Ejemplo n.º 1
0
/*
 * Converts all segments in all paths to Geom::LineSegment or Geom::HLineSegment or
 * Geom::VLineSegment or Geom::CubicBezier.
 */
Geom::PathVector
pathv_to_linear_and_cubic_beziers( Geom::PathVector const &pathv )
{
    Geom::PathVector output;

    for (Geom::PathVector::const_iterator pit = pathv.begin(); pit != pathv.end(); ++pit) {
        output.push_back( Geom::Path() );
        output.back().start( pit->initialPoint() );
        output.back().close( pit->closed() );

        for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_open(); ++cit) {
            if (is_straight_curve(*cit)) {
                Geom::LineSegment l(cit->initialPoint(), cit->finalPoint());
                output.back().append(l);
            } else {
                Geom::BezierCurve const *curve = dynamic_cast<Geom::BezierCurve const *>(&*cit);
                if (curve && curve->order() == 3) {
                    Geom::CubicBezier b((*curve)[0], (*curve)[1], (*curve)[2], (*curve)[3]);
                    output.back().append(b);
                } else {
                    // convert all other curve types to cubicbeziers
                    Geom::Path cubicbezier_path = Geom::cubicbezierpath_from_sbasis(cit->toSBasis(), 0.1);
                    output.back().append(cubicbezier_path);
                }
            }
        }
    }
    
    return output;
}
Ejemplo n.º 2
0
// FIXME: why is 'transform' argument not used?
void
PrintLatex::print_pathvector(SVGOStringStream &os, Geom::PathVector const &pathv_in, const Geom::Affine & /*transform*/)
{
    if (pathv_in.empty())
        return;

//    Geom::Affine tf=transform;   // why was this here?
    Geom::Affine tf_stack=m_tr_stack.top(); // and why is transform argument not used?
    Geom::PathVector pathv = pathv_in * tf_stack; // generates new path, which is a bit slow, but this doesn't have to be performance optimized

    os << "\\newpath\n";

    for(Geom::PathVector::const_iterator it = pathv.begin(); it != pathv.end(); ++it) {

        os << "\\moveto(" << it->initialPoint()[Geom::X] << "," << it->initialPoint()[Geom::Y] << ")\n";

        for(Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) {
            print_2geomcurve(os, *cit);
        }

        if (it->closed()) {
            os << "\\closepath\n";
        }

    }
}
Ejemplo n.º 3
0
/*
 * Converts all segments in all paths to Geom::LineSegment.  There is an intermediate
 * stage where some may be converted to beziers.  maxdisp is the maximum displacement from
 * the line segment to the bezier curve; ** maxdisp is not used at this moment **.
 *
 * This is NOT a terribly fast method, but it should give a solution close to the one with the
 * fewest points.
 */
Geom::PathVector
pathv_to_linear( Geom::PathVector const &pathv, double /*maxdisp*/)
{
    Geom::PathVector output;
    Geom::PathVector tmppath = pathv_to_linear_and_cubic_beziers(pathv);
    
    // Now all path segments are either already lines, or they are beziers.

    for (Geom::PathVector::const_iterator pit = tmppath.begin(); pit != tmppath.end(); ++pit) {
        output.push_back( Geom::Path() );
        output.back().start( pit->initialPoint() );
        output.back().close( pit->closed() );

        for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_open(); ++cit) {
            if (is_straight_curve(*cit)) {
                Geom::LineSegment ls(cit->initialPoint(), cit->finalPoint());
                output.back().append(ls);
            } 
            else { /* all others must be Bezier curves */
                Geom::BezierCurve const *curve = dynamic_cast<Geom::BezierCurve const *>(&*cit);
                Geom::CubicBezier b((*curve)[0], (*curve)[1], (*curve)[2], (*curve)[3]);
                std::vector<Geom::Point> bzrpoints = b.points();
                Geom::Point A = bzrpoints[0];
                Geom::Point B = bzrpoints[1];
                Geom::Point C = bzrpoints[2];
                Geom::Point D = bzrpoints[3];
                std::vector<Geom::Point> pointlist;
                pointlist.push_back(A);
                recursive_bezier4(
                   A[X], A[Y], 
                   B[X], B[Y], 
                   C[X], C[Y], 
                   D[X], D[Y],
                   pointlist, 
                   0);
                pointlist.push_back(D);
                Geom::Point r1 = pointlist[0];
                for (unsigned int i=1; i<pointlist.size();i++){
                   Geom::Point prev_r1 = r1;
                   r1 = pointlist[i];
                   Geom::LineSegment ls(prev_r1, r1);
                   output.back().append(ls);
                }
                pointlist.clear();
           }
        }
    }
    
    return output;
}
Ejemplo n.º 4
0
Geom::OptRect
bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t)
{
    if (pv.empty())
        return Geom::OptRect();

    Geom::Point initial = pv.front().initialPoint() * t;
    Geom::Rect bbox(initial, initial);        // obtain well defined bbox as starting point to unionWith

    for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) {
        bbox.expandTo(it->initialPoint() * t);

        // don't loop including closing segment, since that segment can never increase the bbox
        for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) {
            Geom::Curve const &c = *cit;

            unsigned order = 0;
            if (Geom::BezierCurve const* b = dynamic_cast<Geom::BezierCurve const*>(&c)) {
                order = b->order();
            }

            if (order == 1) { // line segment
                bbox.expandTo(c.finalPoint() * t);

            // TODO: we can make the case for quadratics faster by degree elevating them to
            // cubic and then taking the bbox of that.

            } else if (order == 3) { // cubic bezier
                Geom::CubicBezier const &cubic_bezier = static_cast<Geom::CubicBezier const&>(c);
                Geom::Point c0 = cubic_bezier[0] * t;
                Geom::Point c1 = cubic_bezier[1] * t;
                Geom::Point c2 = cubic_bezier[2] * t;
                Geom::Point c3 = cubic_bezier[3] * t;
                cubic_bbox(c0[0], c0[1], c1[0], c1[1], c2[0], c2[1], c3[0], c3[1], bbox);
            } else {
                // should handle all not-so-easy curves:
                Geom::Curve *ctemp = cit->transformed(t);
                bbox.unionWith( ctemp->boundsExact());
                delete ctemp;
            }
        }
    }
    //return Geom::bounds_exact(pv * t);
    return bbox;
}
Ejemplo n.º 5
0
Geom::OptRect
bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t)
{
    if (pv.empty())
        return Geom::OptRect();

    Geom::Point initial = pv.front().initialPoint() * t;
    Geom::Rect bbox(initial, initial);        // obtain well defined bbox as starting point to unionWith

    for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) {
        bbox.expandTo(it->initialPoint() * t);

        // don't loop including closing segment, since that segment can never increase the bbox
        for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) {
            Geom::Curve const &c = *cit;

            if( is_straight_curve(c) )
            {
                bbox.expandTo( c.finalPoint() * t );
            }
            else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const  *>(&c))
            {
                Geom::Point c0 = (*cubic_bezier)[0] * t;
                Geom::Point c1 = (*cubic_bezier)[1] * t;
                Geom::Point c2 = (*cubic_bezier)[2] * t;
                Geom::Point c3 = (*cubic_bezier)[3] * t;
                cubic_bbox( c0[0], c0[1],
                            c1[0], c1[1],
                            c2[0], c2[1],
                            c3[0], c3[1],
                            bbox );
            }
            else
            {
                // should handle all not-so-easy curves:
                Geom::Curve *ctemp = cit->transformed(t);
                bbox.unionWith( ctemp->boundsExact());
                delete ctemp;
            }
        }
    }
    //return Geom::bounds_exact(pv * t);
    return bbox;
}