame in world coordinate system first
	btVector3 zAxis = m_axis1.normalize();
	btVector3 yAxis = m_axis2.normalize();
	btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
	btTransform frameInW;
	frameInW.setIdentity();
	frameInW.getBasis().setValue(	xAxis[0], yAxis[0], zAxis[0],
									xAxis[1], yAxis[1], zAxis[1],
									xAxis[2], yAxis[2], zAxis[2]);
	frameInW.setOrigin(anchor);
	// now get constraint frame in local coordinate systems
	m_frameInA = rbA.getCenterOfMassTransform().inverse() * frameInW;
	m_frameInB = rbB.getCenterOfMassTransform().inverse() * frameInW;
	// sei limits
	setLinearLowerLimit(btVector3(0., 0., 0.));
	setLinearUpperLimit(btVector3(0., 0., 0.));
	setAngularLowerLimit(btVector3(0.f, -SIMD_HALF_PI + UNIV_EPS, -SIMD_PI + UNIV_EPS));
	setAngularUpperLimit(btVector3(0.f,  SIMD_HALF_PI - UNIV_EPS,  SIMD_PI - UNIV_EPS));
}
Ejemplo n.º 2
0
btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA)
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false)
{

	// since no frame is given, assume this to be zero angle and just pick rb transform axis
	// fixed axis in worldspace
	btVector3 rbAxisA1, rbAxisA2;
	btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2);

	m_rbAFrame.getOrigin() = pivotInA;
	m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
									rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
									rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );

	btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * -axisInA;

	btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
	btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1);
	btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);


	m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA);
	m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
									rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
									rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
	
	//start with free
	m_lowerLimit = btScalar(1e30);
	m_upperLimit = btScalar(-1e30);
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;
}
btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,const btVector3& axisInA, bool useReferenceFrameA)
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false), 
m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
m_useReferenceFrameA(useReferenceFrameA),
m_flags(0),m_limit()
{

	// since no frame is given, assume this to be zero angle and just pick rb transform axis
	// fixed axis in worldspace
	btVector3 rbAxisA1, rbAxisA2;
	btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2);

	m_rbAFrame.getOrigin() = pivotInA;
	m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
									rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
									rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );

	btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * axisInA;

	btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
	btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1);
	btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);


	m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA);
	m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
									rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
									rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
	
	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
}
Ejemplo n.º 4
0
btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB,
									 const btVector3& axisInA,const btVector3& axisInB, bool useReferenceFrameA)
									 :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),
#ifdef _BT_USE_CENTER_LIMIT_
									 m_limit(),
#endif
									 m_angularOnly(false),
									 m_enableAngularMotor(false),
									 m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
									 m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
									 m_useReferenceFrameA(useReferenceFrameA),
									 m_flags(0),
									 m_normalCFM(0),
									 m_normalERP(0),
									 m_stopCFM(0),
									 m_stopERP(0)
{
	m_rbAFrame.getOrigin() = pivotInA;
	
	// since no frame is given, assume this to be zero angle and just pick rb transform axis
	btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0);

	btVector3 rbAxisA2;
	btScalar projection = axisInA.dot(rbAxisA1);
	if (projection >= 1.0f - SIMD_EPSILON) {
		rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2);
		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);
	} else if (projection <= -1.0f + SIMD_EPSILON) {
		rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2);
		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);      
	} else {
		rbAxisA2 = axisInA.cross(rbAxisA1);
		rbAxisA1 = rbAxisA2.cross(axisInA);
	}

	m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
									rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
									rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );

	btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
	btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1);
	btVector3 rbAxisB2 =  axisInB.cross(rbAxisB1);	
	
	m_rbBFrame.getOrigin() = pivotInB;
	m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
									rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
									rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
	
#ifndef	_BT_USE_CENTER_LIMIT_
	//start with free
	m_lowerLimit = btScalar(1.0f);
	m_upperLimit = btScalar(-1.0f);
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;
#endif
	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
}
//bilateral constraint between two dynamic objects
void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1,
                      btRigidBody& body2, const btVector3& pos2,
                      btScalar distance, const btVector3& normal,btScalar& impulse ,btScalar timeStep)
{
	(void)timeStep;
	(void)distance;


	btScalar normalLenSqr = normal.length2();
	btAssert(btFabs(normalLenSqr) < btScalar(1.1));
	if (normalLenSqr > btScalar(1.1))
	{
		impulse = btScalar(0.);
		return;
	}
	btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); 
	btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
	//this jacobian entry could be re-used for all iterations
	
	btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
	btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
	btVector3 vel = vel1 - vel2;
	

	   btJacobianEntry jac(body1.getCenterOfMassTransform().getBasis().transpose(),
		body2.getCenterOfMassTransform().getBasis().transpose(),
		rel_pos1,rel_pos2,normal,body1.getInvInertiaDiagLocal(),body1.getInvMass(),
		body2.getInvInertiaDiagLocal(),body2.getInvMass());

	btScalar jacDiagAB = jac.getDiagonal();
	btScalar jacDiagABInv = btScalar(1.) / jacDiagAB;
	
	  btScalar rel_vel = jac.getRelativeVelocity(
		body1.getLinearVelocity(),
		body1.getCenterOfMassTransform().getBasis().transpose() * body1.getAngularVelocity(),
		body2.getLinearVelocity(),
		body2.getCenterOfMassTransform().getBasis().transpose() * body2.getAngularVelocity()); 
	btScalar a;
	a=jacDiagABInv;


	rel_vel = normal.dot(vel);
	
	//todo: move this into proper structure
	btScalar contactDamping = btScalar(0.2);

#ifdef ONLY_USE_LINEAR_MASS
	btScalar massTerm = btScalar(1.) / (body1.getInvMass() + body2.getInvMass());
	impulse = - contactDamping * rel_vel * massTerm;
#else	
	btScalar velocityImpulse = -contactDamping * rel_vel * jacDiagABInv;
	impulse = velocityImpulse;
#endif
}
btPoint2PointConstraint::btPoint2PointConstraint(btRigidBody& rbA,const btVector3& pivotInA)
:btTypedConstraint(POINT2POINT_CONSTRAINT_TYPE,rbA),m_pivotInA(pivotInA),m_pivotInB(rbA.getCenterOfMassTransform()(pivotInA)),
m_flags(0),
m_useSolveConstraintObsolete(false)
{
	
}
Ejemplo n.º 7
0
btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB,
									 btVector3& axisInA,btVector3& axisInB)
									 :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),
									 m_angularOnly(false),
									 m_enableAngularMotor(false)
{
	m_rbAFrame.getOrigin() = pivotInA;
	
	// since no frame is given, assume this to be zero angle and just pick rb transform axis
	btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0);

	btVector3 rbAxisA2;
	btScalar projection = axisInA.dot(rbAxisA1);
	if (projection >= 1.0f - SIMD_EPSILON) {
		rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2);
		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);
	} else if (projection <= -1.0f + SIMD_EPSILON) {
		rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2);
		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);      
	} else {
		rbAxisA2 = axisInA.cross(rbAxisA1);
		rbAxisA1 = rbAxisA2.cross(axisInA);
	}

	m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
									rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
									rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );

	btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
	btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1);
	btVector3 rbAxisB2 =  axisInB.cross(rbAxisB1);	
	
	m_rbBFrame.getOrigin() = pivotInB;
	m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),-axisInB.getX(),
									rbAxisB1.getY(),rbAxisB2.getY(),-axisInB.getY(),
									rbAxisB1.getZ(),rbAxisB2.getZ(),-axisInB.getZ() );
	
	//start with free
	m_lowerLimit = btScalar(1e30);
	m_upperLimit = btScalar(-1e30);
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;

}
btGeneric6DofSpring2Constraint::btGeneric6DofSpring2Constraint(btRigidBody& rbB, const btTransform& frameInB, RotateOrder rotOrder)
	: btTypedConstraint(D6_SPRING_2_CONSTRAINT_TYPE, getFixedBody(), rbB)
	, m_frameInB(frameInB)
	, m_rotateOrder(rotOrder)
	, m_flags(0)
{
	///not providing rigidbody A means implicitly using worldspace for body A
	m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB;
	calculateTransforms();
}
btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB)
        : btTypedConstraint(D6_CONSTRAINT_TYPE, getFixedBody(), rbB),
		m_frameInB(frameInB),
		m_useLinearReferenceFrameA(useLinearReferenceFrameB),
		m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET),
		m_flags(0),
		m_useSolveConstraintObsolete(false)
{
	///not providing rigidbody A means implicitly using worldspace for body A
	m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB;
	calculateTransforms();
}
Ejemplo n.º 10
0
btSliderConstraint::btSliderConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameA)
        : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, getFixedBody(), rbB),
		m_useSolveConstraintObsolete(false),
		m_frameInB(frameInB),
		m_useLinearReferenceFrameA(useLinearReferenceFrameA)
{
	///not providing rigidbody A means implicitly using worldspace for body A
	m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB;
//	m_frameInA.getOrigin() = m_rbA.getCenterOfMassTransform()(m_frameInA.getOrigin());

	initParams();
}
// constructor
// anchor, axis1 and axis2 are in world coordinate system
// axis1 must be orthogonal to axis2
btHinge2Constraint::btHinge2Constraint(btRigidBody& rbA, btRigidBody& rbB, btVector3& anchor, btVector3& axis1, btVector3& axis2)
: btGeneric6DofSpringConstraint(rbA, rbB, btTransform::getIdentity(), btTransform::getIdentity(), true),
 m_anchor(anchor),
 m_axis1(axis1),
 m_axis2(axis2)
{
	// build frame basis
	// 6DOF constraint uses Euler angles and to define limits
	// it is assumed that rotational order is :
	// Z - first, allowed limits are (-PI,PI);
	// new position of Y - second (allowed limits are (-PI/2 + epsilon, PI/2 - epsilon), where epsilon is a small positive number
	// used to prevent constraint from instability on poles;
	// new position of X, allowed limits are (-PI,PI);
	// So to simulate ODE Universal joint we should use parent axis as Z, child axis as Y and limit all other DOFs
	// Build the frame in world coordinate system first
	btVector3 zAxis = axis1.normalize();
	btVector3 xAxis = axis2.normalize();
	btVector3 yAxis = zAxis.cross(xAxis); // we want right coordinate system
	btTransform frameInW;
	frameInW.setIdentity();
	frameInW.getBasis().setValue(	xAxis[0], yAxis[0], zAxis[0],
									xAxis[1], yAxis[1], zAxis[1],
									xAxis[2], yAxis[2], zAxis[2]);
	frameInW.setOrigin(anchor);
	// now get constraint frame in local coordinate systems
	m_frameInA = rbA.getCenterOfMassTransform().inverse() * frameInW;
	m_frameInB = rbB.getCenterOfMassTransform().inverse() * frameInW;
	// sei limits
	setLinearLowerLimit(btVector3(0.f, 0.f, -1.f));
	setLinearUpperLimit(btVector3(0.f, 0.f,  1.f));
	// like front wheels of a car
	setAngularLowerLimit(btVector3(1.f,  0.f, -SIMD_HALF_PI * 0.5f));
	setAngularUpperLimit(btVector3(-1.f, 0.f,  SIMD_HALF_PI * 0.5f));
	// enable suspension
	enableSpring(2, true);
	setStiffness(2, SIMD_PI * SIMD_PI * 4.f); // period 1 sec for 1 kilogramm weel :-)
	setDamping(2, 0.01f);
	setEquilibriumPoint();
}
Ejemplo n.º 12
0
//bilateral constraint between two dynamic objects
void RaycastCar::resolveSingleBilateral(btRigidBody     & body1,
                                        const btVector3 & pos1,
                                        btRigidBody     & body2,
                                        const btVector3 & pos2,
                                        const btVector3 & normal,
                                        btScalar        & impulse)
{
    btScalar normalLenSqr = normal.length2();
    btAssert(btFabs(normalLenSqr) < btScalar(1.1f));
    if (normalLenSqr > btScalar(1.1f))
    {
        impulse = btScalar(0.0f);
        return;
    }
    btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition();
    btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
    btJacobianEntry jac(body1.getCenterOfMassTransform().getBasis().transpose(),
                        body2.getCenterOfMassTransform().getBasis().transpose(),
                        rel_pos1,
                        rel_pos2,
                        normal,
                        body1.getInvInertiaDiagLocal(),
                        body1.getInvMass(),
                        body2.getInvInertiaDiagLocal(),
                        body2.getInvMass());

    btScalar jacDiagAB = jac.getDiagonal();
    btScalar jacDiagABInv = btScalar(1.0f) / jacDiagAB;

    btScalar rel_vel = jac.getRelativeVelocity
                       (body1.getLinearVelocity(),
                        body1.getCenterOfMassTransform().getBasis().transpose()*body1.getAngularVelocity(),
                        body2.getLinearVelocity(),
                        body2.getCenterOfMassTransform().getBasis().transpose()*body2.getAngularVelocity());

    btScalar velocityImpulse = -1.0f * rel_vel * jacDiagABInv;
    impulse = velocityImpulse;
}
Ejemplo n.º 13
0
void btSliderConstraint::buildJacobianInt(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB)
{
	//calculate transforms
    m_calculatedTransformA = rbA.getCenterOfMassTransform() * frameInA;
    m_calculatedTransformB = rbB.getCenterOfMassTransform() * frameInB;
	m_realPivotAInW = m_calculatedTransformA.getOrigin();
	m_realPivotBInW = m_calculatedTransformB.getOrigin();
	m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X
	m_delta = m_realPivotBInW - m_realPivotAInW;
	m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
	m_relPosA = m_projPivotInW - rbA.getCenterOfMassPosition();
	m_relPosB = m_realPivotBInW - rbB.getCenterOfMassPosition();
    btVector3 normalWorld;
    int i;
    //linear part
    for(i = 0; i < 3; i++)
    {
		normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
		new (&m_jacLin[i]) btJacobianEntry(
			rbA.getCenterOfMassTransform().getBasis().transpose(),
			rbB.getCenterOfMassTransform().getBasis().transpose(),
			m_relPosA,
			m_relPosB,
			normalWorld,
			rbA.getInvInertiaDiagLocal(),
			rbA.getInvMass(),
			rbB.getInvInertiaDiagLocal(),
			rbB.getInvMass()
			);
		m_jacLinDiagABInv[i] = btScalar(1.) / m_jacLin[i].getDiagonal();
		m_depth[i] = m_delta.dot(normalWorld);
    }
	testLinLimits();
    // angular part
    for(i = 0; i < 3; i++)
    {
		normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
		new (&m_jacAng[i])	btJacobianEntry(
			normalWorld,
            rbA.getCenterOfMassTransform().getBasis().transpose(),
            rbB.getCenterOfMassTransform().getBasis().transpose(),
            rbA.getInvInertiaDiagLocal(),
            rbB.getInvInertiaDiagLocal()
			);
	}
	testAngLimits();
	btVector3 axisA = m_calculatedTransformA.getBasis().getColumn(0);
	m_kAngle = btScalar(1.0 )/ (rbA.computeAngularImpulseDenominator(axisA) + rbB.computeAngularImpulseDenominator(axisA));
	// clear accumulator for motors
	m_accumulatedLinMotorImpulse = btScalar(0.0);
	m_accumulatedAngMotorImpulse = btScalar(0.0);
}
Ejemplo n.º 14
0
 void addPickingConstraint(const btVector3& rayFrom, const btVector3& rayTo) {
   if (!dynamicsWorld) {
     return;
   }
   removePickingConstraint();
   if (pickedObjectIndex <= 0 || pickedObjectIndex >= dynamicsWorld->getNumCollisionObjects()) {
     return;
   }
   pickedBody = btRigidBody::upcast(dynamicsWorld->getCollisionObjectArray()[pickedObjectIndex]);
   btVector3 pickPos = rayTo;
   btVector3 localPivot = pickedBody->getCenterOfMassTransform().inverse() * pickPos;
   pickConstraint = new btPoint2PointConstraint(*pickedBody,localPivot);
   pickedBody->setActivationState(DISABLE_DEACTIVATION);
   dynamicsWorld->addConstraint(pickConstraint,true);
   pickingDistance = (rayFrom-rayTo).length();
   pickConstraint->m_setting.m_impulseClamp = 3.0f;
   pickConstraint->m_setting.m_tau = 0.001f;
 }
Ejemplo n.º 15
0
void btSliderConstraint::buildJacobianInt(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB)
{
	//calculate transforms
    m_calculatedTransformA = rbA.getCenterOfMassTransform() * frameInA;
    m_calculatedTransformB = rbB.getCenterOfMassTransform() * frameInB;
	m_realPivotAInW = m_calculatedTransformA.getOrigin();
	m_realPivotBInW = m_calculatedTransformB.getOrigin();
	m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X
	m_delta = m_realPivotBInW - m_realPivotAInW;
	m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
	m_relPosA = m_projPivotInW - rbA.getCenterOfMassPosition();
	m_relPosB = m_realPivotBInW - rbB.getCenterOfMassPosition();
    btVector3 normalWorld;
    int i;
    //linear part
    for(i = 0; i < 3; i++)
    {
		normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
		new (&m_jacLin[i]) btJacobianEntry(
			rbA.getCenterOfMassTransform().getBasis().transpose(),
			rbB.getCenterOfMassTransform().getBasis().transpose(),
			m_relPosA,
			m_relPosB,
			normalWorld,
			rbA.getInvInertiaDiagLocal(),
			rbA.getInvMass(),
			rbB.getInvInertiaDiagLocal(),
			rbB.getInvMass()
			);
		m_jacLinDiagABInv[i] = btScalar(1.) / m_jacLin[i].getDiagonal();
		m_depth[i] = m_delta.dot(normalWorld);
    }
	m_solveLinLim = false;
	if(m_lowerLinLimit <= m_upperLinLimit)
	{
		if(m_depth[0] > m_upperLinLimit)
		{
			m_depth[0] -= m_upperLinLimit;
			m_solveLinLim = true;
		}
		else if(m_depth[0] < m_lowerLinLimit)
		{
			m_depth[0] -= m_lowerLinLimit;
			m_solveLinLim = true;
		}
		else
		{
			m_depth[0] = btScalar(0.);
		}
	}
	else
	{
		m_depth[0] = btScalar(0.);
	}
    // angular part
    for(i = 0; i < 3; i++)
    {
		normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
		new (&m_jacAng[i])	btJacobianEntry(
			normalWorld,
            rbA.getCenterOfMassTransform().getBasis().transpose(),
            rbB.getCenterOfMassTransform().getBasis().transpose(),
            rbA.getInvInertiaDiagLocal(),
            rbB.getInvInertiaDiagLocal()
			);
	}
	m_angDepth = btScalar(0.);
	m_solveAngLim = false;
	if(m_lowerAngLimit <= m_upperAngLimit)
	{
		const btVector3 axisA0 = m_calculatedTransformA.getBasis().getColumn(1);
		const btVector3 axisA1 = m_calculatedTransformA.getBasis().getColumn(2);
		const btVector3 axisB0 = m_calculatedTransformB.getBasis().getColumn(1);
		btScalar rot = btAtan2Fast(axisB0.dot(axisA1), axisB0.dot(axisA0));  
		if(rot < m_lowerAngLimit)
		{
			m_angDepth = rot - m_lowerAngLimit;
			m_solveAngLim = true;
		} 
		else if(rot > m_upperAngLimit)
		{
			m_angDepth = rot - m_upperAngLimit;
			m_solveAngLim = true;
		}
	}
	btVector3 axisA = m_calculatedTransformA.getBasis().getColumn(0);
	m_kAngle = btScalar(1.0 )/ (rbA.computeAngularImpulseDenominator(axisA) + rbB.computeAngularImpulseDenominator(axisA));
} // btSliderConstraint::buildJacobianInt()