Ejemplo n.º 1
0
 void operator()( const range_t& r ) {
     count_t end = r.end();
     volatile count_t anchor = 0;
     for( count_t i = r.begin(); i < end; ++i )
         anchor += i;
     my_sum = anchor;
 }
Ejemplo n.º 2
0
        bool additive_noise(
                const range_t<tscalar>& noise_range,
                const gauss_kernel_t<tscalar>& kernel,
                const range_t<tscalar>& output_range,
                tmatrix& src, tgetter getter, tsetter setter)
        {
                random_t<tscalar> noiser(noise_range.min(), noise_range.max());

                // create random noise map
                typename tensor::matrix_types_t<tscalar>::tmatrix noisemap(src.rows(), src.cols());
                tensor::transform(noisemap, noisemap, [&] (tvalue) { return noiser(); });

                // smooth the noise map
                inplace_separable_filter(kernel, range_t<tscalar>(noiser.min(), noiser.max()), noisemap,
                         [] (tscalar v) { return v; },
                         [] (tscalar, tscalar v) { return v; });

                // add the noise map to the input matrix
                tensor::transform(src, noisemap, src, [&] (tvalue value, tscalar noise)
                {
                        return setter(value, math::cast<tvalue>(output_range.clamp(noise + getter(value))));
                });

                // OK
                return true;
        }
Ejemplo n.º 3
0
 void run ( const range_t& r, Partitioner& p ) const {
     count_t end = r.end();
     if ( my_depth > 1 )
         for ( count_t i = r.begin(); i < end; ++i )
             tbb::parallel_for( range_t(0, IterRange, IterGrain), NestingForBody(my_depth - 1), p );
     else
         for ( count_t i = r.begin(); i < end; ++i )
             tbb::parallel_for( range_t(0, IterRange, IterGrain), SimpleForBody(), p );
 }
Ejemplo n.º 4
0
 void operator()(const range_t& range) {
     const size_t i_end = range.end();
     if(!range.empty()) {
         for(size_t i = range.begin(); i != i_end; ++i) {
             if(closerToExtremum(points[i])) {
                 extrXPoint = points[i];
             }
         }
     }
 }
Ejemplo n.º 5
0
    void operator()(const range_t& range) const {
        util::rng the_rng(range.begin());
        const size_t i_end = range.end();
        size_t count = 0;
#if USECONCVEC
            points.grow_to_at_least(i_end);
#else // Locked enlarge to a not thread-safe STD::VECTOR
            grow_vector_to_at_least(pushBackMutex,points,i_end);
#endif // USECONCVEC

        for(size_t i = range.begin(); i != i_end; ++i) {
            points[i]=util::GenerateRNDPoint<double>(count,the_rng,util::rng::max_rand);
        }
    }
Ejemplo n.º 6
0
void Audio::paint(Painter& painter) {
	const auto r = screen_rect();

	constexpr int db_min = -96;
	constexpr int db_max = 0;
	constexpr int db_delta = db_max - db_min;
	const range_t<int> x_rms_range { 0, r.width() - 1 };
	const auto x_rms = x_rms_range.clip((rms_db_ - db_min) * r.width() / db_delta);
	const range_t<int> x_max_range { x_rms + 1, r.width() };
	const auto x_max = x_max_range.clip((max_db_ - db_min) * r.width() / db_delta);

	const Rect r0 {
		static_cast<ui::Coord>(r.left()), r.top(),
		static_cast<ui::Dim>(x_rms), r.height()
	};
	painter.fill_rectangle(
		r0,
		Color::green()
	);

	const Rect r1 {
		static_cast<ui::Coord>(r.left() + x_rms), r.top(),
		1, r.height()
	};
	painter.fill_rectangle(
		r1,
		Color::black()
	);

	const Rect r2 {
		static_cast<ui::Coord>(r.left() + x_rms + 1), r.top(),
		static_cast<ui::Dim>(x_max - (x_rms + 1)), r.height()
	};
	painter.fill_rectangle(
		r2,
		Color::red()
	);

	const Rect r3 {
		static_cast<ui::Coord>(r.left() + x_max), r.top(),
		static_cast<ui::Dim>(r.width() - x_max), r.height()
	};
	painter.fill_rectangle(
		r3,
		Color::black()
	);
}
Ejemplo n.º 7
0
    void operator()(const range_t& range) const {
        util::rng the_rng(range.begin());
        const size_t i_end = range.end();
        size_t count = 0, j = 0;
        point_t tmp_vec[grainSize];

        for(size_t i=range.begin(); i!=i_end; ++i) {
            tmp_vec[j++] = util::GenerateRNDPoint<double>(count, the_rng, util::rng::max_rand);
        }
        //Here we have race condition. Elements being written to may be still under construction.
        //For C++ 2003 it is workarounded by vector element type which default constructor does not touch memory,
        //it being constructed on. See comments near default ctor of point class for more details.
        //Strictly speaking it is UB.
        //TODO: need to find more reliable/correct way
        points.grow_to_at_least(range.end());
        std::copy(tmp_vec, tmp_vec+j,points.begin()+range.begin());
    }
Ejemplo n.º 8
0
    void operator()(const range_t& range) {
        const size_t i_end = range.end();
        size_t j = 0;
        double cp;
        point_t tmp_vec[grainSize];
        for(size_t i = range.begin(); i != i_end; ++i) {
            if( (initialSet[i] != p1) && (initialSet[i] != p2) ) {            
                cp = util::cross_product(p1, p2, initialSet[i]);
                if(cp>0) {
                    tmp_vec[j++] = initialSet[i];
                    if(cp>howFar) {
                        farPoint = initialSet[i];
                        howFar   = cp;
                    }
                }
            }
        }

        appendVector(tmp_vec, j, reducedSet);
    }
Ejemplo n.º 9
0
    void operator()( const range_t& range ) {
        const size_t i_end = range.end();
        double cp;
        for(size_t i=range.begin(); i!=i_end; ++i) {
            if( (initialSet[i] != p1) && (initialSet[i] != p2) ) {
                cp = util::cross_product(p1, p2, initialSet[i]);
                if(cp>0) {
#if USECONCVEC
                    reducedSet.push_back(initialSet[i]);
#else // Locked push_back to a not thread-safe STD::VECTOR
                    {
                        mutex_t::scoped_lock lock(pushBackMutex);
                        reducedSet.push_back(initialSet[i]);
                    }
#endif // USECONCVEC
                    if(cp>howFar) {
                        farPoint = initialSet[i];
                        howFar   = cp;
                    }
                }
            }
        }
    }
Ejemplo n.º 10
0
    void operator()(const range_t& range) const {
        util::rng the_rng(range.begin());
        const size_t i_end = range.end();
        size_t count = 0, j = 0;
        point_t tmp_vec[grainSize];

        for(size_t i=range.begin(); i!=i_end; ++i) {
            tmp_vec[j++] = util::GenerateRNDPoint<double>(count,the_rng,util::rng::max_rand);
        }
#if USECONCVEC
        grow_vector_to_at_least(points,range.end());
#else // USE STD::VECTOR
        grow_vector_to_at_least(insertMutex,points,range.end());
#endif // USECONCVEC
        std::copy(tmp_vec, tmp_vec+j,points.begin()+range.begin());
    }   
Ejemplo n.º 11
0
void TracePlot::paintMid(QPainter &painter, QRect &rect, range_t<off_t> sampleRange)
{
    int samplesPerColumn = sampleRange.length() / rect.width();
    int samplesPerTile = tileWidth * samplesPerColumn;
    off_t tileID = sampleRange.minimum / samplesPerTile;
    off_t tileOffset = sampleRange.minimum % samplesPerTile; // Number of samples to skip from first image tile
    int xOffset = tileOffset / samplesPerColumn; // Number of columns to skip from first image tile

    // Paint first (possibly partial) tile
    painter.drawPixmap(
        QRect(rect.x(), rect.y(), tileWidth - xOffset, height()),
        getTile(tileID++, samplesPerTile),
        QRect(xOffset, 0, tileWidth - xOffset, height())
    );

    // Paint remaining tiles
    for (int x = tileWidth - xOffset; x < rect.right(); x += tileWidth) {
        painter.drawPixmap(
            QRect(x, rect.y(), tileWidth, height()),
            getTile(tileID++, samplesPerTile)
        );
    }
}
Ejemplo n.º 12
0
void TracePlot::drawTile(QString key, const QRect &rect, range_t<off_t> sampleRange)
{
    QImage image(rect.size(), QImage::Format_ARGB32);
    image.fill(Qt::transparent);

    QPainter painter(&image);
    painter.setRenderHint(QPainter::Antialiasing, true);

	auto firstSample = sampleRange.minimum;
	auto length = sampleRange.length();

	// Is it a 2-channel (complex) trace?
    if (auto src = dynamic_cast<SampleSource<std::complex<float>>*>(sampleSource.get())) {
        auto samples = src->getSamples(firstSample, length);
        if (samples == nullptr)
            return;

        painter.setPen(Qt::red);
        plotTrace(painter, rect, reinterpret_cast<float*>(samples.get()), length, 2);
        painter.setPen(Qt::blue);
        plotTrace(painter, rect, reinterpret_cast<float*>(samples.get())+1, length, 2);

    // Otherwise is it single channel?
    } else if (auto src = dynamic_cast<SampleSource<float>*>(sampleSource.get())) {
        auto samples = src->getSamples(firstSample, length);
        if (samples == nullptr)
            return;

        painter.setPen(Qt::green);
        plotTrace(painter, rect, samples.get(), length, 1);
    } else {
    	throw std::runtime_error("TracePlot::paintMid: Unsupported source type");
    }

    emit imageReady(key, image);
}
Ejemplo n.º 13
0
 void operator()( const range_t& r ) const {
     count_t end = (r.end() + 1) * (r.end() + 1);
     volatile count_t anchor = 0;
     for( count_t i = r.begin() * r.begin(); i < end; ++i )
         anchor += i;
 }
Ejemplo n.º 14
0
        bool inplace_separable_filter(const tkernel& kernel, const range_t<tscalar>& range,
                tmatrix& src, tgetter getter, tsetter setter)
        {
                const int rows = static_cast<int>(src.rows());
                const int cols = static_cast<int>(src.cols());

                const int ksize = static_cast<int>(kernel.size());
                const int krad = ksize / 2;

                if (ksize != (2 * krad + 1))
                {
                        return false;
                }

                std::vector<tscalar> buff(std::max(rows, cols));

                // horizontal filter
                for (int r = 0; r < rows; r ++)
                {
                        for (int c = 0; c < cols; c ++)
                        {
                                buff[c] = math::cast<tscalar>(getter(src(r, c)));
                        }

                        for (int c = 0; c < cols; c ++)
                        {
                                tscalar v = 0;
                                for (int k = -krad; k <= krad; k ++)
                                {
                                        const int cc = math::clamp(k + c, 0, cols - 1);
                                        v += kernel[k + krad] * buff[cc];
                                }

                                src(r, c) = setter(src(r, c), math::cast<tvalue>(range.clamp(v)));
                        }
                }

                // vertical filter
                for (int c = 0; c < cols; c ++)
                {
                        for (int r = 0; r < rows; r ++)
                        {
                                buff[r] = math::cast<tscalar>(getter(src(r, c)));
                        }

                        for (int r = 0; r < rows; r ++)
                        {
                                tscalar v = 0;
                                for (int k = -krad; k <= krad; k ++)
                                {
                                        const int rr = math::clamp(k + r, 0, rows - 1);
                                        v += kernel[k + krad] * buff[rr];
                                }

                                src(r, c) = setter(src(r, c), math::cast<tvalue>(range.clamp(v)));
                        }
                }

                // OK
                return true;
        }
Ejemplo n.º 15
0
void RSSI::paint(Painter& painter) {
    const auto r = screen_rect();

    constexpr int rssi_sample_range = 256;
    constexpr float rssi_voltage_min = 0.4;
    constexpr float rssi_voltage_max = 2.2;
    constexpr float adc_voltage_max = 3.3;
    constexpr int raw_min = rssi_sample_range * rssi_voltage_min / adc_voltage_max;
    constexpr int raw_max = rssi_sample_range * rssi_voltage_max / adc_voltage_max;
    constexpr int raw_delta = raw_max - raw_min;
    const range_t<int> x_avg_range { 0, r.width() - 1 };
    const auto x_avg = x_avg_range.clip((avg_ - raw_min) * r.width() / raw_delta);
    const range_t<int> x_min_range { 0, x_avg };
    const auto x_min = x_min_range.clip((min_ - raw_min) * r.width() / raw_delta);
    const range_t<int> x_max_range { x_avg + 1, r.width() };
    const auto x_max = x_max_range.clip((max_ - raw_min) * r.width() / raw_delta);

    const Rect r0 {
        static_cast<ui::Coord>(r.left()), r.top(),
        static_cast<ui::Dim>(x_min), r.height()
    };
    painter.fill_rectangle(
        r0,
        Color::blue()
    );

    const Rect r1 {
        static_cast<ui::Coord>(r.left() + x_min), r.top(),
        static_cast<ui::Dim>(x_avg - x_min), r.height()
    };
    painter.fill_rectangle(
        r1,
        Color::red()
    );

    const Rect r2 {
        static_cast<ui::Coord>(r.left() + x_avg), r.top(),
        1, r.height()
    };
    painter.fill_rectangle(
        r2,
        Color::white()
    );

    const Rect r3 {
        static_cast<ui::Coord>(r.left() + x_avg + 1), r.top(),
        static_cast<ui::Dim>(x_max - (x_avg + 1)), r.height()
    };
    painter.fill_rectangle(
        r3,
        Color::red()
    );

    const Rect r4 {
        static_cast<ui::Coord>(r.left() + x_max), r.top(),
        static_cast<ui::Dim>(r.width() - x_max), r.height()
    };
    painter.fill_rectangle(
        r4,
        Color::black()
    );

    if (pwmrssi_enabled) {
        const range_t<int> pwmrssi_avg_range { 0, 96 };
        const auto pwmrssi_avg = pwmrssi_avg_range.clip((avg_ - raw_min) * 96 / raw_delta);
        baseband::set_pwmrssi(pwmrssi_avg, true);
    }
}