static void RecFindRoots(vec_GF2E& x, const GF2EX& f) { if (deg(f) == 0) return; if (deg(f) == 1) { long k = x.length(); x.SetLength(k+1); x[k] = ConstTerm(f); return; } GF2EX h; GF2E r; { GF2EXModulus F; build(F, f); do { random(r); clear(h); SetCoeff(h, 1, r); TraceMap(h, h, F); GCD(h, h, f); } while (deg(h) <= 0 || deg(h) == deg(f)); } RecFindRoots(x, h); div(h, f, h); RecFindRoots(x, h); }
/////////////////////////////////////////////////////////////////////////// // PURPOSE: // Computes the syndrome of a sparse vector // of the binary BCH code of design distance d. // The vector is viewed as a vector of 0's and 1's // being indexed by all nonzero elements of GF2E; because // it is sparse, it is given as the set a of // elements of GF2E where the coordinates of the vector are equal to 1. // If used to compute the secure sketch, the sketch will // tolerate symmetric difference of up to (d-1)/2 // // // ALGORITHM: // The syndrome is computed as a vector of // f(j) = (a_0)^j + (a_2)^j + ... + (a_s)^j // for odd i from 1 do d-1, where a_i is the i-th component // of the input vector A. // (only the odd j are needed, because // f(2j) is simply the square of f(j)). // Because in C++ we number from 0, f(j) will reside // in location (j-1)/2. // // // ASSUMPTIONS: // Let m=GF2E::degree() (i.e., the field is GF(2^m)). // Assumes d is odd, // greater than 1, and less than 2^m (else BCH codes don't make sense). // Assumes the input set has no zeros (they will be ignored) // // // RUNNING TIME: // Takes time O(len*d) operations in GF(2^m), // where len is the length of the input vector // void BCHSyndromeCompute(vec_GF2E & ss, const vec_GF2E & a, long d) { GF2E a_i_to_the_j, multiplier; long i, j; ss.SetLength((d-1)/2); // half the syndrome length, // because even power not needed // We will compute the fs in parallel: first add // all the powers of a_1, then of a_2, ..., then of a_s for (i = 0; i < a.length(); ++i) { a_i_to_the_j = a[i]; sqr(multiplier, a[i]); // multiplier = a[i]*a[i]; // special-case 0, because it doesn't need to be multiplied // by the multiplier ss[0] += a_i_to_the_j; for (long j = 3; j < d; j+=2) { a_i_to_the_j *= multiplier; ss[(j-1)/2] += a_i_to_the_j; } } }
void mul(vec_GF2E& x, const vec_GF2E& a, const GF2E& b_in) { GF2E b = b_in; long n = a.length(); x.SetLength(n); long i; for (i = 0; i < n; i++) mul(x[i], a[i], b); }
void add(vec_GF2E& x, const vec_GF2E& a, const vec_GF2E& b) { long n = a.length(); if (b.length() != n) LogicError("vector add: dimension mismatch"); x.SetLength(n); long i; for (i = 0; i < n; i++) add(x[i], a[i], b[i]); }
void FindRoots(vec_GF2E& x, const GF2EX& ff) { GF2EX f = ff; if (!IsOne(LeadCoeff(f))) Error("FindRoots: bad args"); x.SetMaxLength(deg(f)); x.SetLength(0); RecFindRoots(x, f); }
void InnerProduct(GF2E& x, const vec_GF2E& a, const vec_GF2E& b) { long n = min(a.length(), b.length()); long i; GF2X accum, t; clear(accum); for (i = 0; i < n; i++) { mul(t, rep(a[i]), rep(b[i])); add(accum, accum, t); } conv(x, accum); }
/////////////////////////////////////////////////////////////////////////// // Produces a vector res such that res[2i]=ss[i] // and res[2i+1]=ss[i]*ss[i] // // Used to recover the redundant representation // of the BCH syndrome (which includes even values of j) // from the representation produced by BCHSyndromeCompute // Because C++ indexes from 0, the j-th coordinate of the syndrome // will end up in location j-1. // // Takes time O(d) operations in GF2E, where d is the output length // static void InterpolateEvens(vec_GF2E & res, const vec_GF2E & ss) { // uses relation syn(j) = syn(j/2)^2 to recover syn from ss long i; res.SetLength(2*ss.length()); // odd coordinates (which, confusingly, means even i) // are just copied from the input for (i = 0; i < ss.length(); ++i) res[2*i] = ss[i]; // even coordinates (odd i) are computed via squaring. for (i = 1; i < res.length(); i+=2) sqr(res[i], res[(i-1)/2]); // square }
void clear(vec_GF2E& x) { long n = x.length(); long i; for (i = 0; i < n; i++) clear(x[i]); }
void VectorCopy(vec_GF2E& x, const vec_GF2E& a, long n) { if (n < 0) LogicError("VectorCopy: negative length"); if (NTL_OVERFLOW(n, 1, 0)) ResourceError("overflow in VectorCopy"); long m = min(n, a.length()); x.SetLength(n); long i; for (i = 0; i < m; i++) x[i] = a[i]; for (i = m; i < n; i++) clear(x[i]); }
void InnerProduct(GF2E& x, const vec_GF2E& a, const vec_GF2E& b, long offset) { if (offset < 0) LogicError("InnerProduct: negative offset"); if (NTL_OVERFLOW(offset, 1, 0)) ResourceError("InnerProduct: offset too big"); long n = min(a.length(), b.length()+offset); long i; GF2X accum, t; clear(accum); for (i = offset; i < n; i++) { mul(t, rep(a[i]), rep(b[i-offset])); add(accum, accum, t); } conv(x, accum); }
static void FindFactors(vec_GF2EX& factors, const GF2EX& f, const GF2EX& g, const vec_GF2E& roots) { long r = roots.length(); factors.SetMaxLength(r); factors.SetLength(0); RecFindFactors(factors, f, g, roots, 0, r-1); }
long IsZero(const vec_GF2E& a) { long n = a.length(); long i; for (i = 0; i < n; i++) if (!IsZero(a[i])) return 0; return 1; }
static void mul_aux(vec_GF2E& x, const vec_GF2E& a, const mat_GF2E& B) { long n = B.NumRows(); long l = B.NumCols(); if (n != a.length()) LogicError("matrix mul: dimension mismatch"); x.SetLength(l); long i, k; GF2X acc, tmp; for (i = 1; i <= l; i++) { clear(acc); for (k = 1; k <= n; k++) { mul(tmp, rep(a(k)), rep(B(k,i))); add(acc, acc, tmp); } conv(x(i), acc); } }
static void mul_aux(vec_GF2E& x, const mat_GF2E& A, const vec_GF2E& b) { long n = A.NumRows(); long l = A.NumCols(); if (l != b.length()) LogicError("matrix mul: dimension mismatch"); x.SetLength(n); long i, k; GF2X acc, tmp; for (i = 1; i <= n; i++) { clear(acc); for (k = 1; k <= l; k++) { mul(tmp, rep(A(i,k)), rep(b(k))); add(acc, acc, tmp); } conv(x(i), acc); } }
static void IterFindFactors(vec_GF2EX& factors, const GF2EX& f, const GF2EX& g, const vec_GF2E& roots) { long r = roots.length(); long i; GF2EX h; factors.SetLength(r); for (i = 0; i < r; i++) { add(h, g, roots[i]); GCD(factors[i], f, h); } }
void applyLinPoly(GF2E& beta, const vec_GF2E& C, const GF2E& alpha, long p) { long d = GF2E::degree(); assert(d == C.length()); GF2E gamma, res; gamma = to_GF2E(GF2X(1, 1)); res = C[0]*alpha; for (long i = 1; i < d; i++) { gamma = power(gamma, p); res += C[i]*to_GF2E(CompMod(rep(alpha), rep(gamma), GF2E::modulus())); } beta = res; }
static void solve_impl(GF2E& d, vec_GF2E& X, const mat_GF2E& A, const vec_GF2E& b, bool trans) { long n = A.NumRows(); if (A.NumCols() != n) LogicError("solve: nonsquare matrix"); if (b.length() != n) LogicError("solve: dimension mismatch"); if (n == 0) { set(d); X.SetLength(0); return; } long i, j, k, pos; GF2X t1, t2; GF2X *x, *y; const GF2XModulus& p = GF2E::modulus(); vec_GF2XVec M; M.SetLength(n); for (i = 0; i < n; i++) { M[i].SetSize(n+1, 2*GF2E::WordLength()); if (trans) for (j = 0; j < n; j++) M[i][j] = rep(A[j][i]); else for (j = 0; j < n; j++) M[i][j] = rep(A[i][j]); M[i][n] = rep(b[i]); } GF2X det; set(det); for (k = 0; k < n; k++) { pos = -1; for (i = k; i < n; i++) { rem(t1, M[i][k], p); M[i][k] = t1; if (pos == -1 && !IsZero(t1)) { pos = i; } } if (pos != -1) { if (k != pos) { swap(M[pos], M[k]); } MulMod(det, det, M[k][k], p); // make M[k, k] == -1 mod p, and make row k reduced InvMod(t1, M[k][k], p); for (j = k+1; j <= n; j++) { rem(t2, M[k][j], p); MulMod(M[k][j], t2, t1, p); } for (i = k+1; i < n; i++) { // M[i] = M[i] + M[k]*M[i,k] t1 = M[i][k]; // this is already reduced x = M[i].elts() + (k+1); y = M[k].elts() + (k+1); for (j = k+1; j <= n; j++, x++, y++) { // *x = *x + (*y)*t1 mul(t2, *y, t1); add(*x, *x, t2); } } } else { clear(d); return; } } X.SetLength(n); for (i = n-1; i >= 0; i--) { clear(t1); for (j = i+1; j < n; j++) { mul(t2, rep(X[j]), M[i][j]); add(t1, t1, t2); } add(t1, t1, M[i][n]); conv(X[i], t1); } conv(d, det); }
/////////////////////////////////////////////////////////////////////////// // PURPOSE: // Given syndrome ssWithoutEvens of BCH code with design distance d, // finds sparse vector (with no more than // (d-1)/2 ones) with that syndrome // (note that syndrome as well sparse vector // representation are defined at BCHSyndromeCompute above). // 'answer' returns positions of ones in the resulting vector. // These positions are elements of GF2E (i.e., we view the vector // as a vector whose positions are indexed by elements of GF2E). // Returns false if no such vector exists, true otherwise // The input syndrome is assumed to not have even powers, i.e., // has (d-1)/2 elements, such as the syndrome computed by BCHSyndromeCompute. // // ASSUMPTIONS: // Let m=GF2E::degree() (i.e., the field is GF(2^m)). // This algorithm assumes that d is odd, greater than 1, and less than 2^m. // (else BCH codes don't make sense). // Assumes input is of length (d-1)/2. // // ALGORITHM USED: // Implements BCH decoding based on Euclidean algorithm; // For the explanation of the algorithm, see // Syndrome Encoding and Decoding of BCH Codes in Sublinear Time // (Excerpted from Fuzzy Extractors: // How to Generate Strong Keys from Biometrics and Other Noisy Data) // by Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin and Adam Smith // or Theorem 18.7 of Victor Shoup's "A Computational Introduction to // Number Theory and Algebra" (first edition, 2005), or // pp. 170-173 of "Introduction to Coding Theory" by Jurgen Bierbrauer. // // // RUNNING TIME: // If the output has e elements (i.e., the length of the output vector // is e; note that e <= (d-1)/2), then // the running time is O(d^2 + e^2 + e^{\log_2 3} m) operations in GF(2^m), // each of which takes time O(m^{\log_2 3}) in NTL. Note that // \log_2 3 is approximately 1.585. // bool BCHSyndromeDecode(vec_GF2E &answer, const vec_GF2E & ssWithoutEvens, long d) { long i; vec_GF2E ss; // This takes O(d) operation in GF(2^m) InterpolateEvens(ss, ssWithoutEvens); GF2EX r1, r2, r3, v1, v2, v3, q, temp; GF2EX *Rold, *Rcur, *Rnew, *Vold, *Vcur, *Vnew, *tempPointer; // Use pointers to avoid moving polynomials around // An assignment of polynomials requires copying the coefficient vector; // we will not assign polynomials, but will swap pointers instead Rold = &r1; Rcur = &r2; Rnew = &r3; Vold = &v1; Vcur = &v2; Vnew = &v3; SetCoeff(*Rold, d-1, 1); // Rold holds z^{d-1} // Rcur=S(z)/z where S is the syndrome poly, Rcur = \sum S_j z^{j-1} // Note that because we index arrays from 0, S_j is stored in ss[j-1] for (i=0; i<d-1; i++) SetCoeff (*Rcur, i, ss[i]); // Vold is already 0 -- no need to initialize // Initialize Vcur to 1 SetCoeff(*Vcur, 0, 1); // Vcur = 1 // Now run Euclid, but stop as soon as degree of Rcur drops below // (d-1)/2 // This will take O(d^2) operations in GF(2^m) long t = (d-1)/2; while (deg(*Rcur) >= t) { // Rold = Rcur*q + Rnew DivRem(q, *Rnew, *Rold, *Rcur); // Vnew = Vold - qVcur) mul(temp, q, *Vcur); sub (*Vnew, *Vold, temp); // swap everything tempPointer = Rold; Rold = Rcur; Rcur = Rnew; Rnew = tempPointer; tempPointer = Vold; Vold = Vcur; Vcur = Vnew; Vnew = tempPointer; } // At the end of the loop, sigma(z) is Vcur // (up to a constant factor, which doesn't matter, // since we care about roots of sigma). // The roots of sigma(z) are inverses of the points we // are interested in. // We will check that 0 is not // a root of Vcur (else its inverse won't exist, and hence // the right polynomial doesn't exist). if (IsZero(ConstTerm(*Vcur))) return false; // Need sigma to be monic for FindRoots MakeMonic(*Vcur); // check if sigma(z) has distinct roots if not, return false // this will take O(e^{\log_2 3} m) operations in GF(2^m), // where e is the degree of sigma(z) if (CheckIfDistinctRoots(*Vcur) == false) return false; // find roots of sigma(z) // this will take O(e^2 + e^{\log_2 3} m) operations in GF(2^m), // where e is the degree of sigma(z) answer = FindRoots(*Vcur); // take inverses of roots of sigma(z) for (i = 0; i < answer.length(); ++i) answer[i] = inv(answer[i]); // It is now necessary to verify if the resulting vector // has the correct syndrome: it is possible that it does // not even though the polynomial sigma(z) factors // completely // This takes O(de) operations in GF(2^m) vec_GF2E test; BCHSyndromeCompute (test, answer, d); return (test==ssWithoutEvens); }
void applyLookupTable(vec_GF2E& ltable, vec_GF2E& tgt){ int i, n=tgt.length(); for(i=0; i<n; i++){ tgt[i] = ltable[getLong(tgt[i])]; } }