void RV02::Sobel (const channel8& sPic, channel8& GradientPic, channel8& DirectionPic){ const int PicSizeY = sPic.rows(); const int PicSizeX = sPic.columns(); int x, y; int gx, gy; for(x = 1; x < PicSizeX - 1; x++){ for(y = 1; y < PicSizeY - 1; y++){ // Gx berechnen gx = -sPic[y-1][x-1] + 0 + sPic[y-1][x+1] -2*sPic[y][x-1] + 0 + 2*sPic[y][x+1] -sPic[y+1][x-1] + 0 + sPic[y+1][x+1]; gx /= 4; // Gy berechnen gy = - sPic[y-1][x-1] - 2*sPic[y-1][x] - sPic[y-1][x+1] + 0 + 0 + 0 + sPic[y+1][x-1] + 2*sPic[y+1][x] + sPic[y+1][x+1]; gy /= 4; // Gradientenbetrag GradientPic[y][x] = sqrt(gx*gx + gy*gy); // Winkel: 180 <= angle < 540 double angle = atan2((double)gy,(double)gx)/PI*180+360.0; // Abbildung auf die Winkelbereiche int dir = ((int)(angle+22.5)%360)/45; DirectionPic[y][x] = dir; } } }
// On copy apply for type channel8! bool harrisCorners::apply(const channel8& src,channel8& dest) const { pointList pts; if (apply(src,pts)) { const parameters& par = getParameters(); pointList::iterator it; dest.resize(src.size(),par.noCornerValue,false,true); for (it=pts.begin();it!=pts.end();++it) { dest.at(*it)=par.cornerValue; } return true; } return false; };
// merge 8-bit channels bool mergeOCPToImage::apply(const channel8& c1, const channel8& c2, const channel8& c3, image& img) const { point p; // coordinates float r,g,b; // unnormed RGB channels float RG, BY, WB; // opponent colour channels if ((c1.size() != c2.size()) || (c1.size() != c3.size())) { setStatusString("sizes of channels do not match"); return false; } img.resize(c1.size(),rgbPixel(),false,false); for (p.y=0;p.y<img.rows();p.y++) { for (p.x=0;p.x<img.columns();p.x++) { RG = static_cast<float>(c1.at(p)) - 127.5f; BY = static_cast<float>(c2.at(p)) - 127.5f; WB = static_cast<float>(c3.at(p)) - 127.5f; b = BY*0.66666666666667f; // r = WB + RG - b; g = WB - RG - b; b = WB + BY*1.3333333333333f; // truncate r,g and b if the value is not in intervall [0..1] // can happen due to rounding errors in split operation if (r<0.0f) { r=0.0f; } else if (r>255.0f) { r=255.0f; } if (g<0.0f) { g=0.0f; } else if (g>255.0f) { g=255.0f; } if (b<0.0f) { b=0.0f; } else if (b>255.0f) { b=255.0f; } img.at(p).set(static_cast<ubyte>(r), static_cast<ubyte>(g), static_cast<ubyte>(b), 0); } } return true; };
bool kNearestNeighFilter::apply(const channel8& src,channel8& dest) { imatrix tmpSrc,tmpDest; tmpSrc.castFrom(src); apply(tmpSrc,tmpDest); dest.castFrom(tmpDest); return true; }
/* * compute the second and up iterations of a probability map * using the given aPriori probabilites per pixel. */ bool probabilityMap2D::computeMap(const channel8& src1, const channel8& src2, channel& aPrioriDest) const { point chnl1_size = src1.size(); point chnl2_size = src2.size(); // size of src1 equals src2 ? if ( (chnl1_size.x != chnl2_size.x) || (chnl1_size.y != chnl2_size.y) ) { setStatusString("probabilityMap2D: channels do not match"); return false; } else { int y; vector<channel8::value_type>::const_iterator srcIterator1, eit1; vector<channel8::value_type>::const_iterator srcIterator2, eit2; vector<channel::value_type>::iterator destIterator; const parameters& param = getParameters(); const thistogram<double>& objModel = param.getObjectColorModel(); const thistogram<double>& nonObjModel = param.getNonObjectColorModel(); float relObjProb; float relNonObjProb; ivector theBin(2); for (y=0;y<src1.rows();++y) { srcIterator1 = src1.getRow(y).begin(); eit1 = src1.getRow(y).end(); srcIterator2 = src2.getRow(y).begin(); eit2 = src2.getRow(y).end(); destIterator = aPrioriDest.getRow(y).begin(); while (srcIterator1 != eit1) { theBin[0] = lookupTable[0][*srcIterator1]; theBin[1] = lookupTable[1][*srcIterator2]; relObjProb = static_cast<float>(objModel.getProbability(theBin) * (*destIterator)); relNonObjProb = static_cast<float>(nonObjModel.getProbability(theBin)* (1.0f-(*destIterator))); // assume non-object if no entries are given if ((relObjProb == 0.0f) && (relNonObjProb == 0.0f)) { (*destIterator) = 0.0f; } else { // bayes (*destIterator) = relObjProb / (relObjProb + relNonObjProb); } srcIterator1++; srcIterator2++; destIterator++; } } } return true; }
// On copy apply for type channel8! bool distanceTransform::apply(const channel8& src,channel8& dest) const { channel tmp; tmp.castFrom(static_cast<matrix<ubyte> >(src)); if (apply(tmp)) { dest.castFrom(static_cast<matrix<float> >(tmp)); return true; } return false; };
// split image into 8-bit channels // N.B.: when casting the transformation result to unsigned shorts // (8-bit channel), major rounding errors will occur. // As a result, the merging operation might // produce negative values or values > 1, which are truncated subsequently. // When accurate X, Y and Z channels are required, prefer float channels! bool splitImageToxyY::apply(const image& img, channel8& c1, channel8& c2, channel8& c3) const { point p; // coordinates rgbPixel pix; // single Pixel Element in RGB-values... float Y; // channels float X, XYZ; // help variables // make the channels size of source image... c1.resize(img.rows(),img.columns(),0,false,false); c2.resize(img.rows(),img.columns(),0,false,false); c3.resize(img.rows(),img.columns(),0,false,false); for (p.y=0;p.y<img.rows();p.y++) for (p.x=0;p.x<img.columns();p.x++) { // take pixel at position p pix = img.at(p); // see Gonzales & Woods for explanation of magic numbers X = (((float)(pix.getRed())) *0.412453f + ((float)(pix.getGreen())) *0.357580f + ((float)(pix.getBlue())) *0.180423f)/255.0f; // x Y = (((float)(pix.getRed())) *0.212671f + ((float)(pix.getGreen())) *0.715160f + ((float)(pix.getBlue())) *0.072169f)/255.0f; // y XYZ = (((float)(pix.getRed())) *0.644458f + ((float)(pix.getGreen())) *1.191933f + ((float)(pix.getBlue())) *1.202819f)/255.0f; // Y if (XYZ>0.0f) { c1.at(p) = (ubyte)(X/XYZ*255.0f); // x c2.at(p) = (ubyte)(Y/XYZ*255.0f); // y } else { c1.at(p) = 0; // x c2.at(p) = 0; // y } c3.at(p) = (ubyte)(Y*255.0f); // Y } // loop return true; }
// set the mask to use void correlation::parameters::setMask(const channel8& aMask) { delete mask; mask=dynamic_cast<channel8*>(aMask.clone()); }
void RV02::Median( const channel8& sPic, // source picture channel8& dPic, // destination picture const int MaskSizeX, // mask size in x-direction const int MaskSizeY // mask size in y-direction ) { const int PicSizeY = sPic.rows(); const int PicSizeX = sPic.columns(); const int maskWidth = (MaskSizeX % 2 == 0 ? MaskSizeX + 1 : MaskSizeX); const int maskHeight = (MaskSizeX % 2 == 0 ? MaskSizeY + 1 : MaskSizeY); const int maskSize = maskWidth * maskHeight; const int maskHalfWidth = maskWidth / 2; const int maskHalfHeight = maskHeight / 2; // Gesuchert Wert im akkumulierten Histogramm ubyte accuHistSearched = (maskSize + 1) / 2; ubyte histogram[256] = {0}; ubyte accHistogram[256] = {0}; int x, y, mx, my; for(y = maskHalfHeight; y < PicSizeY - maskHalfHeight; y++){ for(x = maskHalfWidth; x < PicSizeX - maskHalfWidth; x++){ // Alte Maskenhinstogrammwerte leeren std::fill(histogram, histogram + 256, 0); // Initialwerte ubyte minGrauwert = 255; ubyte maxGrauwert = 0; ubyte h = 0; // Maskenhistrogramm berechnen for(my = y - maskHalfHeight; my <= y + maskHalfHeight; my++){ for(mx = x - maskHalfWidth; mx <= x + maskHalfWidth; mx++){ histogram[sPic[my][mx]]++; h = sPic[my][mx]; if (h > maxGrauwert) { maxGrauwert = h; } if (h < minGrauwert){ minGrauwert = h; } } } // Akkumuliertes Histogrammwert berechnen // Der erste Index dessen Wert im akkumulierten Histogramm den accuHistValue ueberschreitet // ist der gesuchte Medianwert. int accuHistvalue = 0; for(int i = minGrauwert; i <= maxGrauwert; i++){ accuHistvalue += histogram[i]; if(accuHistvalue >= accuHistSearched) { dPic[y][x] = i; break; } } } } }
// return probability channel bool probabilityMap2D::apply(const channel8& src1, const channel8& src2, channel& dest) const { const parameters& param = getParameters(); point chnl1_size = src1.size(); point chnl2_size = src2.size(); // size of src1 equals src2 ? if ( (chnl1_size.x != chnl2_size.x) || (chnl1_size.y != chnl2_size.y) ) { setStatusString("probabilityMap2D: channels do not match"); return false; } // the color model MUST have 2 dimensions! if (probabilityHistogram.dimensions() == 2) { // resize probability channel dest.resize(src1.size()); ivector theBin(2); // compute first iteration int y; vector<channel8::value_type>::const_iterator srcIterator1, eit1; vector<channel8::value_type>::const_iterator srcIterator2, eit2; vector<channel::value_type>::iterator destIterator; for (y=0;y<src1.rows();++y) { srcIterator1 = src1.getRow(y).begin(); eit1 = src1.getRow(y).end(); srcIterator2 = src2.getRow(y).begin(); eit2 = src2.getRow(y).end(); destIterator = dest.getRow(y).begin(); while (srcIterator1 != eit1) { theBin[0] = lookupTable[0][*srcIterator1]; theBin[1] = lookupTable[1][*srcIterator2]; (*destIterator)=static_cast<float>(probabilityHistogram.at(theBin)); srcIterator1++; srcIterator2++; destIterator++; } } // compute all other iterations if (param.iterations > 1) { int i; if (param.gaussian) { gaussKernel2D<float> gk(param.windowSize,param.variance); convolution convolver; convolution::parameters convParam; convParam.boundaryType = lti::Mirror; convParam.setKernel(gk); convolver.setParameters(convParam); for (i=1;i<param.iterations;++i) { convolver.apply(dest); computeMap(src1,src2,dest); } } else { squareConvolution<float> convolver; squareConvolution<float>::parameters convParam; convParam.boundaryType = lti::Mirror; convParam.initSquare(param.windowSize); convolver.setParameters(convParam); for (i=1;i<param.iterations;++i) { convolver.apply(dest); computeMap(src1,src2,dest); } } } // of (param.iterations > 1) return true; } // of (probabilityHistogram.dimensions() == 2) setStatusString("probabilityMap2D: no models loaded"); return false; }
// Quantization takes place here! bool medianCut::performQuantization(const image& src, image& dest, channel8& mask, palette &thePalette) const { // parameters and const variables const parameters& param = getParameters(); const int imageRows=src.rows(); // number of rows in src const int imageCols=src.columns(); // number of columns in src // resize destination containers dest.resize(imageRows,imageCols,rgbPixel(),false,false); mask.resize(imageRows,imageCols,ubyte(),false,false); // Variables int row,col; // row, column counters int r,g,b; // red,green,blue ivector iVec(3); // int-vector std::list<boxInfo> theLeaves; // list of leaves (tree without root // and nodes) std::list<boxInfo>::iterator splitPos; // position to split std::list<boxInfo>::iterator iter; // iterator for theLeaves // create histogram with desired pre-quantization dimensions from src histogram theHist(3,param.preQuant); const float factor = param.preQuant/256.0f; for (row = 0 ; row < imageRows ; row++) { for (col = 0 ; col < imageCols ; col++) { r = static_cast<int>(src.at( row,col ).getRed() * factor); g = static_cast<int>(src.at( row,col ).getGreen() * factor); b = static_cast<int>(src.at( row,col ).getBlue() * factor); // insert point with quantized color dest.at(row,col).set((r*256+128)/param.preQuant, (g*256+128)/param.preQuant, (b*256+128)/param.preQuant,0); iVec[0] = r; iVec[1] = g; iVec[2] = b; theHist.put(iVec); } } // initialization of first box of list (the whole histogram) boxInfo theBox(rgbPixel(0,0,0), rgbPixel(param.preQuant-1, param.preQuant-1, param.preQuant-1)); computeBoxInfo(theHist,theBox); // return, if desired number of colors smaller than colors in // pre-quantized image if (theBox.colors < param.numberOfColors) { thePalette.resize(theBox.colors,rgbPixel(),false,false); // prepare palette int i = 0; for (r=0;r<param.preQuant;++r) { for (g=0;g<param.preQuant;++g) { for (b=0;b<param.preQuant;++b) { iVec[0] = r; iVec[1] = g; iVec[2] = b; if (theHist.at(iVec) > 0) { thePalette.at(i).set((r*256+128)/param.preQuant, (g*256+128)/param.preQuant, (b*256+128)/param.preQuant); } } } } // use the palette to generate the corresponding channel usePalette colorizer; colorizer.apply(dest,thePalette,mask); return true; } // Push first box into List theLeaves.push_back(theBox); // MAIN LOOP (do this until you have enough leaves (count), or no // splittable boxes (entries)) int count, entries=1; // auxiliary variables for the main loop for (count=1; (count<param.numberOfColors) && (entries!=0); count++) { // find box with largest number of entries from list entries = 0; for (iter = theLeaves.begin() ; iter != theLeaves.end() ; iter++) { if ( (*iter).colorFrequency > entries ) { // Avoid choosing single colors, i.e. unsplittable boxes if ( ((*iter).max.getRed() > (*iter).min.getRed()) || ((*iter).max.getGreen() > (*iter).min.getGreen()) || ((*iter).max.getBlue() > (*iter).min.getBlue()) ) { entries = (*iter).colorFrequency; splitPos = iter; } } } // A splittable box was found. // The iterator "splitPos" indicates its position in the List if (entries >0) { // Determine next axis to split (largest variance) and box dimensions int splitAxis; // split axis indicator if ( ((*splitPos).var[0] >= (*splitPos).var[1]) && ((*splitPos).var[0] >= (*splitPos).var[2]) ) { splitAxis = 0; // red axis } else if ( (*splitPos).var[1] >= (*splitPos).var[2] ) { splitAxis = 1; // green axis } else { splitAxis = 2; // blue axis } int rMax = ((*splitPos).max.getRed()); int rMin = ((*splitPos).min.getRed()); int gMax = ((*splitPos).max.getGreen()); int gMin = ((*splitPos).min.getGreen()); int bMax = ((*splitPos).max.getBlue()); int bMin = ((*splitPos).min.getBlue()); // pass through box along the axis to split bool found; // becomes true when split plane is found int nrOfCols=0; // counter: number of colors of box int prevNrOfCols=0; // forerunner of nrOfCols rgbPixel lower1; // lower pixel from box 1 rgbPixel upper1; // upper pixel from box 1 rgbPixel lower2; // lower pixel from box 2 rgbPixel upper2; // upper pixel from box 2 switch (splitAxis) { case 0: // red axis nrOfCols = 0; for (r = rMin , found = false ; (!found) && (r<=rMax) ; r++) { prevNrOfCols = nrOfCols; for (g = gMin ; g <= gMax ; g++) { for (b=bMin;b<=bMax;b++) { iVec[0] = r; iVec[1] = g; iVec[2] = b; if (theHist.at(iVec) > 0.0) { nrOfCols += static_cast<long int>(theHist.at(iVec)); } } } if ( nrOfCols >= (*splitPos).colorFrequency/2 ) { found=true; } } if (fabs(prevNrOfCols - static_cast<float>((*splitPos).colorFrequency)/2) < fabs(nrOfCols - static_cast<float>((*splitPos).colorFrequency)/2)) { r--; nrOfCols = prevNrOfCols; } // first box lower1.setRed(rMin); lower1.setGreen(gMin); lower1.setBlue(bMin); upper1.setRed(r-1); upper1.setGreen(gMax); upper1.setBlue(bMax); // second box lower2.setRed(r); lower2.setGreen(gMin); lower2.setBlue(bMin); upper2.setRed(rMax); upper2.setGreen(gMax); upper2.setBlue(bMax); break; case 1: // g axis nrOfCols = 0; for (g = gMin , found = false ; (!found) && (g<=gMax) ; g++) { prevNrOfCols = nrOfCols; for (r = rMin ; r <= rMax ; r++) { for (b = bMin ; b <= bMax ; b++) { iVec[0] = r; iVec[1] = g; iVec[2] = b; if (theHist.at(iVec) > 0.0) { nrOfCols += static_cast<long int>(theHist.at(iVec)); } } } if ( nrOfCols >= (*splitPos).colorFrequency/2 ) { found=true; } } if (fabs(prevNrOfCols - static_cast<float>((*splitPos).colorFrequency)/2) < fabs(nrOfCols - static_cast<float>((*splitPos).colorFrequency)/2)) { g--; nrOfCols = prevNrOfCols; } // first box lower1.setRed(rMin); lower1.setGreen(gMin); lower1.setBlue(bMin); upper1.setRed(rMax); upper1.setGreen(g-1); upper1.setBlue(bMax); // second box lower2.setRed(rMin); lower2.setGreen(g); lower2.setBlue(bMin); upper2.setRed(rMax); upper2.setGreen(gMax); upper2.setBlue(bMax); break; case 2: // b axis nrOfCols = 0; for (b = bMin , found = false ; (!found) && (b<=bMax) ; b++) { prevNrOfCols = nrOfCols; for (r = rMin ; r <= rMax ; r++) { for (g = gMin ; g <= gMax ; g++) { iVec[0] = r; iVec[1] = g; iVec[2] = b; if (theHist.at(iVec) > 0.0) { nrOfCols += static_cast<long int>(theHist.at(iVec)); } } } if ( nrOfCols >= (*splitPos).colorFrequency/2 ) { found=true; } } if (fabs(prevNrOfCols - static_cast<float>((*splitPos).colorFrequency)/2) < fabs(nrOfCols - static_cast<float>((*splitPos).colorFrequency)/2)) { b--; nrOfCols = prevNrOfCols; } // first box lower1.setRed(rMin); lower1.setGreen(gMin); lower1.setBlue(bMin); upper1.setRed(rMax); upper1.setGreen(gMax); upper1.setBlue(b-1); // second box lower2.setRed(rMin); lower2.setGreen(gMin); lower2.setBlue(b); upper2.setRed(rMax); upper2.setGreen(gMax); upper2.setBlue(bMax); break; default: break; } // end of switch // compute box info of new boxes and // append both at the end of list theBox.min = lower1; theBox.max = upper1; computeBoxInfo(theHist,theBox); theLeaves.push_back(theBox); theBox.min = lower2; theBox.max = upper2; computeBoxInfo(theHist,theBox); theLeaves.push_back(theBox); // delete splited box from list theLeaves.erase(splitPos); } } // end of for (MAIN LOOP) // compute block histogram and respective color palette thePalette.resize(theLeaves.size()); int i; for (iter = theLeaves.begin() , i=0 ; iter != theLeaves.end() ; iter++ , i++) { // misuse histogram as a look-up-table for (r = (*iter).min.getRed(); r <= (*iter).max.getRed(); r++) { for (g = (*iter).min.getGreen(); g <= (*iter).max.getGreen(); g++) { for (b = (*iter).min.getBlue(); b <= (*iter).max.getBlue(); b++) { iVec[0] = r; iVec[1] = g; iVec[2] = b; theHist.at(iVec) = i; // insert palette-index (refers to // color in palette) } } } // create palette r = (static_cast<int>((*iter).mean[0]*factor)*256+128)/param.preQuant; g = (static_cast<int>((*iter).mean[1]*factor)*256+128)/param.preQuant; b = (static_cast<int>((*iter).mean[2]*factor)*256+128)/param.preQuant; thePalette[i].set(r,g,b,0); // insert color } // create new image with palette and theHist dest.resize(imageRows,imageCols); mask.resize(imageRows,imageCols,0,false,true); // <= 256 colors? then also fill the mask if (thePalette.size() <= 256) { for (row = 0 ; row < imageRows ; row++) { for (col = 0 ; col < imageCols ; col++) { iVec[0] = static_cast<int>(src.at( row,col ).getRed() * factor); iVec[1] = static_cast<int>(src.at( row,col ).getGreen() * factor); iVec[2] = static_cast<int>(src.at( row,col ).getBlue() * factor); i = static_cast<int>(theHist.at( iVec )); dest.at(row,col) = thePalette[i];// insert point with quantized color mask.at(row,col) = i; // insert palette index of quantized color } } } else { for (row = 0 ; row < imageRows ; row++) { for (col = 0 ; col < imageCols ; col++) { iVec[0] = static_cast<int>(src.at( row,col ).getRed() * factor); iVec[1] = static_cast<int>(src.at( row,col ).getGreen() * factor); iVec[2] = static_cast<int>(src.at( row,col ).getBlue() * factor); i = static_cast<int>(theHist.at( iVec )); r = thePalette[i].getRed(); g = thePalette[i].getGreen(); b = thePalette[i].getBlue(); dest.at(row,col).set(r,g,b,0); // insert point with quantized color } } } return true; }
// On copy apply for type channel8! bool huMoments::apply(const channel8& src,dvector& dest, dvector& more) const { channel8::value_type val; dest.resize(NUM_FEAT,0,false,true); more.resize(MORE_FEAT,0,false,true); double m00=0.0; double cm11,cm20,cm02,cm30,cm03,cm12,cm21; cm11=cm20=cm02=cm30=cm03=cm12=cm21=0.0; double xcog, ycog; xcog=ycog=0.0; int r, rows=src.rows(); int c, cols=src.columns(); // compute simple moments and cog for (r=0; r<rows; r++) { for (c=0; c<cols; c++) { val = src.at(r,c); m00+=val; xcog+=c*val; ycog+=r*val; } } // end here, if no content if (m00==0) { return false; } // compute cog's more[huMoments::xcog]=xcog=xcog/m00; //xcog more[huMoments::ycog]=ycog=ycog/m00; //ycog // compute central moments for (r=0; r<rows; r++) { for (c=0; c<cols; c++) { val = src.at(r,c); double x_xcog = c-xcog; double y_ycog = r-ycog; cm11+=(x_xcog)*(y_ycog)*val; cm20+=(x_xcog)*(x_xcog)*val; cm02+=(y_ycog)*(y_ycog)*val; cm30+=(x_xcog)*(x_xcog)*(x_xcog)*val; cm03+=(y_ycog)*(y_ycog)*(y_ycog)*val; cm12+=(x_xcog)*(y_ycog)*(y_ycog)*val; cm21+=(x_xcog)*(x_xcog)*(y_ycog)*val; } } double m00pow2,m00pow2_5; m00pow2 = m00*m00; m00pow2_5 = pow(m00,2.5); // normalized central moments cm02 = cm02/m00pow2; cm03 = cm03/m00pow2_5; cm11 = cm11/m00pow2; cm12 = cm12/m00pow2_5; cm20 = cm20/m00pow2; cm21 = cm21/m00pow2_5; cm30 = cm30/m00pow2_5; // calculate moment invariants dest[huMoments::hu1] = cm20 + cm02; dest[huMoments::hu2] = pow((cm20 - cm02),2) + 4*pow(cm11,2); dest[huMoments::hu3] = pow((cm30 - 3*cm12),2) + pow((3*cm21 - cm03),2); dest[huMoments::hu4] = pow((cm30 + cm12),2) + pow((cm21 + cm03),2); dest[huMoments::hu5] = (cm30-3*cm12)*(cm30+cm12)*( pow((cm30+cm12),2) - 3*pow((cm21+cm03),2) ) + (3*cm21-cm03)*(cm21+cm03)*( 3*pow((cm30+cm12),2) - pow((cm21+cm03),2) ); dest[huMoments::hu6] = (cm20-cm02)*( pow((cm30+cm12),2) - pow((cm21+cm03),2) ) + 4*cm11*(cm30+cm12)*(cm21+cm03); dest[huMoments::hu7] = (3*cm21-cm03)*(cm30+cm12)*( pow((cm30+cm12),2) - 3*pow((cm21+cm03),2) ) - (cm30-3*cm12)*(cm21+cm03)*( 3*pow((cm30+cm12),2) - pow((cm21+cm03),2) ); double temp = sqrt( (cm20 - cm02)*(cm20 - cm02) + 4*cm11*cm11 ); more[huMoments::eigen1]=m00*0.5*((cm20+cm02) + temp); //eigen 1 more[huMoments::eigen2]=m00*0.5*((cm20+cm02) - temp); //eigen 2 more[huMoments::orientation]=0.5*atan2(2*cm11, cm20 - cm02); //orientation more[huMoments::m00]=m00; //m00 const parameters& param = getParameters(); if (param.scaling) { int i; for (i=0; i<dest.size();i++){ dest[i]=-logn(dest[i]); } } return true; }