Ejemplo n.º 1
0
// Copied from irrlicht
void calculateTangents(
    core::vector3df& normal,
    core::vector3df& tangent,
    core::vector3df& binormal,
    const core::vector3df& vt1, const core::vector3df& vt2, const core::vector3df& vt3, // vertices
    const core::vector2df& tc1, const core::vector2df& tc2, const core::vector2df& tc3) // texture coords
{
    core::vector3df v1 = vt1 - vt2;
    core::vector3df v2 = vt3 - vt1;
    normal = v2.crossProduct(v1);
    normal.normalize();

    // binormal

    f32 deltaX1 = tc1.X - tc2.X;
    f32 deltaX2 = tc3.X - tc1.X;
    binormal = (v1 * deltaX2) - (v2 * deltaX1);
    binormal.normalize();

    // tangent

    f32 deltaY1 = tc1.Y - tc2.Y;
    f32 deltaY2 = tc3.Y - tc1.Y;
    tangent = (v1 * deltaY2) - (v2 * deltaY1);
    tangent.normalize();

    // adjust

    core::vector3df txb = tangent.crossProduct(binormal);
    if (txb.dotProduct(normal) < 0.0f)
    {
        tangent *= -1.0f;
        binormal *= -1.0f;
    }
}
Ejemplo n.º 2
0
void CFreeCamera::Update(unsigned uDeltaTime)
{
    scene::ICameraSceneNode *pCamera = m_pSceneNode;
    
    // Check if dt is not 0 and we are animating active camera
    if(!uDeltaTime || pCamera->getSceneManager()->getActiveCamera() != pCamera)
        return;
    
    // Calculate some useful vectors
    core::vector3df vPos = pCamera->getPosition();
    const core::vector3df vForward = (pCamera->getTarget() - pCamera->getPosition()).normalize();
    const core::vector3df &vUp = pCamera->getUpVector();
    const core::vector3df vRight = vForward.crossProduct(vUp);
    float fSpeed = uDeltaTime / 100.0f;
    
    // Shift makes camera faster
    if(m_Controls[CTRL_FASTER])
        fSpeed *= 5.0f;
    
    // Calculate direction of movement
    core::vector3df vMovement(0.0f, 0.0f, 0.0f);
    if(m_Controls[CTRL_FORWARD])
        vMovement += vForward * fSpeed;
    if(m_Controls[CTRL_BACKWARD])
        vMovement -= vForward * fSpeed;
    if(m_Controls[CTRL_LEFT])
        vMovement += vRight * fSpeed;
    if(m_Controls[CTRL_RIGHT])
        vMovement -= vRight * fSpeed;
    
    // update camera velocity
    float fFactor = min(uDeltaTime / 200.0f, 1.0f);
    m_vVelocity = vMovement * fFactor + m_vVelocity * (1.0f - fFactor);
    vPos += m_vVelocity;
    pCamera->setPosition(vPos);
    
    // Update pitch and yaw
    if(m_vCursorPos != m_vCursorCenter)
    {
        core::vector2df vOffset = m_vCursorPos - m_vCursorCenter;
        
        m_fYaw = fmod(m_fYaw + vOffset.X, 2.0f * M_PI);
        
        const float fPitchMax = M_PI_2 - 0.1f;
        m_fPitch -= vOffset.Y;
        if(m_fPitch > fPitchMax)
            m_fPitch = fPitchMax;
        else if(m_fPitch < -fPitchMax)
            m_fPitch = -fPitchMax;
        
        m_pCursorCtrl->setPosition(0.5f, 0.5f);
        m_vCursorCenter = m_pCursorCtrl->getRelativePosition();
    }
    
    // Set camera target
    core::vector3df vTarget(sinf(m_fYaw) * cosf(m_fPitch), sinf(m_fPitch), cosf(m_fYaw) * cosf(m_fPitch));
    vTarget += vPos;
    pCamera->setTarget(vTarget);
}
Ejemplo n.º 3
0
core::vector3df RotatePositionByDirectionalVector(core::vector3df vPos, core::vector3df vNormal )
{
	//OPTIMIZE Isn't there a much faster way to do this?

	//calculate rotated z
	core::vector3df vFinal = vNormal * vPos.Z;

	//calculate rotation x
	vFinal = vFinal + (vNormal.crossProduct(core::vector3df(0,1,0)) * vPos.X);

	//y will just be up.. yeah, not really right
	vFinal.Y += vPos.Y;
	return vFinal;


}
Ejemplo n.º 4
0
/*------------------------------------------------------------------------------
|
|                           PROCEDURE LAMBERBATTIN
|
|  This PROCEDURE solves Lambert's problem using Battins method. The method is
|    developed in Battin (1987).
|
|  Author        : David Vallado                  303-344-6037    1 Mar 2001
|
|  Inputs          Description                    Range / Units
|    Ro          - IJK Position vector 1          ER
|    R           - IJK Position vector 2          ER
|    DM          - direction of motion            'L','S'
|    DtTU        - Time between R1 and R2         TU
|
|  OutPuts       :
|    Vo          - IJK Velocity vector            ER / TU
|    V           - IJK Velocity vector            ER / TU
|    Error       - Error flag                     'ok',...
|
|  Locals        :
|    i           - Index
|    Loops       -
|    u           -
|    b           -
|    Sinv        -
|    Cosv        -
|    rp          -
|    x           -
|    xn          -
|    y           -
|    l           -
|    m           -
|    CosDeltaNu  -
|    SinDeltaNu  -
|    DNu         -
|    a           -
|    Tan2w       -
|    RoR         -
|    h1          -
|    h2          -
|    Tempx       -
|    eps         -
|    denom       -
|    chord       -
|    k2          -
|    s           -
|    f           -
|    g           -
|    fDot        -
|    am          -
|    ae          -
|    be          -
|    tm          -
|    gDot        -
|    arg1        -
|    arg2        -
|    tc          -
|    AlpE        -
|    BetE        -
|    AlpH        -
|    BetH        -
|    DE          -
|    DH          -
|
|  Coupling      :
|    ARCSIN      - Arc sine FUNCTION
|    ARCCOS      - Arc cosine FUNCTION
|    MAG         - Magnitude of a vector
|    ARCSINH     - Inverse hyperbolic sine
|    ARCCOSH     - Inverse hyperbolic cosine
|    SINH        - Hyperbolic sine
|    POWER       - Raise a base to a POWER
|    ATAN2       - Arc tangent FUNCTION that resolves quadrants
|
|  References    :
|    Vallado       2001, 464-467, Ex 7-5
|
-----------------------------------------------------------------------------*/
void LambertBattin
(
 core::vector3df Ro, core::vector3df R, char dm, char OverRev, f64 DtTU,
 core::vector3df* Vo, core::vector3df* V, char* Error
 )
{
	const f64 Small = 0.000001;

	core::vector3df RCrossR;
	s32   i, Loops;
	f64   u, b, Sinv,Cosv, rp, x, xn, y, L, m, CosDeltaNu, SinDeltaNu,DNu, a,
		tan2w, RoR, h1, h2, Tempx, eps, Denom, chord, k2, s, f, g, FDot, am,
		ae, be, tm, GDot, arg1, arg2, tc, AlpE, BetE, AlpH, BetH, DE, DH;

	strcpy(Error, "ok");
	CosDeltaNu = Ro.dotProduct(R) / (Ro.getLength() * R.getLength());
	RCrossR    = Ro.crossProduct(R);
	SinDeltaNu = RCrossR.getLength() / (Ro.getLength() * R.getLength());
	DNu        = atan2(SinDeltaNu, CosDeltaNu);

	RoR   = R.getLength() / Ro.getLength();
	eps   = RoR - 1.0;
	tan2w = 0.25 * eps * eps / (sqrt(RoR) + RoR *(2.0 + sqrt(RoR)));
	rp    = sqrt(Ro.getLength()*R.getLength()) * (pow(cos(DNu * 0.25), 2) + tan2w);

	if (DNu < core::PI64)
		L = (pow(sin(DNu * 0.25), 2) + tan2w ) /
		(pow(sin(DNu * 0.25), 2) + tan2w + cos(DNu * 0.5));
	else
		L = (pow(cos(DNu * 0.25), 2) + tan2w - cos(DNu * 0.5)) /
		(pow(cos(DNu * 0.25), 2) + tan2w);

	m     = DtTU * DtTU / (8.0 * rp * rp * rp);
	xn    = 0.0;   // 0 for par and hyp
	chord = sqrt(Ro.getLength() * Ro.getLength() + R.getLength() * R.getLength() -
		2.0 * Ro.getLength() * R.getLength() * cos(DNu));
	s     = (Ro.getLength() + R.getLength() + chord) * 0.5;

	Loops = 1;
	while (1 == 1)
	{
		x     = xn;
		Tempx = See(x);
		Denom = 1.0 / ((1.0 + 2.0 * x + L) * (3.0 + x * (1.0 + 4.0 * Tempx)));
		h1    = pow(L + x, 2) * ( 1.0 + (1.0 + 3.0 * x) * Tempx) * Denom;
		h2    = m * ( 1.0 + (x - L) * Tempx) * Denom;

		/* ------------------------ Evaluate CUBIC ------------------ */
		b  = 0.25 * 27.0 * h2 / pow(1.0 + h1, 3);
		u  = -0.5 * b / (1.0 + sqrt(1.0 + b));
		k2 = k(u);

		y  = ((1.0 + h1) / 3.0) * (2.0 + sqrt(1.0 + b) /
			(1.0 - 2.0 * u * k2 * k2));
		xn = sqrt(pow((1.0 - L) * 0.5, 2) + m / (y * y)) - (1.0 + L) * 0.5;

		Loops++;

		if ((fabs(xn - x) < Small) || (Loops > 30))
			break;
	}

	a =  DtTU * DtTU / (16.0 * rp * rp * xn * y * y);
	
	/* -------------------- Find Eccentric anomalies ---------------- */
	/* -------------------------- Hyperbolic ------------------------ */
	if (a < -Small)
	{
		arg1 = sqrt(s / (-2.0 * a));
		arg2 = sqrt((s - chord) / (-2.0 * a));
		/* -------- Evaluate f and g functions -------- */
		
		//Visual Studio misses Hyperbolic Arc
		/*
		AlpH = 2.0 * asinh(arg1);
		BetH = 2.0 * asinh(arg2);
		*/
		AlpH = 2.0 * log(arg1 + sqrt(arg1 * arg1 + 1.0));
		BetH = 2.0 * log(arg2 + sqrt(arg2 * arg2 + 1.0));

		DH   = AlpH - BetH;
		f    = 1.0 - (a / Ro.getLength()) * (1.0 - cosh(DH));
		GDot = 1.0 - (a / R.getLength()) * (1.0 - cosh(DH));
		FDot = -sqrt(-a) * sinh(DH) / (Ro.getLength() * R.getLength());
	}
	else
	{
		/* ------------------------- Elliptical --------------------- */
		if (a > Small)
		{
			arg1 = sqrt(s / (2.0 * a));
			arg2 = sqrt((s - chord) / (2.0 * a));
			Sinv = arg2;
			Cosv = sqrt(1.0 - (Ro.getLength()+R.getLength() - chord) / (4.0 * a));
			BetE = 2.0 * acos(Cosv);
			BetE = 2.0 * asin(Sinv);
			if (DNu > core::PI64)
				BetE = -BetE;

			Cosv = sqrt(1.0 - s / (2.0 * a));
			Sinv = arg1;

			am = s * 0.5;
			ae = core::PI64;
			be = 2.0 * asin(sqrt((s - chord) / s));
			tm = sqrt(am * am * am) * (ae - (be - sin(be)));
			if (DtTU > tm)
				AlpE = 2.0 * core::PI64 - 2.0 * asin(Sinv);
			else
				AlpE = 2.0 * asin(Sinv);
			DE   = AlpE - BetE;
			f    = 1.0 - (a / Ro.getLength()) * (1.0 - cos(DE));
			GDot = 1.0 - (a / R.getLength()) * (1.0 - cos(DE));
			g    = DtTU - sqrt(a * a * a) * (DE - sin(DE));
			FDot = -sqrt(a) * sin(DE) / (Ro.getLength() * R.getLength());
		}
		else
		{
			/* ------------------------- Parabolic -------------------- */
			arg1 = 0.0;
			arg2 = 0.0;
			strcpy(Error, "a = 0 ");
			//if (FileOut != NULL)
				//fprintf(FileOut, " a parabolic orbit \n");
		}
	}
	
	/*
	for (u32 i = 0; i <= 2; i++)
	{
		Vo[i] = (R[i] - f * Ro[i])/ g;
		V[i] = (GDot * R[i] - Ro[i])/ g;
	}
	*/

	Vo->X = (R.X - f * Ro.X)/ g;
	Vo->Y = (R.Y - f * Ro.Y)/ g;
	Vo->Z = (R.Z - f * Ro.Z)/ g;

	V->X = (GDot * R.X - Ro.X)/ g;
	V->Y = (GDot * R.Y - Ro.Y)/ g;
	V->Z = (GDot * R.Z - Ro.Z)/ g;
	
	/*
	if (strcmp(Error, "ok") == 0)
		Testamt = f * GDot - FDot * g;
	else
		Testamt = 2.0;
	*/

	//if (FileOut != NULL)
		//fprintf(FileOut, "%8.5f %3d\n", Testamt, Loops);

	//BigT = sqrt(8.0 / (s * s * s)) * DtTU;
}