Ejemplo n.º 1
0
  void SendJsonFileName(const std::vector<std::string> & filename) {
    int i;

    for(i=0; i<filename.size(); i++)
      {
	jsonsemp.wait();
	jsonmutex.lock();
	Qjson.push(filename[i]);
	jsonmutex.unlock();
	jsonsemc.post();
	statelog.write("Client Send Jsonfile %s\n", filename[i].c_str());
	statelog.flush();
      }
  }
Ejemplo n.º 2
0
  void hashBlogId(std::vector<std::string> & _return, const std::vector<std::string> & inids) {
    MyStr ms;
    int ret;
    for(int i=0; i<inids.size(); i++)
      {
	ms.init(inids[i]);
	hashmutex.lock();
	ret=hf.putKey(ms);
	hashmutex.unlock();
	if(ret)
	  {
	    _return.push_back(inids[i]);
	  }
      }
    

  }
Ejemplo n.º 3
0
inline bool interprocess_condition::do_timed_wait(bool tout_enabled,
                                     const boost::posix_time::ptime &abs_time, 
                                     interprocess_mutex &mut)
{
   boost::posix_time::ptime now = microsec_clock::universal_time();
   
   if(tout_enabled){
      if(now >= abs_time) return false;
   }

   typedef boost::interprocess::scoped_lock<interprocess_mutex> InternalLock;
   //The enter interprocess_mutex guarantees that while executing a notification, 
   //no other thread can execute the do_timed_wait method. 
   {
      //---------------------------------------------------------------
      InternalLock lock;
      if(tout_enabled){
         InternalLock dummy(m_enter_mut, abs_time);
         lock = detail::move_impl(dummy);
      }
      else{
         InternalLock dummy(m_enter_mut);
         lock = detail::move_impl(dummy);
      }

      if(!lock)
         return false;
      //---------------------------------------------------------------
      //We increment the waiting thread count protected so that it will be
      //always constant when another thread enters the notification logic.
      //The increment marks this thread as "waiting on interprocess_condition"
      detail::atomic_inc32((boost::uint32_t*)&m_num_waiters);

      //We unlock the external interprocess_mutex atomically with the increment
      mut.unlock();
   }

   //By default, we suppose that no timeout has happened
   bool timed_out  = false, unlock_enter_mut= false;
   
   //Loop until a notification indicates that the thread should 
   //exit or timeout occurs
   while(1){
      //The thread sleeps/spins until a interprocess_condition commands a notification
      //Notification occurred, we will lock the checking interprocess_mutex so that
      while(detail::atomic_read32(&m_command) == SLEEP){
         detail::thread_yield();

         //Check for timeout
         if(tout_enabled){
            now = microsec_clock::universal_time();

            if(now >= abs_time){
               //If we can lock the interprocess_mutex it means that no notification
               //is being executed in this interprocess_condition variable
               timed_out = m_enter_mut.try_lock();

               //If locking fails, indicates that another thread is executing
               //notification, so we play the notification game
               if(!timed_out){
                  //There is an ongoing notification, we will try again later
                  continue;
               }
               //No notification in execution, since enter interprocess_mutex is locked. 
               //We will execute time-out logic, so we will decrement count, 
               //release the enter interprocess_mutex and return false.
               break;
            }
         }
      }

      //If a timeout occurred, the interprocess_mutex will not execute checking logic
      if(tout_enabled && timed_out){
         //Decrement wait count
         detail::atomic_dec32((boost::uint32_t*)&m_num_waiters);
         unlock_enter_mut = true;
         break;
      }
      else{
         //Notification occurred, we will lock the checking interprocess_mutex so that
         //if a notify_one notification occurs, only one thread can exit
        //---------------------------------------------------------------
         InternalLock lock;
         if(tout_enabled){
            InternalLock dummy(m_check_mut, abs_time);
            lock = detail::move_impl(dummy);
         }
         else{
            InternalLock dummy(m_check_mut);
            lock = detail::move_impl(dummy);
         }

         if(!lock)
            return false;
         //---------------------------------------------------------------
         boost::uint32_t result = detail::atomic_cas32
                        ((boost::uint32_t*)&m_command, SLEEP, NOTIFY_ONE);
         if(result == SLEEP){
            //Other thread has been notified and since it was a NOTIFY one
            //command, this thread must sleep again
            continue;
         }
         else if(result == NOTIFY_ONE){
            //If it was a NOTIFY_ONE command, only this thread should  
            //exit. This thread has atomically marked command as sleep before
            //so no other thread will exit.
            //Decrement wait count.
            unlock_enter_mut = true;
            detail::atomic_dec32((boost::uint32_t*)&m_num_waiters);
            break;
         }
         else{
            //If it is a NOTIFY_ALL command, all threads should return 
            //from do_timed_wait function. Decrement wait count. 
            unlock_enter_mut = 1 == detail::atomic_dec32((boost::uint32_t*)&m_num_waiters);
            //Check if this is the last thread of notify_all waiters
            //Only the last thread will release the interprocess_mutex
            if(unlock_enter_mut){
               detail::atomic_cas32((boost::uint32_t*)&m_command, SLEEP, NOTIFY_ALL);
            }
            break;
         }
      }
   }

   //Unlock the enter interprocess_mutex if it is a single notification, if this is 
   //the last notified thread in a notify_all or a timeout has occurred
   if(unlock_enter_mut){
      m_enter_mut.unlock();
   }

   //Lock external again before returning from the method
   mut.lock();
   return !timed_out;
}