Ejemplo n.º 1
0
/* ************************************************************************* */
int main (int argc, char* argv[]) {

  // Find default file, but if an argument is given, try loading a file
  string filename = findExampleDataFile("dubrovnik-3-7-pre");
  if (argc>1) filename = string(argv[1]);

  // Load the SfM data from file
  SfM_data mydata;
  assert(readBAL(filename, mydata));
  cout << boost::format("read %1% tracks on %2% cameras\n") % mydata.number_tracks() % mydata.number_cameras();

  // Create a factor graph
  NonlinearFactorGraph graph;

  // We share *one* noiseModel between all projection factors
  noiseModel::Isotropic::shared_ptr noise =
      noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v

  // Add measurements to the factor graph
  size_t j = 0;
  BOOST_FOREACH(const SfM_Track& track, mydata.tracks) {
    BOOST_FOREACH(const SfM_Measurement& m, track.measurements) {
      size_t i = m.first;
      Point2 uv = m.second;
      graph.push_back(MyFactor(uv, noise, C(i), P(j))); // note use of shorthand symbols C and P
    }
    j += 1;
  }

  // Add a prior on pose x1. This indirectly specifies where the origin is.
  // and a prior on the position of the first landmark to fix the scale
  graph.push_back(PriorFactor<SfM_Camera>(C(0), mydata.cameras[0],  noiseModel::Isotropic::Sigma(9, 0.1)));
  graph.push_back(PriorFactor<Point3>    (P(0), mydata.tracks[0].p, noiseModel::Isotropic::Sigma(3, 0.1)));

  // Create initial estimate
  Values initial;
  size_t i = 0; j = 0;
  BOOST_FOREACH(const SfM_Camera& camera, mydata.cameras) initial.insert(C(i++), camera);
  BOOST_FOREACH(const SfM_Track& track, mydata.tracks)    initial.insert(P(j++), track.p);

  /* Optimize the graph and print results */
  Values result;
  try {
    LevenbergMarquardtParams params;
    params.setVerbosity("ERROR");
    LevenbergMarquardtOptimizer lm(graph, initial, params);
    result = lm.optimize();
  } catch (exception& e) {
    cout << e.what();
  }
  cout << "final error: " << graph.error(result) << endl;

  return 0;
}
/* ************************************************************************* */
int main (int argc, char* argv[]) {

  // Find default file, but if an argument is given, try loading a file
  string filename = findExampleDataFile("dubrovnik-3-7-pre");
  if (argc>1) filename = string(argv[1]);

  // Load the SfM data from file
  SfM_data mydata;
  readBAL(filename, mydata);
  cout << boost::format("read %1% tracks on %2% cameras\n") % mydata.number_tracks() % mydata.number_cameras();

  // Create a factor graph
  NonlinearFactorGraph graph;

  // We share *one* noiseModel between all projection factors
  noiseModel::Isotropic::shared_ptr noise =
      noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v

  // Add measurements to the factor graph
  size_t j = 0;
  BOOST_FOREACH(const SfM_Track& track, mydata.tracks) {
    BOOST_FOREACH(const SfM_Measurement& m, track.measurements) {
      size_t i = m.first;
      Point2 uv = m.second;
      graph.push_back(MyFactor(uv, noise, C(i), P(j))); // note use of shorthand symbols C and P
    }
    j += 1;
  }

  // Add a prior on pose x1. This indirectly specifies where the origin is.
  // and a prior on the position of the first landmark to fix the scale
  graph.push_back(PriorFactor<SfM_Camera>(C(0), mydata.cameras[0],  noiseModel::Isotropic::Sigma(9, 0.1)));
  graph.push_back(PriorFactor<Point3>    (P(0), mydata.tracks[0].p, noiseModel::Isotropic::Sigma(3, 0.1)));

  // Create initial estimate
  Values initial;
  size_t i = 0; j = 0;
  BOOST_FOREACH(const SfM_Camera& camera, mydata.cameras) initial.insert(C(i++), camera);
  BOOST_FOREACH(const SfM_Track& track, mydata.tracks)    initial.insert(P(j++), track.p);

  /** ---------------  COMPARISON  -----------------------**/
  /** ----------------------------------------------------**/

  LevenbergMarquardtParams params_using_COLAMD, params_using_METIS;
  try {
    params_using_METIS.setVerbosity("ERROR");
    gttic_(METIS_ORDERING);
    params_using_METIS.ordering = Ordering::Create(Ordering::METIS, graph);
    gttoc_(METIS_ORDERING);

    params_using_COLAMD.setVerbosity("ERROR");
    gttic_(COLAMD_ORDERING);
    params_using_COLAMD.ordering = Ordering::Create(Ordering::COLAMD, graph);
    gttoc_(COLAMD_ORDERING);
  } catch (exception& e) {
    cout << e.what();
  }

  // expect they have different ordering results
  if(params_using_COLAMD.ordering == params_using_METIS.ordering) {
    cout << "COLAMD and METIS produce the same ordering. "
         << "Problem here!!!" << endl;
  }

  /* Optimize the graph with METIS and COLAMD and time the results */

  Values result_METIS, result_COLAMD;
  try {
    gttic_(OPTIMIZE_WITH_METIS);
    LevenbergMarquardtOptimizer lm_METIS(graph, initial, params_using_METIS);
    result_METIS = lm_METIS.optimize();
    gttoc_(OPTIMIZE_WITH_METIS);

    gttic_(OPTIMIZE_WITH_COLAMD);
    LevenbergMarquardtOptimizer lm_COLAMD(graph, initial, params_using_COLAMD);
    result_COLAMD = lm_COLAMD.optimize();
    gttoc_(OPTIMIZE_WITH_COLAMD);
  } catch (exception& e) {
    cout << e.what();
  }


  { // printing the result

    cout << "COLAMD final error: " << graph.error(result_COLAMD) << endl;
    cout << "METIS final error: " << graph.error(result_METIS) << endl;

    cout << endl << endl;

    cout << "Time comparison by solving " << filename << " results:" << endl;
    cout << boost::format("%1% point tracks and %2% cameras\n") \
            % mydata.number_tracks() % mydata.number_cameras() \
         << endl;

    tictoc_print_();
  }


  return 0;
}