Ejemplo n.º 1
0
void CutoutImage::translucentEdge( const cv::Mat srcMat, const cv::Mat smoothMask, const cv::Mat liteMask, cv::Mat &dstMat ) //liteMask 是边缘模糊之前的数据
{
    cv::Mat smoothMask8uc1;
    smoothMask.convertTo(smoothMask8uc1, CV_8UC1 ,255.0);
    int rows = smoothMask8uc1.rows;
    int cols = smoothMask8uc1.cols;
    //cv::threshold(smoothMask8uc1, bitSmoothMask, 1, 255, CV_THRESH_BINARY );
    cv::Mat srcMatClone = srcMat.clone();
    cv::Mat liteMaskClone = liteMask.clone();
    cv::Mat edgeSmoothMask = cv::Mat( smoothMask.size(), CV_8UC1, cv::Scalar(0));
    cv::cvtColor(srcMatClone, srcMatClone, CV_BGR2BGRA);
    for(int y = 0; y < rows; y++){
        uchar *liteMaskCloneRowData = liteMaskClone.ptr<uchar>(y);
        uchar *smoothMask8uc1RowData = smoothMask8uc1.ptr<uchar>(y);
        uchar *srcMatCloneRowData = srcMatClone.ptr<uchar>(y);
        for (int x = 0; x < cols; x++) {
            //if(smoothMask8uc1RowData[x] != 0 && liteMaskCloneRowData[x] == 0)
            //if(smoothMask8uc1RowData[x] != 0 && smoothMask8uc1RowData[x] != 255)
            {
                srcMatCloneRowData[x*4 + 3] = smoothMask8uc1RowData[x];
            }
        }
    }
    dstMat = srcMatClone.clone();
    //cv::imwrite("cc.png", srcMat);
    //cv::imwrite("ccc.png", srcMatClone);
    //cv::waitKey(0);
}
Ejemplo n.º 2
0
void AutoCorr::autocorrDFT(const cv::Mat &img, cv::Mat &dst)
{
    //Convert image from unsigned char to float matrix
    cv::Mat fImg;
    img.convertTo(fImg, CV_32FC1);
    //Subtract the mean
    cv::Mat mean(fImg.size(), fImg.type(), cv::mean(fImg));
    cv::subtract(fImg, mean, fImg);

    //Calculate the optimal size for the dft output.
    //This increases speed.
    cv::Size dftSize;
    dftSize.width = cv::getOptimalDFTSize(2 * img.cols +1 );
    dftSize.height = cv::getOptimalDFTSize(2 * img.rows +1);

    //prepare the destination for the dft
    dst = cv::Mat(dftSize, CV_32FC1, cv::Scalar::all(0));

    //transform the image into the frequency domain
    cv::dft(fImg, dst);
    //calculate DST * DST (don't mind the fourth parameter. It is ignored)
    cv::mulSpectrums(dst, dst, dst, cv::DFT_INVERSE, true);
    //transform the result back to the image domain
    cv::dft(dst, dst, cv::DFT_INVERSE | cv::DFT_SCALE);

    //norm the result
    cv::multiply(fImg,fImg,fImg);
    float denom = cv::sum(fImg)[0];
    dst = dst * (1/denom);

}
Ejemplo n.º 3
0
 Array<float> CvMatToOpOutput::createArray(const cv::Mat& cvInputData, const double scaleInputToOutput,
                                           const Point<int>& outputResolution) const
 {
     try
     {
         // Security checks
         if (cvInputData.empty())
             error("Wrong input element (empty cvInputData).", __LINE__, __FUNCTION__, __FILE__);
         if (cvInputData.channels() != 3)
             error("Input images must be 3-channel BGR.", __LINE__, __FUNCTION__, __FILE__);
         if (cvInputData.cols <= 0 || cvInputData.rows <= 0)
             error("Input images has 0 area.", __LINE__, __FUNCTION__, __FILE__);
         if (outputResolution.x <= 0 || outputResolution.y <= 0)
             error("Output resolution has 0 area.", __LINE__, __FUNCTION__, __FILE__);
         // outputData - Reescale keeping aspect ratio and transform to float the output image
         const cv::Mat frameWithOutputSize = resizeFixedAspectRatio(cvInputData, scaleInputToOutput,
                                                                    outputResolution);
         Array<float> outputData({outputResolution.y, outputResolution.x, 3});
         frameWithOutputSize.convertTo(outputData.getCvMat(), CV_32FC3);
         // Return result
         return outputData;
     }
     catch (const std::exception& e)
     {
         error(e.what(), __LINE__, __FUNCTION__, __FILE__);
         return Array<float>{};
     }
 }
Ejemplo n.º 4
0
void niblackThreshold( const cv::Mat& src, cv::Mat& dst, int windowSize ,int c, float k)
{
  cv::Mat meanMat, std_dev, srcf;
  src.convertTo( srcf, CV_32FC1 );
#ifdef USE_OPENCV  
  cv::Mat mean2;
  cv::Size window(windowSize, windowSize);
  cv::blur(srcf, meanMat, window);
  cv::blur(srcf.mul(srcf), mean2, window);
  cv::sqrt(mean2 - meanMat.mul(meanMat), std_dev);
#else
  meanWithDeviation(srcf,meanMat,std_dev,windowSize);
#endif

  dst = cv::Mat( src.size(), src.type() );

  for( int j = 0; j < dst.rows; ++j ) {
    for( int i = 0; i < dst.cols; ++i ) 
    {
      //pixel = ( pixel >  mean + k * standard_deviation - c) ? object : background
      dst.at<uchar>(j,i) = ( srcf.at<float>(j,i) > meanMat.at<float>(j,i) + k * std_dev.at<float>(j,i) - c ) ? 255 : 0;
    }
  }
  return;
}
Ejemplo n.º 5
0
    void show_depth(const cv::Mat& depth)
    {
        cv::Mat display;
        //cv::normalize(depth, display, 0, 255, cv::NORM_MINMAX, CV_8U);
        depth.convertTo(display, CV_8U, 255.0/4000);
		cv::imshow("Depth", display);
    }
Ejemplo n.º 6
0
int EMVisi2::setModel(const cv::Mat im1, const cv::Mat mask)
{
	if (proba.empty()) {
		dL = cv::Mat(im1.size(), CV_32FC1);
		ncc = cv::Mat(im1.size(), CV_32FC1);
		sum = cv::Mat(im1.size(), CV_32FC1);
		proba = cv::Mat(im1.size(), CV_32FC1);
		visi_proba = cv::Mat(im1.size(), CV_32FC1);
		nccproba_v = cv::Mat(im1.size(), CV_32FC1);
		nccproba_h = cv::Mat(im1.size(), CV_32FC1);
		ratio = cv::Mat(im1.size(), CV_32FC(im1.channels()));
		im1f = cv::Mat(im1.size(), CV_32FC(im1.channels()));
	}

	if (im1.channels() > 1) {
		cv::Mat gray;
                cv::cvtColor(im1, gray, COLOR_RGB2GRAY);
		fncc.setModel(gray, mask);
	} else {
		fncc.setModel(im1, mask);
	}

        im1.convertTo(im1f, im1f.type());

        this->mask = mask;
	return 0;
}
Ejemplo n.º 7
0
void DrawHistogram(const cv::Mat& histogram, cv::Mat& draw_img, int width)
{
	double minval, maxval;
	cv::minMaxLoc(histogram, &minval, &maxval);

	cv::Mat norm_hist;
	histogram.convertTo(norm_hist, CV_32FC1, (double)width / maxval);

	if(histogram.cols == 1){
		draw_img = cv::Mat::zeros(histogram.rows, width, CV_8UC1);
		for(int r=0; r<histogram.rows; r++){
			for(int c=0; c<norm_hist.at<float>(r,0); c++){
				draw_img.at<unsigned char>(r, c) = 255;
			}
		}
	}
	else if(histogram.rows == 1){
		draw_img = cv::Mat::zeros(width, histogram.cols, CV_8UC1);
		for(int c=0; c<histogram.cols; c++){
			for(int r=0; r<norm_hist.at<float>(0,c); r++){
				draw_img.at<unsigned char>(width - r -1, c) = 255;
			}
		}
	}
}
Ejemplo n.º 8
0
void drwnNNGraphImage::appendNodeFeatures(const drwnNNGraphImageData& image, const cv::Mat& features)
{
    DRWN_ASSERT(((int)image.width() == features.cols) && ((int)image.height() == features.rows));
    DRWN_ASSERT(image.numSegments() == this->numNodes());

    // convert to 32-bit floating point (if not already)
    if (features.depth() != CV_32F) {
        cv::Mat tmp(features.rows, features.cols, CV_8U);
        features.convertTo(tmp, CV_32F, 1.0, 0.0);
        return appendNodeFeatures(image, tmp);
    }

    // compute mean pixel feature over each superpixel
    vector<float> phi(image.numSegments(), 0.0f);
    for (unsigned y = 0; y < image.height(); y++) {
        for (unsigned x = 0; x < image.width(); x++) {
            const float p = features.at<float>(y, x);
            for (int c = 0; c < image.segments().channels(); c++) {
                const int segId = image.segments()[c].at<int>(y, x);
                if (segId < 0) continue;

                phi[segId] += p;
            }
        }
    }

    for (unsigned segId = 0; segId < phi.size(); segId++) {
        DRWN_ASSERT(isfinite(phi[segId]));
        VectorXf newFeatures(_nodes[segId].features.rows() + 1);
        newFeatures.head(_nodes[segId].features.rows()) = _nodes[segId].features;
        newFeatures[_nodes[segId].features.rows()] = phi[segId] / (float)image.segments().pixels(segId);
        _nodes[segId].features = newFeatures;
    }
}
void ProcessDepth::setRef(cv::Mat image, bool improve)
{
  if(improve)
  {
    for(int imgY= 0; imgY<image.rows;imgY++)
    {
      cv::Mat lineOfImage = image.row(imgY);
      std::vector<u_int16_t>  tempSort;
      //            std::nth_element(line.begin<u_int16_t>, line.begin<u_int16_t> + line.cols/2, line.end<u_int16_t>());
      cv::MatIterator_<u_int16_t> it, end;
      for( it = lineOfImage.begin<u_int16_t>(), end = lineOfImage.end<u_int16_t>(); it != end; ++it)
      {
        tempSort.push_back(*it);
      }
      std::nth_element(tempSort.begin(), tempSort.begin() + tempSort.size()/2, tempSort.end());
      u_int16_t median = tempSort[tempSort.size()/2];
      cv::line( image,cv::Point2i(0,imgY),cv::Point2i(image.cols,imgY),median,1,8);
    }
    image.convertTo(mRefImage,CV_32FC1);
    // RefImage = image;
  }
  else
  {
    mRefImage = image;

  }
}
	void RunningBackground::update(cv::Mat frame, cv::Mat& thresholded) {
		if(needToReset || accumulator.empty()) {
			needToReset = false;
			frame.convertTo(accumulator, CV_32F);
		}

		accumulator.convertTo(background, CV_8U);
		switch(differenceMode) {
			case ABSDIFF: cv::absdiff(background, frame, foreground); break;
			case BRIGHTER: cv::subtract(frame, background, foreground); break;
			case DARKER: cv::subtract(background, frame, foreground); break;
		}
        ofxCv::copyGray(foreground, foregroundGray);
		int thresholdMode = ignoreForeground ? cv::THRESH_BINARY_INV : cv::THRESH_BINARY;
		cv::threshold(foregroundGray, thresholded, thresholdValue, 255, thresholdMode);

		float curLearningRate = learningRate;
		if(useLearningTime) {
			curLearningRate = 1. - powf(1. - (thresholdValue / 255.), 1. / learningTime);
		}
		if(ignoreForeground) {
			cv::accumulateWeighted(frame, accumulator, curLearningRate, thresholded);
			cv::bitwise_not(thresholded, thresholded);
		} else {
			cv::accumulateWeighted(frame, accumulator, curLearningRate);
		}
	}
Ejemplo n.º 11
0
void DepthSampler::sample(cv::Mat source, std::vector<cv::Mat> layers, std::vector<cv::Point2i>& out){

	cv::Mat localSource;
	std::vector<cv::Mat> tempLayers;
	source.convertTo(localSource,CV_32FC3);
	cv::split(localSource, tempLayers);
	cv::Mat dM(localSource.rows,localSource.cols, CV_32FC1);
	dM=(tempLayers[1]*256) + tempLayers[2];
	out.resize(0);

	int nLayers=layers.size();
	float localStep=minInd+(step*(double)nLayers);
	for ( std::vector<cv::Mat>::iterator it= layers.begin(); it != layers.end(); it++){
		for (int xIm=0; xIm< source.cols; xIm+=(int)localStep) {
			for (int yIm=0; yIm<source.rows ; yIm+=(int)localStep) {
				if ((int)it->at<char>(yIm,xIm) != 0){
					float d=dM.at<float>(yIm,xIm);
					if ((d != 0)&&(d<maxDistance)){
						out.push_back(cv::Point2i(xIm,yIm));
					}
				}
			}
		}
		localStep=localStep-step;
	}
}
void ControllerImageFusion::correctBritness(cv::Mat& image, cv::Mat source)
{
    float colRatioDb = image.cols/source.cols;
    float rowRatioDb = image.rows/source.rows;
    float val;

    if(std::modf(colRatioDb, &val)!= 0 || std::modf(rowRatioDb, &val) != 0)
    {
        return;
    }
    int colRatio = (int)(colRatioDb);
    int rowRatio = (int)(rowRatioDb);
    if(colRatio<=1 || rowRatio<=1)
    {
        return;
    }
    cv::Mat sourceConverted;
    source.convertTo(sourceConverted, CV_32F);
    int rows = source.rows;
    int cols = source.cols;
    for(int i = 0; i<rows-1; i++)
    {
        const float* Mi = sourceConverted.ptr<float>(i);
        for(int j = 0; j<cols-1; j++)
        {
            cv::Mat temp = cv::Mat(image, cv::Rect(j*colRatio, i*rowRatio, colRatio, rowRatio));
            cv::Scalar mean = cv::mean(temp);
            mean.val[0] = Mi[j]-mean.val[0];
            cv::add(temp, mean, temp);
        }
    }
}
Ejemplo n.º 13
0
bool task1(const cv::Mat& image) {
    cv::Mat manual, buildIn, diff, tmp;
    std::vector<cv::Mat> channels;

    scaleImage(image, manual, 2, 100);
    image.convertTo(buildIn, -1, 2, 100);
    cv::absdiff(manual, buildIn, diff);
    cv::split(diff, channels);

    std::cout << "Max difference element: ";
    for (VMit it = channels.begin(); it != channels.end(); ++it) {
        int max = *(std::max_element((*it).begin<uchar>(), (*it).end<uchar>()));
        std::cout << max << " ";
    }
    std::cout << std::endl;

    std::vector<cv::Mat> scales(5, cv::Mat());
    std::vector<cv::Mat> dst(2, cv::Mat());
    for (int i = 0; i < task1c; ++i) {
        scaleImage(image, scales[i], task1v[2 * i], task1v[2 * i + 1]);
    }

    concatImages(scales[0], scales[1], dst[0]);
    concatChannels(dst[0], dst[0]);

    concatImages(scales[2], scales[3], dst[1]);
    concatImages(dst[1], scales[4], dst[1]);
    concatChannels(dst[1], dst[1]);

    return cv::imwrite(PATH + "Task1Lena01.jpg", dst[0]) && cv::imwrite(PATH + "Task1Lena345.jpg", dst[1]);

}
Ejemplo n.º 14
0
void performHighPass(const cv::Mat& image, cv::Mat& res, int rad) {
    cv::Mat grey, tmp;
    cv::cvtColor(image, grey, CV_BGR2GRAY);


    grey.convertTo(grey, CV_32F);
    grey.copyTo(res);
    res.convertTo(res, CV_8U);
    std::vector<cv::Mat> planes(2, cv::Mat());
    std::vector<cv::Mat> polar(2, cv::Mat());

    cv::dft(grey, tmp, cv::DFT_COMPLEX_OUTPUT);
    cv::split(tmp, planes);
    cv::cartToPolar(planes[0], planes[1], polar[0], polar[1]);
    visualization(polar[0], tmp);
    concatImages(res, tmp, res);

    rearrangeQuadrants(polar[0]);
    highPassFilter(polar[0], rad);
    rearrangeQuadrants(polar[0]);

    visualization(polar[0], tmp);
    tmp.convertTo(tmp, res.type());
    concatImages(res, tmp, res);

    cv::polarToCart(polar[0], polar[1], planes[0], planes[1]);
    cv::merge(planes, tmp);
    cv::dft(tmp, tmp, cv::DFT_SCALE | cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT);
    tmp.convertTo(tmp, CV_8U);
    concatImages(res, tmp, res);
}
Ejemplo n.º 15
0
cv::Mat rescaleImageIntensity(const cv::Mat& img, ScaleType type) {

  cv::Mat rval;

  if (type == ScaleNone) {

    if (img.depth() == CV_8U) {
      rval = img.clone();
    } else {
      double fmin, fmax;
      cv::minMaxLoc(img, &fmin, &fmax);
      if (fmax - fmin <= 1) {
        rval = cv::Mat(img.rows, img.cols, CV_8U);
        cv::convertScaleAbs(img, rval, 255);
      } else {
        img.convertTo(rval, CV_8U);
      }
    }

  } else {
  
    cv::Mat fsrc;
    
    if (img.depth() != at::REAL_IMAGE_TYPE) {
      img.convertTo(fsrc, at::REAL_IMAGE_TYPE);
    } else {
      fsrc = img;
    }
    
    cv::Mat tmp;
    
    if (type == ScaleMinMax) {
      double fmin, fmax;
      cv::minMaxLoc(fsrc, &fmin, &fmax);
      tmp = 255*((fsrc-fmin)/(fmax-fmin));
    } else {
      at::real fmag = cv::norm(fsrc, cv::NORM_INF);
      tmp = 127 + 127*fsrc/fmag;
    }

    tmp.convertTo(rval, CV_8U);

  }

  return rval;

}
Ejemplo n.º 16
0
void WatershedSegmenter::segmented_image(cv::Mat& dest) {
    cv::Mat wshedMask = process();
    cv::Mat mask;
    convertScaleAbs(wshedMask, mask, 1, 0);
    double thresh = threshold(mask, mask, 1, 255, THRESH_BINARY);
    bitwise_and(image, image, dest, mask);
    dest.convertTo(dest,CV_8U);
}
Ejemplo n.º 17
0
void visualization(const cv::Mat& magnitude, cv::Mat& res) {
    res = magnitude + cv::Scalar::all(1); // switch to logarithmic scale
    cv::log(res, res);
    //rearrangeQuadrants(res);
    cv::normalize(res, res, 0, 1, CV_MINMAX);
    res *= 255;
    res.convertTo(res, CV_8U);
}
Ejemplo n.º 18
0
cv::Mat colorizeDepth(const cv::Mat& dMap, float min, float max)
{
  cv::Mat d8Bit = cv::Mat::zeros(dMap.rows,dMap.cols,CV_8UC1);
  cv::Mat dColor;
  dMap.convertTo(d8Bit,CV_8UC1, 255./(max-min));
  cv::applyColorMap(d8Bit,dColor,cv::COLORMAP_JET);
  return dColor;
}
void showResult(cv::Mat initial, cv::Mat result)
{
    initial = initial.clone();
    result = result.clone();

    initial.convertTo(initial, CV_8UC1);
    result.convertTo(result, CV_8UC1);

    float ratio = initial.rows / (float)initial.cols;

    cv::resize(initial, initial, cv::Size(400, static_cast<int>(400.f * ratio)), 0, 0, CV_INTER_NN);
    cv::resize(result, result, cv::Size(400, static_cast<int>(400.f * ratio)), 0, 0, CV_INTER_NN);

    cv::imshow("input", initial);
    cv::imshow("output", result);
    cv::waitKey();
}
Ejemplo n.º 20
0
void LetterClassifier::LoadImages(std::vector< std::vector< std::string > > &file_names, cv::Mat &dataset, cv::Mat &labels, cv::Mat &test_dataset, cv::Mat &test_labels)
{
	int num_train_data = 0, num_test_data = 0;
	std::vector< int > num_data;
	for ( size_t i = 0; i < file_names.size(); i++ )
	{
		int num_data_per_class = (int)(file_names[i].size()/(params.train_test_ratio + 1))*params.train_test_ratio;
		num_data_per_class = (num_data_per_class >  params.max_samples_class) ? params.max_samples_class : num_data_per_class;
		num_data.push_back(num_data_per_class);
		num_test_data += ((int)file_names[i].size() - num_data_per_class);
		num_train_data += num_data_per_class;
	}
	std::cout << "Number of TEST data:  " << num_test_data << std::endl;
	std::cout << "Number of TRAIN data: " << num_train_data << std::endl;
	int k = 0, l = 0;
	dataset = cv::Mat(cv::Size(num_train_data, params.letter_size.area()), CV_32F);
	labels = cv::Mat(cv::Size(1, num_train_data), CV_32F);

	test_dataset = cv::Mat(cv::Size(num_test_data, params.letter_size.area()), CV_32F);
	test_labels = cv::Mat(cv::Size(1, num_test_data), CV_32F);
	for ( size_t i = 0; i < file_names.size(); i++ )
	{
		cv::Mat img;
		for ( int j = 0; j < (int)file_names[i].size(); j++ )
		{
			img = cv::imread(file_names[i][j], CV_LOAD_IMAGE_GRAYSCALE);
			cv::resize(img, img, params.letter_size);
			img.convertTo(img, CV_32F);
			img = img.reshape(1, params.letter_size.area());
			if (j < num_data[i])
			{
				img.copyTo(dataset.col(k));
				labels.at<float>(k) = (float)i;
				k++;
			}
			else
			{
				img.copyTo(test_dataset.col(l));
				test_labels.at<float>(l) = (float)i;
				l++;
			}
		}
	}
	labels.convertTo(labels, CV_32S);
	test_labels.convertTo(test_labels, CV_32S);
}
Ejemplo n.º 21
0
static void makeDepth32f(cv::Mat& source, cv::Mat& output)
{
    if (source.depth() != CV_32F) {
        source.convertTo(output, CV_32F);
    } else {
        output = source;
    }
}
Ejemplo n.º 22
0
/* Expects an 8-bit image, where the region of interest is 255 */
void 
Auvsi_Radon::setImage(cv::Mat inputImage)
{
	cv::Mat rInFloat( inputImage.size(), CV_32F );
	inputImage.convertTo( rInFloat, rInFloat.type(), 1.0/255.0f );

	image = rInFloat;
}
 // some crazy stuff, no idea what's happening there. So thanks Alvaro & Niklas!
 bool CameraCalibration::backProject(const cv::Mat& boardRot64,
                                     const cv::Mat& boardTrans64,
                                     const vector<cv::Point2f>& imgPt,
                                     vector<cv::Point3f>& worldPt) {
     if( imgPt.size() == 0 ) {
         return false;
     }
     else
     {
         cv::Mat imgPt_h = cv::Mat::zeros(3, imgPt.size(), CV_32F);
         for( int h=0; h<imgPt.size(); ++h ) {
             imgPt_h.at<float>(0,h) = imgPt[h].x;
             imgPt_h.at<float>(1,h) = imgPt[h].y;
             imgPt_h.at<float>(2,h) = 1.0f;
         }
         Mat Kinv64 = getUndistortedIntrinsics().getCameraMatrix().inv();
         Mat Kinv,boardRot,boardTrans;
         Kinv64.convertTo(Kinv, CV_32F);
         boardRot64.convertTo(boardRot, CV_32F);
         boardTrans64.convertTo(boardTrans, CV_32F);
         
         // Transform all image points to world points in camera reference frame
         // and then into the plane reference frame
         Mat worldImgPt = Mat::zeros( 3, imgPt.size(), CV_32F );
         Mat rot3x3;
         Rodrigues(boardRot, rot3x3);
         
         Mat transPlaneToCam = rot3x3.inv()*boardTrans;
         
         for( int i=0; i<imgPt.size(); ++i ) {
             Mat col = imgPt_h.col(i);
             Mat worldPtcam = Kinv*col;
             Mat worldPtPlane = rot3x3.inv()*(worldPtcam);
             
             float scale = transPlaneToCam.at<float>(2)/worldPtPlane.at<float>(2);
             Mat worldPtPlaneReproject = scale*worldPtPlane-transPlaneToCam;
             
             cv::Point3f pt;
             pt.x = worldPtPlaneReproject.at<float>(0);
             pt.y = worldPtPlaneReproject.at<float>(1);
             pt.z = 0;
             worldPt.push_back(pt);
         }
     }
     return true;
 }
Ejemplo n.º 24
0
void CameraParameters::setParams(cv::Mat cameraMatrix,cv::Mat distorsionCoeff,cv::Size size)
{
    if (cameraMatrix.rows!=3 || cameraMatrix.cols!=3)
        throw cv::Exception(9000,"invalid input cameraMatrix","CameraParameters::setParams",__FILE__,__LINE__);
    cameraMatrix.convertTo(CameraMatrix,CV_32FC1);
    if (  distorsionCoeff.total()<4 ||  distorsionCoeff.total()>5 )
        throw cv::Exception(9000,"invalid input distorsionCoeff","CameraParameters::setParams",__FILE__,__LINE__);
    cv::Mat auxD;
    distorsionCoeff.convertTo( auxD,CV_32FC1);
    //now, get only the 4 first elements

    Distorsion.create(1,4,CV_32FC1);
    for (int i=0;i<4;i++)
        Distorsion.ptr<float>(0)[i]=auxD.ptr<float>(0)[i];

    CamSize=size;
}
void AdaptiveBackgroundLearning::process(const cv::Mat &img_input, cv::Mat &img_output, cv::Mat &img_bgmodel)
{
  char path1[1000],path2[1000];
  
	if(img_input.empty())
    return;

  loadConfig();

  if(firstTime)
    saveConfig();

  if(img_background.empty())
    img_input.copyTo(img_background);

  cv::Mat img_input_f(img_input.size(), CV_32F);
  img_input.convertTo(img_input_f, CV_32F, 1./255.);

  cv::Mat img_background_f(img_background.size(), CV_32F);
  img_background.convertTo(img_background_f, CV_32F, 1./255.);

  cv::Mat img_diff_f(img_input.size(), CV_32F);
  cv::absdiff(img_input_f, img_background_f, img_diff_f);

  if((limit > 0 && limit < counter) || limit == -1)
  {
    img_background_f = alpha*img_input_f + (1-alpha)*img_background_f;
    
    cv::Mat img_new_background(img_input.size(), CV_8U);
    img_background_f.convertTo(img_new_background, CV_8U, 255.0/(maxVal - minVal), -minVal);
    img_new_background.copyTo(img_background);

    if(limit > 0 && limit < counter)
      counter++;
  }
  
  cv::Mat img_foreground(img_input.size(), CV_8U);
  img_diff_f.convertTo(img_foreground, CV_8U, 255.0/(maxVal - minVal), -minVal);

  if(img_foreground.channels() == 3)
    cv::cvtColor(img_foreground, img_foreground, CV_BGR2GRAY);

  if(enableThreshold)
    cv::threshold(img_foreground, img_foreground, threshold, 255, cv::THRESH_BINARY);
  
  if(showForeground){
    cv::imshow("A-Learning FG", img_foreground);
  }
  if(showBackground){
    cv::imshow("A-Learning BG", img_background);
  }
  
  img_foreground.copyTo(img_output);
  img_background.copyTo(img_bgmodel);

  firstTime = false;
}
Ejemplo n.º 26
0
cv::Mat getDepthDrawableImage(cv::Mat depth_image)
{

  cv::Mat drawable;
  depth_image.convertTo(drawable, CV_8UC1, 255.0/1000);
  drawable = 255 - drawable;

  return drawable;
}
Ejemplo n.º 27
0
LocalBinaryPattern::LocalBinaryPattern( const cv::Mat& img)
    : RFeatures::FeatureOperator( img.size()), _imgRct( 0, 0, img.cols, img.rows)
{
    assert( img.channels() == 1);
    assert( img.isContinuous());
    cv::Mat iimg;
    img.convertTo( iimg, CV_32F);
    cv::integral( iimg, _intImg, CV_64F);
}   // end ctor
Ejemplo n.º 28
0
//_______________________________________________
double FM::LaplacianEnergy::measure_focus( cv::Mat image ) const {
    assert( check_image( image ) );
	image.convertTo( image, CV_8UC1 );
	cv::Mat processed;

	cv::Laplacian( image, processed, CV_8U );
	cv::pow( processed, 2, processed );
	return cv::sum( processed )[0];
}
Ejemplo n.º 29
0
void rotateFlowCloud(cv::Mat & out_flow, const cv::Mat & in_flow, const cv::Mat & transform_mat)
{
	Mat flow_reshaped;
	flow_reshaped = in_flow.reshape(1, in_flow.rows * in_flow.cols);

	//transform
	out_flow = transform_mat*flow_reshaped.t();
	out_flow.convertTo(out_flow, CV_32FC1);
}
Ejemplo n.º 30
0
static cv::Mat convertTo(const cv::Mat &mat, int depth)
{
    if (mat.depth() == depth)
        return mat;

    cv::Mat result;
    mat.convertTo(result, depth);
    return result;
}