Ejemplo n.º 1
0
bool Polygon::convertToInequalityConstraints(Eigen::MatrixXd& A, Eigen::VectorXd& b) const
{
  Eigen::MatrixXd V(nVertices(), 2);
  for (unsigned int i = 0; i < nVertices(); ++i)
    V.row(i) = vertices_[i];

  // Create k, a list of indices from V forming the convex hull.
  // TODO: Assuming counter-clockwise ordered convex polygon.
  // MATLAB: k = convhulln(V);
  Eigen::MatrixXi k;
  k.resizeLike(V);
  for (unsigned int i = 0; i < V.rows(); ++i)
    k.row(i) << i, (i+1) % V.rows();
  Eigen::RowVectorXd c = V.colwise().mean();
  V.rowwise() -= c;
  A = Eigen::MatrixXd::Constant(k.rows(), V.cols(), NAN);

  unsigned int rc = 0;
  for (unsigned int ix = 0; ix < k.rows(); ++ix) {
    Eigen::MatrixXd F(2, V.cols());
    F.row(0) << V.row(k(ix, 0));
    F.row(1) << V.row(k(ix, 1));
    Eigen::FullPivLU<Eigen::MatrixXd> luDecomp(F);
    if (luDecomp.rank() == F.rows()) {
      A.row(rc) = F.colPivHouseholderQr().solve(Eigen::VectorXd::Ones(F.rows()));
      ++rc;
    }
  }

  A = A.topRows(rc);
  b = Eigen::VectorXd::Ones(A.rows());
  b = b + A * c.transpose();

  return true;
}
Ejemplo n.º 2
0
Polytope Polytope::operator&( const Polytope &P2 )
{
    assert( this->H.cols() == P2.H.cols() );

    Eigen::MatrixXd H( this->H.rows() + P2.H.rows(), this->H.cols() );
    Eigen::VectorXd K( this->H.rows() + P2.H.rows(), 1 );

    H.topRows( this->H.rows() ) = this->H;
    K.topRows( this->H.rows() ) = this->K;
    H.bottomRows( P2.H.rows() ) = P2.H;
    K.bottomRows( P2.H.rows() ) = P2.K;

    return Polytope( H, K );
}