Ejemplo n.º 1
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh_whole_domain, mesh_with_hole;
  Hermes::vector<Mesh*> meshes (&mesh_whole_domain, &mesh_with_hole);
  MeshReaderH2DXML mloader;
  mloader.load("domain.xml", meshes);

  // Temperature mesh: Initial uniform mesh refinements in graphite.
  meshes[0]->refine_by_criterion(element_in_graphite, INIT_REF_NUM_TEMPERATURE_GRAPHITE);

  // Temperature mesh: Initial uniform mesh refinements in fluid.
  meshes[0]->refine_by_criterion(element_in_fluid, INIT_REF_NUM_TEMPERATURE_FLUID);

  // Fluid mesh: Initial uniform mesh refinements.
  for(int i = 0; i < INIT_REF_NUM_FLUID; i++)
    meshes[1]->refine_all_elements();

  // Initial refinements towards boundary of graphite.
  for(unsigned int meshes_i = 0; meshes_i < meshes.size(); meshes_i++)
    meshes[meshes_i]->refine_towards_boundary("Inner Wall", INIT_REF_NUM_BDY_GRAPHITE);

  // Initial refinements towards the top and bottom edges.
  for(unsigned int meshes_i = 0; meshes_i < meshes.size(); meshes_i++)
    meshes[meshes_i]->refine_towards_boundary("Outer Wall", INIT_REF_NUM_BDY_WALL);

  /* View both meshes. */
  MeshView m1("Mesh for temperature"), m2("Mesh for fluid");
  m1.show(&mesh_whole_domain);
  m2.show(&mesh_with_hole);

  // Initialize boundary conditions.
  EssentialBCNonConst bc_inlet_vel_x("Inlet", VEL_INLET, H, STARTUP_TIME);
  DefaultEssentialBCConst<double> bc_other_vel_x(Hermes::vector<std::string>("Outer Wall", "Inner Wall"), 0.0);
  EssentialBCs<double> bcs_vel_x(Hermes::vector<EssentialBoundaryCondition<double> *>(&bc_inlet_vel_x, &bc_other_vel_x));
  DefaultEssentialBCConst<double> bc_vel_y(Hermes::vector<std::string>("Inlet", "Outer Wall", "Inner Wall"), 0.0);
  EssentialBCs<double> bcs_vel_y(&bc_vel_y);
  EssentialBCs<double> bcs_pressure;
  DefaultEssentialBCConst<double> bc_temperature(Hermes::vector<std::string>("Outer Wall", "Inlet"), 20.0);
  EssentialBCs<double> bcs_temperature(&bc_temperature);

  // Spaces for velocity components, pressure and temperature.
  H1Space<double> xvel_space(&mesh_with_hole, &bcs_vel_x, P_INIT_VEL);
  H1Space<double> yvel_space(&mesh_with_hole, &bcs_vel_y, P_INIT_VEL);
#ifdef PRESSURE_IN_L2
  L2Space<double> p_space(&mesh_with_hole, P_INIT_PRESSURE);
#else
  H1Space<double> p_space(&mesh_with_hole, &bcs_pressure, P_INIT_PRESSURE);
#endif
  H1Space<double> temperature_space(&mesh_whole_domain, &bcs_temperature, P_INIT_TEMPERATURE);
  Hermes::vector<Space<double> *> all_spaces(&xvel_space, 
      &yvel_space, &p_space, &temperature_space);
  Hermes::vector<const Space<double> *> all_spaces_const(&xvel_space, 
      &yvel_space, &p_space, &temperature_space);

  // Calculate and report the number of degrees of freedom.
  int ndof = Space<double>::get_num_dofs(Hermes::vector<const Space<double> *>(&xvel_space, 
      &yvel_space, &p_space, &temperature_space));
  info("ndof = %d.", ndof);

  // Define projection norms.
  ProjNormType vel_proj_norm = HERMES_H1_NORM;
#ifdef PRESSURE_IN_L2
  ProjNormType p_proj_norm = HERMES_L2_NORM;
#else
  ProjNormType p_proj_norm = HERMES_H1_NORM;
#endif
  ProjNormType temperature_proj_norm = HERMES_H1_NORM;
  Hermes::vector<ProjNormType> all_proj_norms = Hermes::vector<ProjNormType>(vel_proj_norm, 
      vel_proj_norm, p_proj_norm, temperature_proj_norm);

  // Initial conditions and such.
  info("Setting initial conditions.");
  ZeroSolution xvel_prev_time(&mesh_with_hole), yvel_prev_time(&mesh_with_hole), p_prev_time(&mesh_with_hole);
  CustomInitialConditionTemperature temperature_init_cond(&mesh_whole_domain, HOLE_MID_X, HOLE_MID_Y, 
      0.5*OBSTACLE_DIAMETER, TEMPERATURE_INIT_FLUID, TEMPERATURE_INIT_GRAPHITE); 
  Solution<double> temperature_prev_time;
  Hermes::vector<Solution<double> *> all_solutions = Hermes::vector<Solution<double> *>(&xvel_prev_time, 
      &yvel_prev_time, &p_prev_time, &temperature_prev_time);
  Hermes::vector<MeshFunction<double> *> all_meshfns = Hermes::vector<MeshFunction<double> *>(&xvel_prev_time, 
      &yvel_prev_time, &p_prev_time, &temperature_init_cond);

  // Project all initial conditions on their FE spaces to obtain aninitial
  // coefficient vector for the Newton's method. We use local projection
  // to avoid oscillations in temperature on the graphite-fluid interface
  // FIXME - currently the LocalProjection only does the lowest-order part (linear
  // interpolation) at the moment. Higher-order part needs to be added.
  double* coeff_vec = new double[ndof];
  info("Projecting initial condition to obtain initial vector for the Newton's method.");
  //OGProjection<double>::project_global(all_spaces, all_meshfns, coeff_vec, matrix_solver, all_proj_norms);
  LocalProjection<double>::project_local(all_spaces_const, all_meshfns, coeff_vec, matrix_solver, all_proj_norms);

  // Translate the solution vector back to Solutions. This is needed to replace
  // the discontinuous initial condition for temperature_prev_time with its projection.
  Solution<double>::vector_to_solutions(coeff_vec, all_spaces_const, all_solutions);

  // Calculate Reynolds number.
  double reynolds_number = VEL_INLET * OBSTACLE_DIAMETER / KINEMATIC_VISCOSITY_FLUID;
  info("RE = %g", reynolds_number);
  if (reynolds_number < 1e-8) error("Re == 0 will not work - the equations use 1/Re.");

  // Initialize weak formulation.
  CustomWeakFormHeatAndFlow wf(STOKES, reynolds_number, time_step, &xvel_prev_time, &yvel_prev_time, &temperature_prev_time, 
      HEAT_SOURCE_GRAPHITE, SPECIFIC_HEAT_GRAPHITE, SPECIFIC_HEAT_FLUID, RHO_GRAPHITE, RHO_FLUID, 
      THERMAL_CONDUCTIVITY_GRAPHITE, THERMAL_CONDUCTIVITY_FLUID, SIMPLE_TEMPERATURE_ADVECTION);
  
  // Initialize the FE problem.
  DiscreteProblem<double> dp(&wf, all_spaces_const);

  // Initialize the Newton solver.
  NewtonSolver<double> newton(&dp, matrix_solver);

  // Initialize views.
  Views::VectorView vview("velocity [m/s]", new Views::WinGeom(0, 0, 700, 360));
  Views::ScalarView pview("pressure [Pa]", new Views::WinGeom(0, 415, 700, 350));
  Views::ScalarView tempview("temperature [C]", new Views::WinGeom(0, 795, 700, 350));
  //vview.set_min_max_range(0, 0.5);
  vview.fix_scale_width(80);
  //pview.set_min_max_range(-0.9, 1.0);
  pview.fix_scale_width(80);
  pview.show_mesh(false);
  tempview.fix_scale_width(80);
  tempview.show_mesh(false);

  // Time-stepping loop:
  char title[100];
  int num_time_steps = T_FINAL / time_step;
  double current_time = 0.0;
  for (int ts = 1; ts <= num_time_steps; ts++)
  {
    current_time += time_step;
    info("---- Time step %d, time = %g:", ts, current_time);

    // Update time-dependent essential BCs.
    if (current_time <= STARTUP_TIME) 
    {
      info("Updating time-dependent essential BC.");
      Space<double>::update_essential_bc_values(Hermes::vector<Space<double> *>(&xvel_space, &yvel_space, &p_space, 
                                                &temperature_space), current_time);
    }

    // Perform Newton's iteration.
    info("Solving nonlinear problem:");
    bool verbose = true;
    // Perform Newton's iteration and translate the resulting coefficient vector into previous time level solutions.
    newton.set_verbose_output(verbose);
    try
    {
      newton.solve(coeff_vec, NEWTON_TOL, NEWTON_MAX_ITER);
    }
    catch(Hermes::Exceptions::Exception e)
    {
      e.printMsg();
      error("Newton's iteration failed.");
    };
    {
      Hermes::vector<Solution<double> *> tmp(&xvel_prev_time, &yvel_prev_time, &p_prev_time, &temperature_prev_time);
      Solution<double>::vector_to_solutions(newton.get_sln_vector(), Hermes::vector<const Space<double> *>(&xvel_space, 
          &yvel_space, &p_space, &temperature_space), tmp);
    }
    
    // Show the solution at the end of time step.
    sprintf(title, "Velocity [m/s], time %g s", current_time);
    vview.set_title(title);
    vview.show(&xvel_prev_time, &yvel_prev_time);
    sprintf(title, "Pressure [Pa], time %g s", current_time);
    pview.set_title(title);
    pview.show(&p_prev_time);
    sprintf(title, "Temperature [C], time %g s", current_time);
    tempview.set_title(title);
    tempview.show(&temperature_prev_time,  Views::HERMES_EPS_HIGH);
  }

  delete [] coeff_vec;

  // Wait for all views to be closed.
  Views::View::wait();
  return 0;
}
Ejemplo n.º 2
0
    bool Adapt<Scalar>::adapt(Hermes::vector<RefinementSelectors::Selector<Scalar> *> refinement_selectors, double thr, int strat,
      int regularize, double to_be_processed)
    {
      error_if(!have_errors, "element errors have to be calculated first, call Adapt<Scalar>::calc_err_est().");
      error_if(refinement_selectors == Hermes::vector<RefinementSelectors::Selector<Scalar> *>(), "selector not provided");
      if (spaces.size() != refinement_selectors.size()) error("Wrong number of refinement selectors.");
      Hermes::TimePeriod cpu_time;

      //get meshes
      int max_id = -1;
      Mesh* meshes[H2D_MAX_COMPONENTS];
      for (int j = 0; j < this->num; j++) 
      {
        meshes[j] = this->spaces[j]->get_mesh();
        if (rsln[j] != NULL) 
        {
          rsln[j]->set_quad_2d(&g_quad_2d_std);
          rsln[j]->enable_transform(false);
        }
        if (meshes[j]->get_max_element_id() > max_id)
          max_id = meshes[j]->get_max_element_id();
      }

      //reset element refinement info
      int** idx = new int*[max_id];
      for(int i = 0; i < max_id; i++)
        idx[i] = new int[num];

      for(int j = 0; j < max_id; j++)
        for(int l = 0; l < this->num; l++)
          idx[j][l] = -1; // element not refined

      double err0_squared = 1000.0;
      double processed_error_squared = 0.0;

      std::vector<ElementToRefine> elem_inx_to_proc; //list of indices of elements that are going to be processed
      elem_inx_to_proc.reserve(num_act_elems);

      //adaptivity loop
      double error_squared_threshod = -1; //an error threshold that breaks the adaptivity loop in a case of strategy 1
      int num_exam_elem = 0; //a number of examined elements
      int num_ignored_elem = 0; //a number of ignored elements
      int num_not_changed = 0; //a number of element that were not changed
      int num_priority_elem = 0; //a number of elements that were processed using priority queue

      bool first_regular_element = true; //true if first regular element was not processed yet
      int inx_regular_element = 0;
      while (inx_regular_element < num_act_elems || !priority_queue.empty())
      {
        int id, comp, inx_element;

        //get element identification
        if (priority_queue.empty()) 
        {
          id = regular_queue[inx_regular_element].id;
          comp = regular_queue[inx_regular_element].comp;
          inx_element = inx_regular_element;
          inx_regular_element++;
        }
        else 
        {
          id = priority_queue.front().id;
          comp = priority_queue.front().comp;
          inx_element = -1;
          priority_queue.pop();
          num_priority_elem++;
        }
        num_exam_elem++;

        //get info linked with the element
        double err_squared = errors[comp][id];
        Mesh* mesh = meshes[comp];
        Element* e = mesh->get_element(id);

        if (!should_ignore_element(inx_element, mesh, e)) 
        {
          //check if adaptivity loop should end
          if (inx_element >= 0) 
          {
            //prepare error threshold for strategy 1
            if (first_regular_element) 
            {
              error_squared_threshod = thr * err_squared;
              first_regular_element = false;
            }

            // first refinement strategy:
            // refine elements until prescribed amount of error is processed
            // if more elements have similar error refine all to keep the mesh symmetric
            if ((strat == 0) && (processed_error_squared > sqrt(thr) * errors_squared_sum)
              && fabs((err_squared - err0_squared)/err0_squared) > 1e-3) break;

            // second refinement strategy:
            // refine all elements whose error is bigger than some portion of maximal error
            if ((strat == 1) && (err_squared < error_squared_threshod)) break;

            if ((strat == 2) && (err_squared < thr)) break;

            if ((strat == 3) &&
              ( (err_squared < error_squared_threshod) ||
              ( processed_error_squared > 1.5 * to_be_processed )) ) break;
          }

          // get refinement suggestion
          ElementToRefine elem_ref(id, comp);
          int current = this->spaces[comp]->get_element_order(id);
          // rsln[comp] may be unset if refinement_selectors[comp] == HOnlySelector or POnlySelector
          bool refined = refinement_selectors[comp]->select_refinement(e, current, rsln[comp], elem_ref);

          //add to a list of elements that are going to be refined
          if (can_refine_element(mesh, e, refined, elem_ref) ) 
          {
            idx[id][comp] = (int)elem_inx_to_proc.size();
            elem_inx_to_proc.push_back(elem_ref);
            err0_squared = err_squared;
            processed_error_squared += err_squared;
          }
          else 
          {
            debug_log("Element (id:%d, comp:%d) not changed", e->id, comp);
            num_not_changed++;
          }
        }
        else 
        {
          num_ignored_elem++;
        }
      }

      verbose("Examined elements: %d", num_exam_elem);
      verbose(" Elements taken from priority queue: %d", num_priority_elem);
      verbose(" Ignored elements: %d", num_ignored_elem);
      verbose(" Not changed elements: %d", num_not_changed);
      verbose(" Elements to process: %d", elem_inx_to_proc.size());
      bool done = false;
      if (num_exam_elem == 0)
        done = true;
      else if (elem_inx_to_proc.empty())
      {
        warn("None of the elements selected for refinement could be refined. Adaptivity step not successful, returning 'true'.");
        done = true;
      }

      //fix refinement if multimesh is used
      fix_shared_mesh_refinements(meshes, elem_inx_to_proc, idx, refinement_selectors);

      //apply refinements
      apply_refinements(elem_inx_to_proc);

      // in singlemesh case, impose same orders across meshes
      homogenize_shared_mesh_orders(meshes);

      // mesh regularization
      if (regularize >= 0)
      {
        if (regularize == 0)
        {
          regularize = 1;
          warn("Total mesh regularization is not supported in adaptivity. 1-irregular mesh is used instead.");
        }
        for (int i = 0; i < this->num; i++)
        {
          int* parents;
          parents = meshes[i]->regularize(regularize);
          this->spaces[i]->distribute_orders(meshes[i], parents);
          ::free(parents);
        }
      }

      for (int j = 0; j < this->num; j++)
        if (rsln[j] != NULL)
          rsln[j]->enable_transform(true);

      verbose("Refined elements: %d", elem_inx_to_proc.size());
      report_time("Refined elements in: %g s", cpu_time.tick().last());

      //store for the user to retrieve
      last_refinements.swap(elem_inx_to_proc);

      have_errors = false;
      if (strat == 2 && done == true)
        have_errors = true; // space without changes

      // since space changed, assign dofs:
      Space<Scalar>::assign_dofs(this->spaces);

      return done;
    }
Ejemplo n.º 3
0
    void NeighborSearch<Scalar>::clear_initial_sub_idx()
    {
      if(neighborhood_type != H2D_DG_GO_DOWN)
        return;
      // Obtain the transformations sequence.
      Hermes::vector<unsigned int> transformations = get_transforms(original_central_el_transform);

      Hermes::vector<unsigned int> updated_transformations;
      for(int i = 0; i < transformations.size(); i++)
      {
        if(! ((active_edge == 0 && transformations[i] == 4) || (active_edge == 1 && transformations[i] == 7) || (active_edge == 2 && transformations[i] == 5) || (active_edge == 3 && transformations[i] == 6)) )
        {
          if(active_edge == 0 && transformations[i] == 6)
            updated_transformations.push_back(0);
          else if(active_edge == 0 && transformations[i] == 7)
            updated_transformations.push_back(1);
          else if(active_edge == 1 && transformations[i] == 4)
            updated_transformations.push_back(1);
          else if(active_edge == 1 && transformations[i] == 5)
            updated_transformations.push_back(2);
          else if(active_edge == 2 && transformations[i] == 6)
            updated_transformations.push_back(3);
          else if(active_edge == 2 && transformations[i] == 7)
            updated_transformations.push_back(2);
          else if(active_edge == 3 && transformations[i] == 4)
            updated_transformations.push_back(0);
          else if(active_edge == 3 && transformations[i] == 5)
            updated_transformations.push_back(3);
          else
            updated_transformations.push_back(transformations[i]);
        }
      }

      // Test for active element.
      if(updated_transformations.size() == 0)
        return;

      for(unsigned int i = 0; i < n_neighbors; i++)
      {
        // Find the index where the additional subelement mapping (on top of the initial one from assembling) starts.
        unsigned int j = 0;
        // Note that we do not have to test if central_transformations is empty or how long it is, because it has to be
        // longer than transformations (and that is tested).
        // Also the function compatible_transformations() does not have to be used, as now the array central_transformations
        // has been adjusted so that it contains the array transformations.
        while(central_transformations.get(i)->transf[j] == updated_transformations[j])
          if(++j > updated_transformations.size() - 1)
            break;
        if(j > central_transformations.get(i)->num_levels)
          j = central_transformations.get(i)->num_levels;

        for(unsigned int level = central_transformations.get(i)->num_levels; level < updated_transformations.size(); level++)
        {
          if(!neighbor_transformations.present(i))
            neighbor_transformations.add(new Transformations, i);

          Transformations* neighbor_transforms = neighbor_transformations.get(i);

          // Triangles.
          if(central_el->get_mode() == HERMES_MODE_TRIANGLE)
            if((active_edge == 0 && updated_transformations[level] == 0) ||
              (active_edge == 1 && updated_transformations[level] == 1) ||
              (active_edge == 2 && updated_transformations[level] == 2))
              neighbor_transforms->transf[neighbor_transforms->num_levels++] = (!neighbor_edge.orientation ? neighbor_edge.local_num_of_edge : (neighbor_edge.local_num_of_edge + 1) % 3);
            else
              neighbor_transforms->transf[neighbor_transforms->num_levels++] = (neighbor_edge.orientation ? neighbor_edge.local_num_of_edge : (neighbor_edge.local_num_of_edge + 1) % 3);
          // Quads.
          else
            if((active_edge == 0 && (updated_transformations[level] == 0 || updated_transformations[level] == 6)) ||
              (active_edge == 1 && (updated_transformations[level] == 1 || updated_transformations[level] == 4)) ||
              (active_edge == 2 && (updated_transformations[level] == 2 || updated_transformations[level] == 7)) ||
              (active_edge == 3 && (updated_transformations[level] == 3 || updated_transformations[level] == 5)))
              neighbor_transforms->transf[neighbor_transforms->num_levels++] = (!neighbor_edge.orientation ? neighbor_edge.local_num_of_edge : (neighbor_edge.local_num_of_edge + 1) % 4);
            else if((active_edge == 0 && (updated_transformations[level] == 1 || updated_transformations[level] == 7)) ||
              (active_edge == 1 && (updated_transformations[level] == 2 || updated_transformations[level] == 5)) ||
              (active_edge == 2 && (updated_transformations[level] == 3 || updated_transformations[level] == 6)) ||
              (active_edge == 3 && (updated_transformations[level] == 0 || updated_transformations[level] == 4)))
              neighbor_transforms->transf[neighbor_transforms->num_levels++] = (neighbor_edge.orientation ? neighbor_edge.local_num_of_edge : (neighbor_edge.local_num_of_edge + 1) % 4);
        }

        central_transformations.get(i)->strip_initial_transformations(j);
      }
    }
Ejemplo n.º 4
0
  bool select_refinement(Element* element, int order, MeshFunction<complex>* rsln, ElementToRefine& refinement)
  {
    switch(strategy)
    {
    case(noSelectionH):
      {
        refinement.split = H2D_REFINEMENT_H;
        refinement.best_refinement_polynomial_order_type[H2D_REFINEMENT_H][0] = 
          refinement.best_refinement_polynomial_order_type[H2D_REFINEMENT_H][1] = 
          refinement.best_refinement_polynomial_order_type[H2D_REFINEMENT_H][2] = 
          refinement.best_refinement_polynomial_order_type[H2D_REFINEMENT_H][3] = 
          order;
        ElementToRefine::copy_orders(refinement.refinement_polynomial_order, refinement.best_refinement_polynomial_order_type[H2D_REFINEMENT_H]);
        return true;
      }
      break;
    case(noSelectionHP):
      {
        int max_allowed_order = this->max_order;
        if(this->max_order == H2DRS_DEFAULT_ORDER)
          max_allowed_order = H2DRS_MAX_ORDER;
        int order_h = H2D_GET_H_ORDER(order), order_v = H2D_GET_V_ORDER(order);
        int increased_order_h = std::min(max_allowed_order, order_h + 1), increased_order_v = std::min(max_allowed_order, order_v + 1);
        int increased_order;
        if(element->is_triangle())
          increased_order = refinement.best_refinement_polynomial_order_type[H2D_REFINEMENT_H][0] = H2D_MAKE_QUAD_ORDER(increased_order_h, increased_order_h);
        else
          increased_order = refinement.best_refinement_polynomial_order_type[H2D_REFINEMENT_H][0] = H2D_MAKE_QUAD_ORDER(increased_order_h, increased_order_v);

        refinement.split = H2D_REFINEMENT_H;
        refinement.best_refinement_polynomial_order_type[H2D_REFINEMENT_H][0] = 
          refinement.best_refinement_polynomial_order_type[H2D_REFINEMENT_H][1] = 
          refinement.best_refinement_polynomial_order_type[H2D_REFINEMENT_H][2] = 
          refinement.best_refinement_polynomial_order_type[H2D_REFINEMENT_H][3] = 
          increased_order;
        ElementToRefine::copy_orders(refinement.refinement_polynomial_order, refinement.best_refinement_polynomial_order_type[H2D_REFINEMENT_H]);
        return true;
      }
      case(hXORpSelectionBasedOnError):
      {
        //make an uniform order in a case of a triangle
        int order_h = H2D_GET_H_ORDER(order), order_v = H2D_GET_V_ORDER(order);

        int current_min_order, current_max_order;
        this->get_current_order_range(element, current_min_order, current_max_order);

        if(current_max_order < std::max(order_h, order_v))
          current_max_order = std::max(order_h, order_v);

        int last_order_h = std::min(current_max_order, order_h + 1), last_order_v = std::min(current_max_order, order_v + 1);
        int last_order = H2D_MAKE_QUAD_ORDER(last_order_h, last_order_v);

        //build candidates.
        Hermes::vector<Cand> candidates;
        candidates.push_back(Cand(H2D_REFINEMENT_P, last_order));
        candidates.push_back(Cand(H2D_REFINEMENT_H, order, order, order, order));
        
        this->evaluate_cands_error(candidates, element, rsln);
        
        Cand* best_candidate = (candidates[0].error < candidates[1].error) ? &candidates[0] : &candidates[1];
        Cand* best_candidates_specific_type[4];
        best_candidates_specific_type[H2D_REFINEMENT_P] = &candidates[0];
        best_candidates_specific_type[H2D_REFINEMENT_H] = &candidates[1];
        best_candidates_specific_type[2] = NULL;
        best_candidates_specific_type[3] = NULL;

        //copy result to output
        refinement.split = best_candidate->split;
        ElementToRefine::copy_orders(refinement.refinement_polynomial_order, best_candidate->p);
        for(int i = 0; i < 4; i++)
          if(best_candidates_specific_type[i] != NULL)
            ElementToRefine::copy_orders(refinement.best_refinement_polynomial_order_type[i], best_candidates_specific_type[i]->p);

        ElementToRefine::copy_errors(refinement.errors, best_candidate->errors);

        //modify orders in a case of a triangle such that order_v is zero
        if(element->is_triangle())
          for(int i = 0; i < H2D_MAX_ELEMENT_SONS; i++)
            refinement.refinement_polynomial_order[i] = H2D_MAKE_QUAD_ORDER(H2D_GET_H_ORDER(refinement.refinement_polynomial_order[i]), 0);

        return true;
      }
    default:
      H1ProjBasedSelector<complex>::select_refinement(element, order, rsln, refinement);
      return true;
      break;
    }
  }
Ejemplo n.º 5
0
double KellyTypeAdapt::eval_interface_estimator(KellyTypeAdapt::ErrorEstimatorForm* err_est_form,
                                                RefMap *rm, SurfPos* surf_pos,
                                                LightArray<NeighborSearch*>& neighbor_searches, int neighbor_index)
{
  NeighborSearch* nbs = neighbor_searches.get(neighbor_index);
  Hermes::vector<MeshFunction*> slns;
  for (int i = 0; i < num; i++)
    slns.push_back(this->sln[i]);
  
  // Determine integration order.
  ExtData<Ord>* fake_ui = dp.init_ext_fns_ord(slns, neighbor_searches);
  
  // Order of additional external functions.
  // ExtData<Ord>* fake_ext = dp.init_ext_fns_ord(err_est_form->ext, nbs);

  // Order of geometric attributes (eg. for multiplication of a solution with coordinates, normals, etc.).
  Geom<Ord>* fake_e = new InterfaceGeom<Ord>(init_geom_ord(), nbs->neighb_el->marker, nbs->neighb_el->id, nbs->neighb_el->get_diameter());
  double fake_wt = 1.0;
  Ord o = err_est_form->ord(1, &fake_wt, fake_ui->fn, fake_ui->fn[err_est_form->i], fake_e, NULL);

  int order = rm->get_inv_ref_order();
  order += o.get_order();

  limit_order(order);

  // Clean up.
  if (fake_ui != NULL)
  {
    for (int i = 0; i < num; i++)
      delete fake_ui->fn[i];
    fake_ui->free_ord();
    delete fake_ui;
  }
  
  delete fake_e;
  
  //delete fake_ext;
  
  Quad2D* quad = this->sln[err_est_form->i]->get_quad_2d();
  int eo = quad->get_edge_points(surf_pos->surf_num, order);
  int np = quad->get_num_points(eo);
  double3* pt = quad->get_points(eo);
  
  // Init geometry and jacobian*weights (do not use the NeighborSearch caching mechanism).
  double3* tan = rm->get_tangent(surf_pos->surf_num, eo);
  double* jwt = new double[np];
  for(int i = 0; i < np; i++)
    jwt[i] = pt[i][2] * tan[i][2];
  
  Geom<double>* e = new InterfaceGeom<double>(init_geom_surf(rm, surf_pos, eo), 
                                              nbs->neighb_el->marker, 
                                              nbs->neighb_el->id, 
                                              nbs->neighb_el->get_diameter());
    
  // function values
  ExtData<scalar>* ui = dp.init_ext_fns(slns, neighbor_searches, order);
  //ExtData<scalar>* ext = dp.init_ext_fns(err_est_form->ext, nbs);

  scalar res = interface_scaling_const *
                err_est_form->value(np, jwt, ui->fn, ui->fn[err_est_form->i], e, NULL);

  if (ui != NULL) { ui->free(); delete ui; }
  //if (ext != NULL) { ext->free(); delete ext; }
  e->free(); delete e;
  delete [] jwt;

  return std::abs(0.5*res);   // Edges are parameterized from 0 to 1 while integration weights
                              // are defined in (-1, 1). Thus multiplying with 0.5 to correct
                              // the weights.
}
Ejemplo n.º 6
0
    void NewtonSolver<Scalar>::solve(Scalar* coeff_vec, double newton_tol, int newton_max_iter, bool residual_as_function)
    {
      _F_
      // Obtain the number of degrees of freedom.
      int ndof = this->dp->get_num_dofs();

      // Delete the old solution vector, if there is any.
      if(this->sln_vector != NULL)
        delete [] this->sln_vector;

      this->sln_vector = new Scalar[ndof];
      if(coeff_vec == NULL) 
        memset(this->sln_vector, 0, ndof*sizeof(Scalar));
      else
        for (int i = 0; i < ndof; i++)
          this->sln_vector[i] = coeff_vec[i];
          
      // The Newton's loop.
      double residual_norm;
      int it = 1;

      bool delete_timer = false;
      if (this->timer == NULL)
      {
        this->timer = new TimePeriod;
        delete_timer = true;
      }

      this->timer->tick();
      setup_time += this->timer->last();

      while (true)
      {
        // Assemble just the residual vector.
        this->dp->assemble(this->sln_vector, residual);

        this->timer->tick();
        assemble_time += this->timer->last();

        // Measure the residual norm.
        if (residual_as_function)
        {
          // Prepare solutions for measuring residual norm.
          Hermes::vector<Solution<Scalar>*> solutions;
          Hermes::vector<bool> dir_lift_false;
          for (unsigned int i = 0; i < static_cast<DiscreteProblem<Scalar>*>(this->dp)->get_spaces().size(); i++) {
            solutions.push_back(new Solution<Scalar>());
            dir_lift_false.push_back(false);
          }

          Solution<Scalar>::vector_to_solutions(residual, 
              static_cast<DiscreteProblem<Scalar>*>(this->dp)->get_spaces(), solutions, dir_lift_false);

          // Calculate the norm.
          residual_norm = Global<Scalar>::calc_norms(solutions);

          // Clean up.
          for (unsigned int i = 0; i < static_cast<DiscreteProblem<Scalar>*>(this->dp)->get_spaces().size(); i++)
            delete solutions[i];
        }
        else
        {
          // Calculate the l2-norm of residual vector, this is the traditional way.
          residual_norm = Global<Scalar>::get_l2_norm(residual);
        }

        // Info for the user.
        if(it == 1) {
          if(this->verbose_output)
            info("---- Newton initial residual norm: %g", residual_norm);
        }
        else
          if(this->verbose_output)
            info("---- Newton iter %d, residual norm: %g", it - 1, residual_norm);

        // If maximum allowed residual norm is exceeded, fail.
        if (residual_norm > max_allowed_residual_norm)
        {
          throw Exceptions::ValueException("residual norm", residual_norm, max_allowed_residual_norm);
        }

        // If residual norm is within tolerance, return 'true'.
        // This is the only correct way of ending.
        if (residual_norm < newton_tol && it > 1) 
        {
          this->timer->tick();
          solve_time += this->timer->last();

          if (delete_timer)
          {
            delete this->timer;
            this->timer = NULL;
          }

          return;
        }

        this->timer->tick();
        solve_time += this->timer->last();

        // Assemble just the jacobian.
        this->dp->assemble(this->sln_vector, jacobian);
        this->timer->tick();
        assemble_time += this->timer->last();

        // Multiply the residual vector with -1 since the matrix
        // equation reads J(Y^n) \deltaY^{n + 1} = -F(Y^n).
        residual->change_sign();

        // Solve the linear system.
        if(!linear_solver->solve()) {
          if (delete_timer)
          {
            delete this->timer;
            this->timer = NULL;
          }
          throw Exceptions::LinearSolverException();
        }

        // Add \deltaY^{n + 1} to Y^n.
        for (int i = 0; i < ndof; i++)
          this->sln_vector[i] += this->damping_coeff * linear_solver->get_sln_vector()[i];

        // Increase the number of iterations and test if we are still under the limit.
        if (it++ >= newton_max_iter)
        {
          if (delete_timer)
          {
            delete this->timer;
            this->timer = NULL;
          }
          throw Exceptions::ValueException("iterations", it, newton_max_iter);
        }

        this->timer->tick();
        solve_time += this->timer->last();
      }
    }
Ejemplo n.º 7
0
// Filter for entropy which uses the constants defined above.
static void calc_entropy_estimate_func(int n, Hermes::vector<scalar*> scalars, scalar* result)
{
  for (int i = 0; i < n; i++)
    result[i] = std::log((calc_pressure(scalars.at(0)[i], scalars.at(1)[i], scalars.at(2)[i], scalars.at(3)[i]) / P_EXT)
    / pow((scalars.at(0)[i] / RHO_EXT), KAPPA));
};
Ejemplo n.º 8
0
      void L2ProjBasedSelector<Scalar>::precalc_ortho_shapes(const double3* gip_points, const int num_gip_points, const Trf* trfs, const int num_noni_trfs, const Hermes::vector<typename OptimumSelector<Scalar>::ShapeInx>& shapes, const int max_shape_inx, typename ProjBasedSelector<Scalar>::TrfShape& svals) 
      {
        //calculate values
        precalc_shapes(gip_points, num_gip_points, trfs, num_noni_trfs, shapes, max_shape_inx, svals);

        //calculate orthonormal basis
        const int num_shapes = (int)shapes.size();
        for(int i = 0; i < num_shapes; i++) 
        {
          const int inx_shape_i = shapes[i].inx;

          //orthogonalize
          for(int j = 0; j < i; j++) 
          {
            const int inx_shape_j = shapes[j].inx;

            //calculate product of non-transformed functions
            double product = 0.0;
            for(int k = 0; k < num_gip_points; k++) 
            {
              double sum = 0.0;
              sum += svals[H2D_TRF_IDENTITY][inx_shape_i][H2D_L2FE_VALUE][k] * svals[H2D_TRF_IDENTITY][inx_shape_j][H2D_L2FE_VALUE][k];
              product += gip_points[k][H2D_GIP2D_W] * sum;
            }

            //for all transformations
            int inx_trf = 0;
            bool done = false;
            while (!done && inx_trf < H2D_TRF_NUM) 
            {
              //for all integration points
              for(int k = 0; k < num_gip_points; k++) 
              {
                svals[inx_trf][inx_shape_i][H2D_L2FE_VALUE][k] -= product * svals[inx_trf][inx_shape_j][H2D_L2FE_VALUE][k];
              }

              //move to the next transformation
              if (inx_trf == H2D_TRF_IDENTITY)
                done = true;
              else 
              {
                inx_trf++;
                if (inx_trf >= num_noni_trfs) //if all transformations were processed, move to the identity transformation
                  inx_trf = H2D_TRF_IDENTITY;
              }
            }
            error_if(!done, "All transformation processed but identity transformation not found."); //identity transformation has to be the last transformation
          }

          //normalize
          //calculate norm
          double norm_squared = 0.0;
          for(int k = 0; k < num_gip_points; k++) 
          {
            double sum = 0.0;
            sum += sqr(svals[H2D_TRF_IDENTITY][inx_shape_i][H2D_L2FE_VALUE][k]);
            norm_squared += gip_points[k][H2D_GIP2D_W] * sum;
          }
          double norm = sqrt(norm_squared);
          assert_msg(finite(1/norm), "Norm (%g) is almost zero.", norm);

          //for all transformations: normalize
          int inx_trf = 0;
          bool done = false;
          while (!done && inx_trf < H2D_TRF_NUM) 
          {
            //for all integration points
            for(int k = 0; k < num_gip_points; k++) 
            {
              svals[inx_trf][inx_shape_i][H2D_L2FE_VALUE][k] /= norm;
            }

            //move to the next transformation
            if (inx_trf == H2D_TRF_IDENTITY)
              done = true;
            else 
            {
              inx_trf++;
              if (inx_trf >= num_noni_trfs) //if all transformations were processed, move to the identity transformation
                inx_trf = H2D_TRF_IDENTITY;
            }
          }
          error_if(!done, "All transformation processed but identity transformation not found."); //identity transformation has to be the last transformation
        }
      }
Ejemplo n.º 9
0
QList<SolutionArray *> SolutionAgros::solveSolutioArray(Hermes::vector<EssentialBCs> bcs)
{
    QTime time;

    // solution agros array
    QList<SolutionArray *> solutionArrayList;

    // load the mesh file
    mesh = readMeshFromFile(tempProblemFileName() + ".mesh");
    refineMesh(mesh, true, true);

    // create an H1 space
    Hermes::vector<Space *> space;
    // create hermes solution array
    Hermes::vector<Solution *> solution;
    // create reference solution
    Hermes::vector<Solution *> solutionReference;

    // projection norms
    Hermes::vector<ProjNormType> projNormType;

    // prepare selector
    Hermes::vector<RefinementSelectors::Selector *> selector;

    // error marker
    bool isError = false;

    RefinementSelectors::Selector *select = NULL;
    switch (adaptivityType)
    {
    case AdaptivityType_H:
        select = new RefinementSelectors::HOnlySelector();
        break;
    case AdaptivityType_P:
        select = new RefinementSelectors::H1ProjBasedSelector(RefinementSelectors::H2D_P_ANISO,
                                                              Util::config()->convExp,
                                                              H2DRS_DEFAULT_ORDER);
        break;
    case AdaptivityType_HP:
        select = new RefinementSelectors::H1ProjBasedSelector(RefinementSelectors::H2D_HP_ANISO,
                                                              Util::config()->convExp,
                                                              H2DRS_DEFAULT_ORDER);
        break;
    }

    for (int i = 0; i < numberOfSolution; i++)
    {
        space.push_back(new H1Space(mesh, &bcs[i], polynomialOrder));

        // set order by element
        for (int j = 0; j < Util::scene()->labels.count(); j++)
            if (Util::scene()->labels[j]->material != Util::scene()->materials[0])
                space.at(i)->set_uniform_order(Util::scene()->labels[j]->polynomialOrder > 0 ? Util::scene()->labels[j]->polynomialOrder : polynomialOrder,
                                               QString::number(j).toStdString());

        // solution agros array
        solution.push_back(new Solution());

        if (adaptivityType != AdaptivityType_None)
        {
            // add norm
            projNormType.push_back(Util::config()->projNormType);
            // add refinement selector
            selector.push_back(select);
            // reference solution
            solutionReference.push_back(new Solution());
        }
    }

    // check for DOFs
    if (Space::get_num_dofs(space) == 0)
    {
        m_progressItemSolve->emitMessage(QObject::tr("DOF is zero"), true);
    }
    else
    {
        for (int i = 0; i < numberOfSolution; i++)
        {
            // transient
            if (analysisType == AnalysisType_Transient)
            {
                // constant initial solution
                solution.at(i)->set_const(mesh, initialCondition);
                solutionArrayList.append(solutionArray(solution.at(i)));
            }

            // nonlinear
            if ((linearityType != LinearityType_Linear) && (analysisType != AnalysisType_Transient))
            {
                solution.at(i)->set_const(mesh, 0.0);
            }
        }

        actualTime = 0.0;

        // update time function
        Util::scene()->problemInfo()->hermes()->updateTimeFunctions(actualTime);

        m_wf->set_current_time(actualTime);
        m_wf->solution = solution;
        m_wf->delete_all();
        m_wf->registerForms();

        // emit message
        if (adaptivityType != AdaptivityType_None)
            m_progressItemSolve->emitMessage(QObject::tr("Adaptivity type: %1").arg(adaptivityTypeString(adaptivityType)), false);

        double error = 0.0;

        // solution
        int maxAdaptivitySteps = (adaptivityType == AdaptivityType_None) ? 1 : adaptivitySteps;
        int actualAdaptivitySteps = -1;
        for (int i = 0; i<maxAdaptivitySteps; i++)
        {
            // set up the solver, matrix, and rhs according to the solver selection.
            SparseMatrix *matrix = create_matrix(matrixSolver);
            Vector *rhs = create_vector(matrixSolver);
            Solver *solver = create_linear_solver(matrixSolver, matrix, rhs);

            if (adaptivityType == AdaptivityType_None)
            {
                if (analysisType != AnalysisType_Transient)
                    solve(space, solution, solver, matrix, rhs);
            }
            else
            {
                // construct globally refined reference mesh and setup reference space.
                Hermes::vector<Space *> spaceReference = *Space::construct_refined_spaces(space);

                // assemble reference problem.
                solve(spaceReference, solutionReference, solver, matrix, rhs);

                if (!isError)
                {
                    // project the fine mesh solution onto the coarse mesh.
                    OGProjection::project_global(space, solutionReference, solution, matrixSolver);

                    // Calculate element errors and total error estimate.
                    Adapt adaptivity(space, projNormType);

                    // Calculate error estimate for each solution component and the total error estimate.
                    error = adaptivity.calc_err_est(solution,
                                                    solutionReference) * 100;

                    // emit signal
                    m_progressItemSolve->emitMessage(QObject::tr("Adaptivity rel. error (step: %2/%3, DOFs: %4/%5): %1%").
                                                     arg(error, 0, 'f', 3).
                                                     arg(i + 1).
                                                     arg(maxAdaptivitySteps).
                                                     arg(Space::get_num_dofs(space)).
                                                     arg(Space::get_num_dofs(spaceReference)), false, 1);
                    // add error to the list
                    m_progressItemSolve->addAdaptivityError(error, Space::get_num_dofs(space));

                    if (error < adaptivityTolerance || Space::get_num_dofs(space) >= adaptivityMaxDOFs)
                    {
                        break;
                    }
                    if (i != maxAdaptivitySteps-1) adaptivity.adapt(selector,
                                                                    Util::config()->threshold,
                                                                    Util::config()->strategy,
                                                                    Util::config()->meshRegularity);
                    actualAdaptivitySteps = i+1;
                }

                if (m_progressItemSolve->isCanceled())
                {
                    isError = true;
                    break;
                }

                // delete reference space
                for (int i = 0; i < spaceReference.size(); i++)
                {
                    delete spaceReference.at(i)->get_mesh();
                    delete spaceReference.at(i);
                }
                spaceReference.clear();
            }

            // clean up.
            delete solver;
            delete matrix;
            delete rhs;
        }

        // delete reference solution
        for (int i = 0; i < solutionReference.size(); i++)
            delete solutionReference.at(i);
        solutionReference.clear();

        // delete selector
        if (select) delete select;
        selector.clear();

        // timesteps
        if (!isError)
        {
            SparseMatrix *matrix = NULL;
            Vector *rhs = NULL;
            Solver *solver = NULL;

            // allocate dp for transient solution
            DiscreteProblem *dpTran = NULL;
            if (analysisType == AnalysisType_Transient)
            {
                // set up the solver, matrix, and rhs according to the solver selection.
                matrix = create_matrix(matrixSolver);
                rhs = create_vector(matrixSolver);
                solver = create_linear_solver(matrixSolver, matrix, rhs);
                // solver->set_factorization_scheme(HERMES_REUSE_FACTORIZATION_COMPLETELY);

                dpTran = new DiscreteProblem(m_wf, space, true);
            }

            int timesteps = (analysisType == AnalysisType_Transient) ? floor(timeTotal/timeStep) : 1;
            for (int n = 0; n<timesteps; n++)
            {
                // set actual time
                actualTime = (n+1)*timeStep;

                // update essential bc values
                Space::update_essential_bc_values(space, actualTime);
                // update timedep values
                Util::scene()->problemInfo()->hermes()->updateTimeFunctions(actualTime);

                m_wf->set_current_time(actualTime);
                m_wf->delete_all();
                m_wf->registerForms();

                // transient
                if ((timesteps > 1) && (linearityType == LinearityType_Linear))
                    isError = !solveLinear(dpTran, space, solution,
                                           solver, matrix, rhs);
                if ((timesteps > 1) && (linearityType != LinearityType_Linear))
                    isError = !solve(space, solution,
                                     solver, matrix, rhs);

                // output
                for (int i = 0; i < numberOfSolution; i++)
                {
                    solutionArrayList.append(solutionArray(solution.at(i), space.at(i), error, actualAdaptivitySteps, (n+1)*timeStep));
                }

                if (analysisType == AnalysisType_Transient)
                    m_progressItemSolve->emitMessage(QObject::tr("Transient time step (%1/%2): %3 s").
                                                     arg(n+1).
                                                     arg(timesteps).
                                                     arg(actualTime, 0, 'e', 2), false, n+2);
                if (m_progressItemSolve->isCanceled())
                {
                    isError = true;
                    break;
                }
            }

            // clean up
            if (solver) delete solver;
            if (matrix) delete matrix;
            if (rhs) delete rhs;

            if (dpTran) delete dpTran;
        }
    }
    // delete mesh
    delete mesh;

    // delete space
    for (unsigned int i = 0; i < space.size(); i++)
    {
        // delete space.at(i)->get_mesh();
        delete space.at(i);
    }
    space.clear();

    // delete last solution
    for (unsigned int i = 0; i < solution.size(); i++)
        delete solution.at(i);
    solution.clear();

    if (isError)
    {
        for (int i = 0; i < solutionArrayList.count(); i++)
            delete solutionArrayList.at(i);
        solutionArrayList.clear();
    }
    return solutionArrayList;
}
Ejemplo n.º 10
0
bool rk_time_step(double current_time, double time_step, ButcherTable* const bt,
                  Solution* sln_time_prev, Solution* sln_time_new, Solution* error_fn, 
                  DiscreteProblem* dp, MatrixSolverType matrix_solver,
                  bool verbose, bool is_linear, double newton_tol, int newton_max_iter,
                  double newton_damping_coeff, double newton_max_allowed_residual_norm)
{
  // Check for not implemented features.
  if (matrix_solver != SOLVER_UMFPACK)
    error("Sorry, rk_time_step() still only works with UMFpack.");
  if (dp->get_weak_formulation()->get_neq() > 1)
    error("Sorry, rk_time_step() does not work with systems yet.");

  // Get number of stages from the Butcher's table.
  int num_stages = bt->get_size();

  // Check whether the user provided a nonzero B2-row if he wants temporal error estimation.
  if(error_fn != NULL) if (bt->is_embedded() == false) {
    error("rk_time_step(): R-K method must be embedded if temporal error estimate is requested.");
  }

  // Matrix for the time derivative part of the equation (left-hand side).
  UMFPackMatrix* matrix_left = new UMFPackMatrix();

  // Matrix and vector for the rest (right-hand side).
  UMFPackMatrix* matrix_right = new UMFPackMatrix();
  UMFPackVector* vector_right = new UMFPackVector();

  // Create matrix solver.
  Solver* solver = create_linear_solver(matrix_solver, matrix_right, vector_right);

  // Get space, mesh, and ndof for the stage solutions in the R-K method (K_i vectors).
  Space* K_space = dp->get_space(0);
  Mesh* K_mesh = K_space->get_mesh();
  int ndof = K_space->get_num_dofs();

  // Create spaces for stage solutions K_i. This is necessary
  // to define a num_stages x num_stages block weak formulation.
  Hermes::vector<Space*> stage_spaces;
  stage_spaces.push_back(K_space);
  for (int i = 1; i < num_stages; i++) {
    stage_spaces.push_back(K_space->dup(K_mesh));
  }
  Space::assign_dofs(stage_spaces);

  // Create a multistage weak formulation.
  WeakForm stage_wf_left;                   // For the matrix M (size ndof times ndof).
  WeakForm stage_wf_right(num_stages);      // For the rest of equation (written on the right),
                                            // size num_stages*ndof times num_stages*ndof.

  Solution** stage_time_sol = new Solution*[num_stages];
                                            // This array will be filled by artificially created
                                            // solutions to represent stage times.
  create_stage_wf(current_time, time_step, bt, dp, &stage_wf_left, &stage_wf_right, stage_time_sol); 

  // Initialize discrete problems for the assembling of the
  // matrix M and the stage Jacobian matrix and residual.
  DiscreteProblem stage_dp_left(&stage_wf_left, K_space);
  DiscreteProblem stage_dp_right(&stage_wf_right, stage_spaces);

  // Vector K_vector of length num_stages * ndof. will represent
  // the 'K_i' vectors in the usual R-K notation.
  scalar* K_vector = new scalar[num_stages*ndof];
  memset(K_vector, 0, num_stages * ndof * sizeof(scalar));

  // Vector u_ext_vec will represent h \sum_{j=1}^s a_{ij} K_i.
  scalar* u_ext_vec = new scalar[num_stages*ndof];

  // Vector for the left part of the residual.
  scalar* vector_left = new scalar[num_stages*ndof];

  // Prepare residuals of stage solutions.
  Hermes::vector<Solution*> residuals;
  Hermes::vector<bool> add_dir_lift;
  for (int i = 0; i < num_stages; i++) {
    residuals.push_back(new Solution(K_mesh));
    add_dir_lift.push_back(false);
  }

  // Assemble the block-diagonal mass matrix M of size ndof times ndof.
  // The corresponding part of the global residual vector is obtained 
  // just by multiplication.
  stage_dp_left.assemble(matrix_left);

  // The Newton's loop.
  double residual_norm;
  int it = 1;
  while (true)
  {
    // Prepare vector h\sum_{j=1}^s a_{ij} K_j.
    for (int i = 0; i < num_stages; i++) {                // block row
      for (int idx = 0; idx < ndof; idx++) {
        scalar increment = 0;
        for (int j = 0; j < num_stages; j++) {
          increment += bt->get_A(i, j) * K_vector[j*ndof + idx];
        }
        u_ext_vec[i*ndof + idx] = time_step * increment;
      }
    }

    multiply_as_diagonal_block_matrix(matrix_left, num_stages, K_vector, vector_left);

    // Assemble the block Jacobian matrix of the stationary residual F
    // Diagonal blocks are created even if empty, so that matrix_left
    // can be added later.
    bool rhs_only = false;
    bool force_diagonal_blocks = true;
    stage_dp_right.assemble(u_ext_vec, matrix_right, vector_right,
                            rhs_only, force_diagonal_blocks, false); // false = do not add Dirichlet lift while
                                                                     // converting u_ext_vec into Solutions.

    matrix_right->add_to_diagonal_blocks(num_stages, matrix_left);

    vector_right->add_vector(vector_left);

    // Multiply the residual vector with -1 since the matrix
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    vector_right->change_sign();

    // Measure the residual norm.
    if (HERMES_RESIDUAL_AS_VECTOR_RK) {
      // Calculate the l2-norm of residual vector.
      residual_norm = get_l2_norm(vector_right);
    }
    else {
      // Translate residual vector into residual functions.
      Solution::vector_to_solutions(vector_right, stage_dp_right.get_spaces(),
                                    residuals, add_dir_lift);
      residual_norm = calc_norms(residuals);
    }

    // Info for the user.
    if (verbose) info("---- Newton iter %d, ndof %d, residual norm %g",
                      it, ndof, residual_norm);

    // If maximum allowed residual norm is exceeded, fail.
    if (residual_norm > newton_max_allowed_residual_norm) {
      if (verbose) {
        info("Current residual norm: %g", residual_norm);
        info("Maximum allowed residual norm: %g", newton_max_allowed_residual_norm);
        info("Newton solve not successful, returning false.");
      }
      return false;
    }

    // If residual norm is within tolerance, or the maximum number
    // of iteration has been reached, or the problem is linear, then quit.
    if ((residual_norm < newton_tol || it > newton_max_iter) && it > 1) break;

    // Solve the linear system.
    if(!solver->solve()) error ("Matrix solver failed.\n");

    // Add \deltaK^{n+1} to K^n.
    for (int i = 0; i < num_stages*ndof; i++) {
      K_vector[i] += newton_damping_coeff * solver->get_solution()[i];
    }

    // If the problem is linear, quit.
    if (is_linear) {
      if (verbose) {
        info("Terminating Newton's loop as problem is linear.");
      }
      break;
    }

    // Increase iteration counter.
    it++;
  }

  // If max number of iterations was exceeded, fail.
  if (it >= newton_max_iter) {
    if (verbose) info("Maximum allowed number of Newton iterations exceeded, returning false.");

    return false;
  }

  // Project previous time level solution on the stage space,
  // to be able to add them together. The result of the projection 
  // will be stored in the vector coeff_vec.
  // FIXME - this projection is slow and it is not needed when the 
  //         spaces are the same (if spatial adaptivity does not take place). 
  scalar* coeff_vec = new scalar[ndof];
  OGProjection::project_global(K_space, sln_time_prev, coeff_vec, matrix_solver);

  // Calculate new time level solution in the stage space (u_{n+1} = u_n + h \sum_{j=1}^s b_j k_j).
  for (int i = 0; i < ndof; i++) {
    for (int j = 0; j < num_stages; j++) {
      coeff_vec[i] += time_step * bt->get_B(j) * K_vector[j*ndof + i];
    }
  }
  Solution::vector_to_solution(coeff_vec, K_space, sln_time_new);

  // If error_fn is not NULL, use the B2-row in the Butcher's
  // table to calculate the temporal error estimate.
  if (error_fn != NULL) {
    for (int i = 0; i < ndof; i++) {
      coeff_vec[i] = 0;
      for (int j = 0; j < num_stages; j++) {
        coeff_vec[i] += (bt->get_B(j) - bt->get_B2(j)) * K_vector[j*ndof + i];
      }
      coeff_vec[i] *= time_step;
    }
    Solution::vector_to_solution(coeff_vec, K_space, error_fn, false);
  }

  // Clean up.
  delete matrix_left;
  delete matrix_right;
  delete vector_right;
  delete solver;

  // Delete stage spaces, but not the first (original) one.
  for (int i = 1; i < num_stages; i++) delete stage_spaces[i];

  // Delete all residuals.
  for (int i = 0; i < num_stages; i++) delete residuals[i];

  // Delete artificial Solutions with stage times.
  for (int i = 0; i < num_stages; i++)
    delete stage_time_sol[i];
  delete [] stage_time_sol;

  // Clean up.
  delete [] K_vector;
  delete [] u_ext_vec;
  delete [] coeff_vec;
  delete [] vector_left;

  return true;
}
Ejemplo n.º 11
0
bool rk_time_step(double current_time, double time_step, ButcherTable* const bt,
                  scalar* coeff_vec, scalar* err_vec, DiscreteProblem* dp, MatrixSolverType matrix_solver,
                  bool verbose, bool is_linear, double newton_tol, int newton_max_iter,
                  double newton_damping_coeff, double newton_max_allowed_residual_norm)
{
  // Check for not implemented features.
  if (matrix_solver != SOLVER_UMFPACK)
    error("Sorry, rk_time_step() still only works with UMFpack.");
  if (dp->get_weak_formulation()->get_neq() > 1)
    error("Sorry, rk_time_step() does not work with systems yet.");

  // Get number of stages from the Butcher's table.
  int num_stages = bt->get_size();

  // Check whether the user provided a second B-row if he wants 
  // err_vec.
  if(err_vec != NULL) {
    double b2_coeff_sum = 0;
    for (int i=0; i < num_stages; i++) b2_coeff_sum += fabs(bt->get_B2(i)); 
    if (b2_coeff_sum < 1e-10) 
      error("err_vec != NULL but the B2 row in the Butcher's table is zero in rk_time_step().");
  }

  // Matrix for the time derivative part of the equation (left-hand side).
  UMFPackMatrix* matrix_left = new UMFPackMatrix();

  // Matrix and vector for the rest (right-hand side).
  UMFPackMatrix* matrix_right = new UMFPackMatrix();
  UMFPackVector* vector_right = new UMFPackVector();

  // Create matrix solver.
  Solver* solver = create_linear_solver(matrix_solver, matrix_right, vector_right);

  // Get original space, mesh, and ndof.
  dp->get_space(0);
  Mesh* mesh = dp->get_space(0)->get_mesh();
  int ndof = dp->get_space(0)->get_num_dofs();

  // Create spaces for stage solutions. This is necessary
  // to define a num_stages x num_stages block weak formulation.
  Hermes::vector<Space*> stage_spaces;
  stage_spaces.push_back(dp->get_space(0));
  for (int i = 1; i < num_stages; i++) {
    stage_spaces.push_back(dp->get_space(0)->dup(mesh));
  }
  Space::assign_dofs(stage_spaces);

  // Create a multistage weak formulation.
  WeakForm stage_wf_left;                   // For the matrix M (size ndof times ndof).
  WeakForm stage_wf_right(num_stages);      // For the rest of equation (written on the right),
                                            // size num_stages*ndof times num_stages*ndof.
  create_stage_wf(current_time, time_step, bt, dp, &stage_wf_left, &stage_wf_right); 

  // Initialize discrete problems for the assembling of the
  // matrix M and the stage Jacobian matrix and residual.
  DiscreteProblem stage_dp_left(&stage_wf_left, dp->get_space(0));
  DiscreteProblem stage_dp_right(&stage_wf_right, stage_spaces);

  // Vector K_vector of length num_stages * ndof. will represent
  // the 'k_i' vectors in the usual R-K notation.
  scalar* K_vector = new scalar[num_stages*ndof];
  memset(K_vector, 0, num_stages * ndof * sizeof(scalar));

  // Vector u_prev_vec will represent y_n + h \sum_{j=1}^s a_{ij}k_i
  // in the usual R-K notation.
  scalar* u_prev_vec = new scalar[num_stages*ndof];

  // Vector for the left part of the residual.
  scalar* vector_left = new scalar[num_stages*ndof];

  // Prepare residuals of stage solutions.
  Hermes::vector<Solution*> residuals;
  Hermes::vector<bool> add_dir_lift;
  for (int i = 0; i < num_stages; i++) {
    residuals.push_back(new Solution(mesh));
    add_dir_lift.push_back(false);
  }

  // Assemble the block-diagonal mass matrix M of size ndof times ndof.
  // The corresponding part of the global residual vector is obtained 
  // just by multiplication.
  stage_dp_left.assemble(matrix_left);

  // The Newton's loop.
  double residual_norm;
  int it = 1;
  while (true)
  {
    // Prepare vector Y_n + h\sum_{j=1}^s a_{ij} K_j.
    for (int i = 0; i < num_stages; i++) {                // block row
      for (int idx = 0; idx < ndof; idx++) {
        scalar increment = 0;
        for (int j = 0; j < num_stages; j++) {
          increment += bt->get_A(i, j) * K_vector[j*ndof + idx];
        }
        u_prev_vec[i*ndof + idx] = coeff_vec[idx] + time_step * increment;
      }
    }

    multiply_as_diagonal_block_matrix(matrix_left, num_stages, 
                                      K_vector, vector_left);

    // Assemble the block Jacobian matrix of the stationary residual F
    // Diagonal blocks are created even if empty, so that matrix_left
    // can be added later.
    bool rhs_only = false;
    bool force_diagonal_blocks = true;
    stage_dp_right.assemble(u_prev_vec, matrix_right, vector_right,
                            rhs_only, force_diagonal_blocks);

    matrix_right->add_to_diagonal_blocks(num_stages, matrix_left);

    vector_right->add_vector(vector_left);

    // Multiply the residual vector with -1 since the matrix
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    vector_right->change_sign();

    // Measure the residual norm.
    if (HERMES_RESIDUAL_AS_VECTOR_RK) {
      // Calculate the l2-norm of residual vector.
      residual_norm = get_l2_norm(vector_right);
    }
    else {
      // Translate residual vector into residual functions.
      Solution::vector_to_solutions(vector_right, stage_dp_right.get_spaces(),
                                    residuals, add_dir_lift);
      residual_norm = calc_norms(residuals);
    }

    // Info for the user.
    if (verbose) info("---- Newton iter %d, ndof %d, residual norm %g",
                      it, ndof, residual_norm);

    // If maximum allowed residual norm is exceeded, fail.
    if (residual_norm > newton_max_allowed_residual_norm) {
      if (verbose) {
        info("Current residual norm: %g", residual_norm);
        info("Maximum allowed residual norm: %g", newton_max_allowed_residual_norm);
        info("Newton solve not successful, returning false.");
      }
      return false;
    }

    // If residual norm is within tolerance, or the maximum number
    // of iteration has been reached, or the problem is linear, then quit.
    if ((residual_norm < newton_tol || it > newton_max_iter) && it > 1) break;

    // Solve the linear system.
    if(!solver->solve()) error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < num_stages*ndof; i++) {
      K_vector[i] += newton_damping_coeff * solver->get_solution()[i];
    }

    // If the problem is linear, quit.
    if (is_linear) {
      if (verbose) {
        info("Terminating Newton's loop as problem is linear.");
      }
      break;
    }

    // Increase iteration counter.
    it++;
  }

  // If max number of iterations was exceeded, fail.
  if (it >= newton_max_iter) {
    if (verbose) info("Maximum allowed number of Newton iterations exceeded, returning false.");
    return false;
  }

  // Calculate the vector Y^{n+1} = Y^n + h \sum_{j=1}^s b_j k_j.
  for (int i = 0; i < ndof; i++) {
    for (int j = 0; j < num_stages; j++) {
      coeff_vec[i] += time_step * bt->get_B(j) * K_vector[j*ndof + i];
    }
  }

  // If err_vec is not NULL, use the second B-row in the Butcher's
  // table to calculate the second approximation Y_{n+1}. Then 
  // subtract the original one from it, and return this as an
  // error vector err_vec.
  if (err_vec != NULL) {
    for (int i = 0; i < ndof; i++) {
      err_vec[i] = 0;
      for (int j = 0; j < num_stages; j++) {
        err_vec[i] += (bt->get_B(j) - bt->get_B2(j)) * K_vector[j*ndof + i];
      }
      err_vec[i] *= time_step;
    }
  }

  // Clean up.
  delete matrix_left;
  delete matrix_right;
  delete vector_right;
  delete solver;

  // Delete stage spaces, but not the first (original) one.
  for (int i = 1; i < num_stages; i++) delete stage_spaces[i];

  // Delete all residuals.
  for (int i = 0; i < num_stages; i++) delete residuals[i];

  // TODO: Delete stage_wf, in particular its external solutions
  // stage_time_sol[i], i = 0, 1, ..., num_stages-1.

  // Delete stage_vec and u_prev_vec.
  delete [] K_vector;
  delete [] u_prev_vec;

  // debug
  delete [] vector_left;

  return true;
}
Ejemplo n.º 12
0
int main(int argc, char* argv[])
{
#ifdef THREAD_TESTING
  HermesCommonApi.set_integral_param_value(numThreads, 8);
#endif
  // Load the mesh.
  MeshSharedPtr mesh(new Mesh);
  Hermes::vector<MeshSharedPtr> meshes;
  meshes.push_back(mesh);
  MeshReaderH2DXML mloader;
  mloader.load("agrosMesh.msh", meshes);

  // Perform initial mesh refinements.
  for (int i = 0; i < INIT_REF_NUM; i++)
    mesh->refine_all_elements();

  // Initialize boundary conditions.
  DefaultEssentialBCConst<complex> bc_essential("4", P_SOURCE);
  EssentialBCs<complex> bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  SpaceSharedPtr<complex> space(new H1Space<complex> (mesh, &bcs, P_INIT));
  adaptivity.set_space(space);

  // Initialize the weak formulation.
  CustomWeakFormAcoustics wf("0", RHO, SOUND_SPEED, OMEGA);

  // Initialize coarse and reference mesh solution.
  MeshFunctionSharedPtr<complex>  sln(new Solution<complex>), ref_sln(new Solution<complex>);

  // Initialize refinement selector.
  H1ProjBasedSelector<complex> selector(CAND_LIST);

  Hermes::Hermes2D::NewtonSolver<complex> newton;
  newton.set_weak_formulation(&wf);

  // 2 Adaptivity steps:
  int as = 1;
  bool done = false;
  do
  {
    // Construct globally refined reference mesh and setup reference space.
    Mesh::ReferenceMeshCreator refMeshCreator(mesh);
    MeshSharedPtr ref_mesh = refMeshCreator.create_ref_mesh();

    Space<complex>::ReferenceSpaceCreator refSpaceCreator(space, ref_mesh);
    SpaceSharedPtr<complex> ref_space = refSpaceCreator.create_ref_space();

    // Perform Newton's iteration.
    try
    {
      newton.set_space(ref_space);
      newton.solve();
    }
    catch(Hermes::Exceptions::Exception& e)
    {
      e.print_msg();
      throw Hermes::Exceptions::Exception("Newton's iteration failed.");
    };

    // Translate the resulting coefficient vector into the Solution<complex> sln->
    Hermes::Hermes2D::Solution<complex>::vector_to_solution(newton.get_sln_vector(), ref_space, ref_sln);

    // Project the fine mesh solution onto the coarse mesh.
    OGProjection<complex> ogProjection; ogProjection.project_global(space, ref_sln, sln);
    
    // Calculate element errors and total error estimate.
    errorCalculator.calculate_errors(sln, ref_sln);
    adaptivity.adapt(&selector);
  }
  while (as++ < 2);
  return 0;
}
Ejemplo n.º 13
0
int main() 
{
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Create space, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ, NEQ);

  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, jacobian_0_0);
  wf.add_matrix_form(0, 1, jacobian_0_1);
  wf.add_matrix_form(1, 0, jacobian_1_0);
  wf.add_matrix_form(1, 1, jacobian_1_1);
  wf.add_vector_form(0, residual_0);
  wf.add_vector_form(1, residual_1);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);
  
  // Newton's loop.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
  get_coeff_vector(space, coeff_vec);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  int it = 1;
  bool success = false;
  while (1) 
  {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp->assemble(coeff_vec, matrix, rhs);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

    // Solve the linear system.
    if(!(success = solver->solve()))
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    set_coeff_vector(coeff_vec, space);

    it++;
  }
  info("Total running time: %g s", cpu_time.accumulated());

  // Test variable.
  info("ndof = %d.", Space::get_num_dofs(space));

  // Cleanup.
  for(unsigned i = 0; i < DIR_BC_LEFT.size(); i++)
      delete DIR_BC_LEFT[i];
  DIR_BC_LEFT.clear();

  for(unsigned i = 0; i < DIR_BC_RIGHT.size(); i++)
      delete DIR_BC_RIGHT[i];
  DIR_BC_RIGHT.clear();

  delete matrix;
  delete rhs;
  delete solver;
  delete[] coeff_vec;
  delete dp;
  delete space;

  if (success)
  {
    info("Success!");
    return ERROR_SUCCESS;
  }
  else
  {
    info("Failure!");
    return ERROR_FAILURE;
  }
}
Ejemplo n.º 14
0
    bool NewtonSolver<Scalar>::solve_keep_jacobian(Scalar* coeff_vec, double newton_tol, int newton_max_iter, bool residual_as_function)
    {
      // Obtain the number of degrees of freedom.
      int ndof = this->dp->get_num_dofs();

      // The Newton's loop.
      double residual_norm;
      int it = 1;
      while (1)
      {
        // Assemble the residual vector.
        this->dp->assemble(coeff_vec, residual);

        // Measure the residual norm.
        if (residual_as_function)
        {
          // Prepare solutions for measuring residual norm.
          Hermes::vector<Solution<Scalar>*> solutions;
          Hermes::vector<bool> dir_lift_false;
          for (unsigned int i = 0; i < static_cast<DiscreteProblem<Scalar>*>(this->dp)->get_spaces().size(); i++) {
            solutions.push_back(new Solution<Scalar>());
            dir_lift_false.push_back(false);
          }
          Solution<Scalar>::vector_to_solutions(residual, static_cast<DiscreteProblem<Scalar>*>(this->dp)->get_spaces(), solutions, dir_lift_false);

          // Calculate the norm.
          residual_norm = Global<Scalar>::calc_norms(solutions);

          // Clean up.
          for (unsigned int i = 0; i < static_cast<DiscreteProblem<Scalar>*>(this->dp)->get_spaces().size(); i++)
            delete solutions[i];
        }
        else 
        {
          // Calculate the l2-norm of residual vector, this is the traditional way.
          residual_norm = Global<Scalar>::get_l2_norm(residual);
        }

        // Info for the user.
        if(it == 1) 
        {
          if(this->verbose_output)
            info("---- Newton initial residual norm: %g", residual_norm);
        }
        else 
          if(this->verbose_output)
            info("---- Newton iter %d, residual norm: %g", it - 1, residual_norm);

        // If maximum allowed residual norm is exceeded, fail.
        if (residual_norm > max_allowed_residual_norm)
        {
          if (this->verbose_output)
          {
            info("Current residual norm: %g", residual_norm);
            info("Maximum allowed residual norm: %g", max_allowed_residual_norm);
            info("Newton solve not successful, returning false.");
          }
          break;
        }

        // If residual norm is within tolerance, return 'true'.
        // This is the only correct way of ending.
        if (residual_norm < newton_tol && it > 1) {
          // We want to return the solution in a different structure.
          this->sln_vector = new Scalar[ndof];
          for (int i = 0; i < ndof; i++)
            this->sln_vector[i] = coeff_vec[i];

          return true;
        }

        // Assemble and keep the jacobian if this has not been done before.
        // Also declare that LU-factorization in case of a direct solver will be done only once and reused afterwards.
        if(kept_jacobian == NULL) {
          kept_jacobian = create_matrix<Scalar>(this->matrix_solver_type);

          // Give the matrix solver the correct Jacobian. NOTE: It would be cleaner if the whole decision whether to keep 
          // Jacobian or not was made in the constructor.
          //
          // Delete the matrix solver created in the constructor.
          delete linear_solver; 
          // Create new matrix solver with correct matrix.
          linear_solver = create_linear_solver<Scalar>(this->matrix_solver_type, kept_jacobian, residual);
          
          this->dp->assemble(coeff_vec, kept_jacobian);
          linear_solver->set_factorization_scheme(HERMES_REUSE_FACTORIZATION_COMPLETELY);
        }

        // Multiply the residual vector with -1 since the matrix
        // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
        residual->change_sign();

        // Solve the linear system.
        if(!linear_solver->solve()) {
          if (this->verbose_output) 
            info ("Matrix<Scalar> solver failed. Returning false.\n");
          break;
        }

        // Add \deltaY^{n+1} to Y^n.
        for (int i = 0; i < ndof; i++)
          coeff_vec[i] += linear_solver->get_sln_vector()[i];

        // Increase the number of iterations and test if we are still under the limit.
        if (it++ >= newton_max_iter)
        {
          if (this->verbose_output) 
            info("Maximum allowed number of Newton iterations exceeded, returning false.");
          break;
        }
      }

      // Return false.
      // All 'bad' situations end here.
      return false;
    }
Ejemplo n.º 15
0
 void NeighborSearch<Scalar>::Transformations::copy_from(const Hermes::vector<unsigned int>& t)
 {
   num_levels = std::min<unsigned int>(t.size(), max_level);
   std::copy( t.begin(), t.begin() + num_levels, transf);
 }
Ejemplo n.º 16
0
    bool NewtonSolver<Scalar>::solve(Scalar* coeff_vec, double newton_tol, int newton_max_iter, bool residual_as_function)
    {      
      // Delete the old solution vector, if there is any.
      if(this->sln_vector != NULL)
      {
        delete [] this->sln_vector;
        this->sln_vector = NULL;
      }

      // Obtain the number of degrees of freedom.
      int ndof = this->dp->get_num_dofs();

      // The Newton's loop.
      double residual_norm;
      int it = 1;
      
      bool delete_timer = false;
      if (this->timer == NULL)
      {
        this->timer = new TimePeriod;
        delete_timer = true;
      }
            
      this->timer->tick();
      setup_time += this->timer->last();
      
      while (1)
      {        
        // Assemble just the residual vector.
        if(it > 1)
          static_cast<DiscreteProblem<Scalar>*>(this->dp)->temp_disable_adaptivity_cache();
        this->dp->assemble(coeff_vec, residual);
        
        this->timer->tick();
        assemble_time += this->timer->last();

        // Measure the residual norm.
        if (residual_as_function)
        {
          // Prepare solutions for measuring residual norm.
          Hermes::vector<Solution<Scalar>*> solutions;
          Hermes::vector<bool> dir_lift_false;
          for (unsigned int i = 0; i < static_cast<DiscreteProblem<Scalar>*>(this->dp)->get_spaces().size(); i++) {
            solutions.push_back(new Solution<Scalar>());
            dir_lift_false.push_back(false);
          }
          Solution<Scalar>::vector_to_solutions(residual, static_cast<DiscreteProblem<Scalar>*>(this->dp)->get_spaces(), solutions, dir_lift_false);

          // Calculate the norm.
          residual_norm = Global<Scalar>::calc_norms(solutions);

          // Clean up.
          for (unsigned int i = 0; i < static_cast<DiscreteProblem<Scalar>*>(this->dp)->get_spaces().size(); i++)
            delete solutions[i];
        }
        else 
        {
          // Calculate the l2-norm of residual vector, this is the traditional way.
          residual_norm = Global<Scalar>::get_l2_norm(residual);
        }

        // Info for the user.
        if(it == 1) {
          if(this->verbose_output)
            info("---- Newton initial residual norm: %g", residual_norm);
        }
        else 
          if(this->verbose_output)
            info("---- Newton iter %d, residual norm: %g", it - 1, residual_norm);

        // If maximum allowed residual norm is exceeded, fail.
        if (residual_norm > max_allowed_residual_norm)
        {
          if (this->verbose_output)
          {
            info("Current residual norm: %g", residual_norm);
            info("Maximum allowed residual norm: %g", max_allowed_residual_norm);
            info("Newton solve not successful, returning false.");
          }
          break;
        }

        // If residual norm is within tolerance, return 'true'.
        // This is the only correct way of ending.
        if (residual_norm < newton_tol && it > 1) {
          // We want to return the solution in a different structure.
          this->sln_vector = new Scalar[ndof];
          for (int i = 0; i < ndof; i++)
            this->sln_vector[i] = coeff_vec[i];

          this->timer->tick();
          solve_time += this->timer->last();
          
          if (delete_timer)
          {
            delete this->timer;
            this->timer = NULL;
          }
          
          static_cast<DiscreteProblem<Scalar>*>(this->dp)->temp_enable_adaptivity_cache();

          return true;
        }
        
        this->timer->tick();
        solve_time += this->timer->last();

        // Assemble just the jacobian.
        this->dp->assemble(coeff_vec, jacobian);
        this->timer->tick();
        assemble_time += this->timer->last();

        // Multiply the residual vector with -1 since the matrix
        // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
        residual->change_sign();
        
        // Solve the linear system.
        if(!linear_solver->solve()) {
          if (this->verbose_output) 
            info ("Matrix<Scalar> solver failed. Returning false.\n");
          break;
        }
        
        // Add \deltaY^{n+1} to Y^n.
        for (int i = 0; i < ndof; i++)
          coeff_vec[i] += linear_solver->get_sln_vector()[i];

        // Increase the number of iterations and test if we are still under the limit.
        if (it++ >= newton_max_iter)
        {
          if (this->verbose_output) 
            info("Maximum allowed number of Newton iterations exceeded, returning false.");
          break;
        }
        
        this->timer->tick();
        solve_time += this->timer->last();
      }
      // Return false.
      // All 'bad' situations end here. 
      
      if (delete_timer)
      {
        delete this->timer;
        this->timer = NULL;
      }
      
      return false;
    }
Ejemplo n.º 17
0
 void NeighborSearch<Scalar>::Transformations::apply_on(const Hermes::vector<Transformable*>& tr) const
 {
   for(Hermes::vector<Transformable*>::const_iterator it = tr.begin(); it != tr.end(); ++it)
     for(unsigned int i = 0; i < num_levels; i++)
       (*it)->push_transform(transf[i]);
 }
Ejemplo n.º 18
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh_whole_domain, mesh_without_hole;
  Hermes::vector<Mesh*> meshes (&mesh_whole_domain, &mesh_without_hole);
  MeshReaderH2DXML mloader;
  mloader.load("subdomains.xml", meshes);

  // Perform initial mesh refinements (optional).
  for(int i = 0; i < INIT_REF_NUM; i++)
    for(unsigned int meshes_i = 0; meshes_i < meshes.size(); meshes_i++)
      meshes[meshes_i]->refine_all_elements();

  // Perform refinement towards the hole.
  for(unsigned int meshes_i = 0; meshes_i < meshes.size(); meshes_i++)
    meshes[meshes_i]->refine_towards_boundary("Inner", INIT_REF_NUM_HOLE);

  // Initialize boundary conditions.
  // Flow.
  EssentialBCNonConst bc_inlet_vel_x("Inlet", VEL_INLET, H, STARTUP_TIME);
  DefaultEssentialBCConst<double> bc_other_vel_x(Hermes::vector<std::string>("Outer", "Inner"), 0.0);
  EssentialBCs<double> bcs_vel_x(Hermes::vector<EssentialBoundaryCondition<double> *>(&bc_inlet_vel_x, &bc_other_vel_x));
  DefaultEssentialBCConst<double> bc_vel_y(Hermes::vector<std::string>("Inlet", "Outer", "Inner"), 0.0);
  EssentialBCs<double> bcs_vel_y(&bc_vel_y);
  EssentialBCs<double> bcs_pressure;

  // Temperature.
  DefaultEssentialBCConst<double> bc_temperature(Hermes::vector<std::string>("Inlet", "Outer"), 20.0);
  EssentialBCs<double> bcs_temperature(&bc_temperature);

  // Spaces for velocity components and pressure.
  H1Space<double> xvel_space(&mesh_without_hole, &bcs_vel_x, P_INIT_VEL);
  H1Space<double> yvel_space(&mesh_without_hole, &bcs_vel_y, P_INIT_VEL);
#ifdef PRESSURE_IN_L2
  L2Space<double> p_space(&mesh_without_hole, P_INIT_PRESSURE);
#else
  H1Space<double> p_space(&mesh_without_hole, &bcs_pressure, P_INIT_PRESSURE);
#endif
  // Space<double> for temperature.
  H1Space<double> temperature_space(&mesh_whole_domain, &bcs_temperature, P_INIT_TEMP);

  // Calculate and report the number of degrees of freedom.
  int ndof = Space<double>::get_num_dofs(Hermes::vector<Space<double> *>(&xvel_space, &yvel_space, &p_space, &temperature_space));
  info("ndof = %d.", ndof);

  // Define projection norms.
  ProjNormType vel_proj_norm = HERMES_H1_NORM;
#ifdef PRESSURE_IN_L2
  ProjNormType p_proj_norm = HERMES_L2_NORM;
#else
  ProjNormType p_proj_norm = HERMES_H1_NORM;
#endif
  ProjNormType temperature_proj_norm = HERMES_H1_NORM;

  // Solutions for the Newton's iteration and time stepping.
  info("Setting initial conditions.");
  ZeroSolution xvel_prev_time(&mesh_without_hole), yvel_prev_time(&mesh_without_hole), 
                                      p_prev_time(&mesh_without_hole);
  ConstantSolution<double>  temperature_prev_time(&mesh_whole_domain, TEMP_INIT); 

  // Calculate Reynolds number.
  double reynolds_number = VEL_INLET * OBSTACLE_DIAMETER / KINEMATIC_VISCOSITY_WATER;
  info("RE = %g", reynolds_number);

  // Initialize weak formulation.
  CustomWeakFormHeatAndFlow wf(STOKES, reynolds_number, time_step, &xvel_prev_time, &yvel_prev_time, &temperature_prev_time, 
      HEAT_SOURCE_GRAPHITE, SPECIFIC_HEAT_GRAPHITE, SPECIFIC_HEAT_WATER, RHO_GRAPHITE, RHO_WATER, 
      THERMAL_CONDUCTIVITY_GRAPHITE, THERMAL_CONDUCTIVITY_WATER);
  
  // Initialize the FE problem.
  DiscreteProblem<double> dp(&wf, Hermes::vector<Space<double> *>(&xvel_space, &yvel_space, &p_space, &temperature_space));

  // Initialize the Newton solver.
  NewtonSolver<double> newton(&dp, matrix_solver_type);

  // Initialize views.
  Views::VectorView vview("velocity [m/s]", new Views::WinGeom(0, 0, 500, 300));
  Views::ScalarView pview("pressure [Pa]", new Views::WinGeom(0, 310, 500, 300));
  Views::ScalarView tempview("temperature [C]", new Views::WinGeom(510, 0, 500, 300));
  vview.set_min_max_range(0, 1.6);
  vview.fix_scale_width(80);
  //pview.set_min_max_range(-0.9, 1.0);
  pview.fix_scale_width(80);
  pview.show_mesh(true);

  // Project the initial condition on the FE space to obtain initial
  // coefficient vector for the Newton's method.
  double* coeff_vec = new double[ndof];
  info("Projecting initial condition to obtain initial vector for the Newton's method.");
  OGProjection<double>::project_global(Hermes::vector<Space<double> *>(&xvel_space, &yvel_space, &p_space, &temperature_space), 
    Hermes::vector<MeshFunction<double> *>(&xvel_prev_time, &yvel_prev_time, &p_prev_time, &temperature_prev_time), 
    coeff_vec, matrix_solver_type, 
    Hermes::vector<ProjNormType>(vel_proj_norm, vel_proj_norm, p_proj_norm, temperature_proj_norm));

  // Time-stepping loop:
  char title[100];
  int num_time_steps = T_FINAL / time_step;
  double current_time = 0.0;
  for (int ts = 1; ts <= num_time_steps; ts++)
  {
    current_time += time_step;
    info("---- Time step %d, time = %g:", ts, current_time);

    // Update time-dependent essential BCs.
    if (current_time <= STARTUP_TIME) 
    {
      info("Updating time-dependent essential BC.");
      Space<double>::update_essential_bc_values(Hermes::vector<Space<double> *>(&xvel_space, &yvel_space, &p_space, 
                                                &temperature_space), current_time);
    }

    // Perform Newton's iteration.
    info("Solving nonlinear problem:");
    bool verbose = true;
    // Perform Newton's iteration and translate the resulting coefficient vector into previous time level solutions.
    newton.set_verbose_output(verbose);
    try
    {
      newton.solve(coeff_vec, NEWTON_TOL, NEWTON_MAX_ITER);
    }
    catch(Hermes::Exceptions::Exception e)
    {
      e.printMsg();
      error("Newton's iteration failed.");
    };
    {
      Hermes::vector<Solution<double> *> tmp(&xvel_prev_time, &yvel_prev_time, &p_prev_time, &temperature_prev_time);
      Solution<double>::vector_to_solutions(newton.get_sln_vector(), Hermes::vector<Space<double> *>(&xvel_space, 
                                            &yvel_space, &p_space, &temperature_space), tmp);
    }
    
    // Show the solution at the end of time step.
    sprintf(title, "Velocity [m/s], time %g s", current_time);
    vview.set_title(title);
    vview.show(&xvel_prev_time, &yvel_prev_time, Views::HERMES_EPS_LOW);
    sprintf(title, "Pressure [Pa], time %g s", current_time);
    pview.set_title(title);
    pview.show(&p_prev_time);
    sprintf(title, "Temperature [C], time %g s", current_time);
    tempview.set_title(title);
    tempview.show(&temperature_prev_time);
  }

  delete [] coeff_vec;

  // Wait for all views to be closed.
  Views::View::wait();
  return 0;
}
Ejemplo n.º 19
0
    void NeighborSearch<Scalar>::handle_sub_idx_way_down(const Hermes::vector<unsigned int>& transformations)
    {
      Hermes::vector<unsigned int> neighbors_to_be_deleted;
      Hermes::vector<unsigned int> neighbors_not_to_be_deleted;

      Hermes::vector<unsigned int> updated_transformations;
      for(int i = 0; i < transformations.size(); i++)
      {
        if(! ((active_edge == 0 && transformations[i] == 4) || (active_edge == 1 && transformations[i] == 7) || (active_edge == 2 && transformations[i] == 5) || (active_edge == 3 && transformations[i] == 6)) )
        {
          if(active_edge == 0 && transformations[i] == 6)
            updated_transformations.push_back(0);
          else if(active_edge == 0 && transformations[i] == 7)
            updated_transformations.push_back(1);
          else if(active_edge == 1 && transformations[i] == 4)
            updated_transformations.push_back(1);
          else if(active_edge == 1 && transformations[i] == 5)
            updated_transformations.push_back(2);
          else if(active_edge == 2 && transformations[i] == 6)
            updated_transformations.push_back(3);
          else if(active_edge == 2 && transformations[i] == 7)
            updated_transformations.push_back(2);
          else if(active_edge == 3 && transformations[i] == 4)
            updated_transformations.push_back(0);
          else if(active_edge == 3 && transformations[i] == 5)
            updated_transformations.push_back(3);
          else
            updated_transformations.push_back(transformations[i]);
        }
      }

      // We basically identify the neighbors that are not compliant with the current sub-element mapping on the central element.
      for(unsigned int neighbor_i = 0; neighbor_i < n_neighbors; neighbor_i++)
      {
        bool deleted = false;

        Transformations* current_transforms = central_transformations.get(neighbor_i);

        for(unsigned int level = 0; level < std::min((unsigned int)updated_transformations.size(), current_transforms->num_levels); level++)
        {
          // If the found neighbor is not a neighbor of this subelement.
          if(!compatible_transformations(current_transforms->transf[level], updated_transformations[level], active_edge))
          {
            deleted = true;
            break;
          }
        }

        /*
        // If there were more sub-element transformation from the assembling than from the neighbor search.
        if(!deleted)
        {
          if((unsigned int)updated_transformations.size() > current_transforms->num_levels)
          {
            for(unsigned int level = current_transforms->num_levels; level < (unsigned int)updated_transformations.size(); level++)
            {
              // If the found neighbor is not a neighbor of this subelement.
              if(!compatible_transformations(current_transforms->transf[current_transforms->num_levels - 1], updated_transformations[level], active_edge))
              {
                deleted = true;
                break;
              }
            }
          }
        }
        */
        if(deleted)
          neighbors_to_be_deleted.push_back(neighbor_i);
        else
          neighbors_not_to_be_deleted.push_back(neighbor_i);
      }

      // Now we truly delete (in the reverse order) the neighbors.
      if(neighbors_to_be_deleted.size() > 0)
        for(unsigned int neighbors_to_be_deleted_i = neighbors_to_be_deleted.size(); neighbors_to_be_deleted_i >= 1; neighbors_to_be_deleted_i--)
          delete_neighbor(neighbors_to_be_deleted[neighbors_to_be_deleted_i - 1]);
    }
Ejemplo n.º 20
0
double KellyTypeAdapt::calc_err_internal(Hermes::vector<Solution *> slns,
                                         Hermes::vector<double>* component_errors,
                                         unsigned int error_flags)
{    
  int n = slns.size();
  error_if (n != this->num,
            "Wrong number of solutions.");

  TimePeriod tmr;

  for (int i = 0; i < n; i++)
  {
    this->sln[i] = slns[i];
    sln[i]->set_quad_2d(&g_quad_2d_std);
  }

  have_coarse_solutions = true;
  
  WeakForm::Stage stage;

  num_act_elems = 0;
  for (int i = 0; i < num; i++)
  {
    stage.meshes.push_back(sln[i]->get_mesh());
    stage.fns.push_back(sln[i]);

    num_act_elems += stage.meshes[i]->get_num_active_elements();
    int max = stage.meshes[i]->get_max_element_id();

    if (errors[i] != NULL) delete [] errors[i];
    errors[i] = new double[max];
    memset(errors[i], 0.0, sizeof(double) * max);
  }
/*
  for (unsigned int i = 0; i < error_estimators_vol.size(); i++)
    trset.insert(error_estimators_vol[i].ext.begin(), error_estimators_vol[i].ext.end());
  for (unsigned int i = 0; i < error_estimators_surf.size(); i++)
    trset.insert(error_estimators_surf[i].ext.begin(), error_estimators_surf[i].ext.end());
*/

  double total_norm = 0.0;

  bool calc_norm = false;
  if ((error_flags & HERMES_ELEMENT_ERROR_MASK) == HERMES_ELEMENT_ERROR_REL ||
      (error_flags & HERMES_TOTAL_ERROR_MASK) == HERMES_TOTAL_ERROR_REL) calc_norm = true;

  double *norms = NULL;
  if (calc_norm)
  {
    norms = new double[num];
    memset(norms, 0.0, num * sizeof(double));
  }

  double *errors_components = new double[num];
  memset(errors_components, 0.0, num * sizeof(double));
  this->errors_squared_sum = 0.0;
  double total_error = 0.0;

  bool bnd[4];          // FIXME: magic number - maximal possible number of element surfaces
  SurfPos surf_pos[4];
  Element **ee;
  Traverse trav;

  // Reset the e->visited status of each element of each mesh (most likely it will be set to true from
  // the latest assembling procedure).
  if (ignore_visited_segments)
  {
    for (int i = 0; i < num; i++)
    {
      Element* e;
      for_all_active_elements(e, stage.meshes[i])
        e->visited = false;
    }
  }
  
  //WARNING: AD HOC debugging parameter.
  bool multimesh = false;

  // Begin the multimesh traversal.
  trav.begin(num, &(stage.meshes.front()), &(stage.fns.front()));
  while ((ee = trav.get_next_state(bnd, surf_pos)) != NULL)
  {   
    // Go through all solution components.
    for (int i = 0; i < num; i++)
    {
      if (ee[i] == NULL)
        continue;
      
      // Set maximum integration order for use in integrals, see limit_order()
      update_limit_table(ee[i]->get_mode());

      RefMap *rm = sln[i]->get_refmap();

      double err = 0.0;

      // Go through all volumetric error estimators.
      for (unsigned int iest = 0; iest < error_estimators_vol.size(); iest++)
      {
        // Skip current error estimator if it is assigned to a different component or geometric area
        // different from that of the current active element.
        if (error_estimators_vol[iest]->i != i)
          continue;
        /*
        if (error_estimators_vol[iest].area != ee[i]->marker)
          continue;
          */
        else if (error_estimators_vol[iest]->area != HERMES_ANY)
          continue;

        err += eval_volumetric_estimator(error_estimators_vol[iest], rm);
      }

      // Go through all surface error estimators (includes both interface and boundary est's).
      for (unsigned int iest = 0; iest < error_estimators_surf.size(); iest++)
      {
        if (error_estimators_surf[iest]->i != i)
          continue;

        for (int isurf = 0; isurf < ee[i]->get_num_surf(); isurf++)
        {
            /*
          if (error_estimators_surf[iest].area > 0 &&
              error_estimators_surf[iest].area != surf_pos[isurf].marker) continue;
          */
          if (bnd[isurf])   // Boundary
          {
            if (error_estimators_surf[iest]->area == H2D_DG_INNER_EDGE) continue;
            
            /*
            if (boundary_markers_conversion.get_internal_marker(error_estimators_surf[iest].area) < 0 &&
                error_estimators_surf[iest].area != HERMES_ANY) continue;
            */    
            
            err += eval_boundary_estimator(error_estimators_surf[iest], rm, surf_pos);
          }
          else              // Interface
          {
            if (error_estimators_surf[iest]->area != H2D_DG_INNER_EDGE) continue;

            /* BEGIN COPY FROM DISCRETE_PROBLEM.CPP */
            
            // 5 is for bits per page in the array.
            LightArray<NeighborSearch*> neighbor_searches(5);
            unsigned int num_neighbors = 0;
            DiscreteProblem::NeighborNode* root;
            int ns_index;
            
            dp.min_dg_mesh_seq = 0;
            for(int j = 0; j < num; j++)
              if(stage.meshes[j]->get_seq() < dp.min_dg_mesh_seq || j == 0)
                dp.min_dg_mesh_seq = stage.meshes[j]->get_seq();
            
            ns_index = stage.meshes[i]->get_seq() - dp.min_dg_mesh_seq; // = 0 for single mesh
            
            // Determine the minimum mesh seq in this stage.
            if (multimesh) 
            {              
              // Initialize the NeighborSearches.
              dp.init_neighbors(neighbor_searches, stage, isurf);
              
              // Create a multimesh tree;
              root = new DiscreteProblem::NeighborNode(NULL, 0);
              dp.build_multimesh_tree(root, neighbor_searches);
              
              // Update all NeighborSearches according to the multimesh tree.
              // After this, all NeighborSearches in neighbor_searches should have the same count 
              // of neighbors and proper set of transformations
              // for the central and the neighbor element(s) alike.
              // Also check that every NeighborSearch has the same number of neighbor elements.
              for(unsigned int j = 0; j < neighbor_searches.get_size(); j++)
                if(neighbor_searches.present(j)) {
                  NeighborSearch* ns = neighbor_searches.get(j);
                  dp.update_neighbor_search(ns, root);
                  if(num_neighbors == 0)
                    num_neighbors = ns->n_neighbors;
                  if(ns->n_neighbors != num_neighbors)
                    error("Num_neighbors of different NeighborSearches not matching in KellyTypeAdapt::calc_err_internal.");
                }
            }
            else
            {
              NeighborSearch *ns = new NeighborSearch(ee[i], stage.meshes[i]);
              ns->original_central_el_transform = stage.fns[i]->get_transform();
              ns->set_active_edge(isurf);
              ns->clear_initial_sub_idx();
              num_neighbors = ns->n_neighbors;
              neighbor_searches.add(ns, ns_index);
            }

            // Go through all segments of the currently processed interface (segmentation is caused
            // by hanging nodes on the other side of the interface).
            for (unsigned int neighbor = 0; neighbor < num_neighbors; neighbor++)
            {              
              if (ignore_visited_segments) {
                bool processed = true;
                for(unsigned int j = 0; j < neighbor_searches.get_size(); j++)
                  if(neighbor_searches.present(j))
                    if(!neighbor_searches.get(j)->neighbors.at(neighbor)->visited) {
                      processed = false;
                      break;
                    }
                if (processed) continue;
              }
              
              // Set the active segment in all NeighborSearches
              for(unsigned int j = 0; j < neighbor_searches.get_size(); j++)
                if(neighbor_searches.present(j)) {
                  neighbor_searches.get(j)->active_segment = neighbor;
                  neighbor_searches.get(j)->neighb_el = neighbor_searches.get(j)->neighbors[neighbor];
                  neighbor_searches.get(j)->neighbor_edge = neighbor_searches.get(j)->neighbor_edges[neighbor];
                }
                
              // Push all the necessary transformations to all functions of this stage.
              // The important thing is that the transformations to the current subelement are already there.
              // Also store the current neighbor element and neighbor edge in neighb_el, neighbor_edge.
              if (multimesh) 
              {
                for(unsigned int fns_i = 0; fns_i < stage.fns.size(); fns_i++)
                  for(unsigned int trf_i = 0; trf_i < neighbor_searches.get(stage.meshes[fns_i]->get_seq() - dp.min_dg_mesh_seq)->central_n_trans[neighbor]; trf_i++)
                    stage.fns[fns_i]->push_transform(neighbor_searches.get(stage.meshes[fns_i]->get_seq() - dp.min_dg_mesh_seq)->central_transformations[neighbor][trf_i]);
              }
              else
              {            
                // Push the transformations only to the solution on the current mesh
                for(unsigned int trf_i = 0; trf_i < neighbor_searches.get(ns_index)->central_n_trans[neighbor]; trf_i++)
                  stage.fns[i]->push_transform(neighbor_searches.get(ns_index)->central_transformations[neighbor][trf_i]);
              }
              /* END COPY FROM DISCRETE_PROBLEM.CPP */
              rm->force_transform(this->sln[i]->get_transform(), this->sln[i]->get_ctm());
              
              // The estimate is multiplied by 0.5 in order to distribute the error equally onto
              // the two neighboring elements.
              double central_err = 0.5 * eval_interface_estimator(error_estimators_surf[iest],
                                                                  rm, surf_pos, neighbor_searches, 
                                                                  ns_index);
              double neighb_err = central_err;

              // Scale the error estimate by the scaling function dependent on the element diameter
              // (use the central element's diameter).
              if (use_aposteriori_interface_scaling && interface_scaling_fns[i])
                central_err *= interface_scaling_fns[i](ee[i]->get_diameter());

              // In the case this edge will be ignored when calculating the error for the element on
              // the other side, add the now computed error to that element as well.
              if (ignore_visited_segments)
              {
                Element *neighb = neighbor_searches.get(i)->neighb_el;

                // Scale the error estimate by the scaling function dependent on the element diameter
                // (use the diameter of the element on the other side).
                if (use_aposteriori_interface_scaling && interface_scaling_fns[i])
                  neighb_err *= interface_scaling_fns[i](neighb->get_diameter());

                errors_components[i] += central_err + neighb_err;
                total_error += central_err + neighb_err;
                errors[i][ee[i]->id] += central_err;
                errors[i][neighb->id] += neighb_err;
              }
              else
                err += central_err;
              
              /* BEGIN COPY FROM DISCRETE_PROBLEM.CPP */
              
              // Clear the transformations from the RefMaps and all functions.
              if (multimesh)
                for(unsigned int fns_i = 0; fns_i < stage.fns.size(); fns_i++)
                  stage.fns[fns_i]->set_transform(neighbor_searches.get(stage.meshes[fns_i]->get_seq() - dp.min_dg_mesh_seq)->original_central_el_transform);
              else
                stage.fns[i]->set_transform(neighbor_searches.get(ns_index)->original_central_el_transform);

              rm->set_transform(neighbor_searches.get(ns_index)->original_central_el_transform);

              
              /* END COPY FROM DISCRETE_PROBLEM.CPP */
            }
            
            /* BEGIN COPY FROM DISCRETE_PROBLEM.CPP */
            
            if (multimesh)
              // Delete the multimesh tree;
              delete root;
            
            // Delete the neighbor_searches array.
            for(unsigned int j = 0; j < neighbor_searches.get_size(); j++) 
              if(neighbor_searches.present(j))
                delete neighbor_searches.get(j);
              
            /* END COPY FROM DISCRETE_PROBLEM.CPP */
            
          }
        }
      }

      if (calc_norm)
      {
        double nrm = eval_solution_norm(error_form[i][i], rm, sln[i]);
        norms[i] += nrm;
        total_norm += nrm;
      }

      errors_components[i] += err;
      total_error += err;
      errors[i][ee[i]->id] += err;

      ee[i]->visited = true;
    }
  }
  trav.finish();

  // Store the calculation for each solution component separately.
  if(component_errors != NULL)
  {
    component_errors->clear();
    for (int i = 0; i < num; i++)
    {
      if((error_flags & HERMES_TOTAL_ERROR_MASK) == HERMES_TOTAL_ERROR_ABS)
        component_errors->push_back(sqrt(errors_components[i]));
      else if ((error_flags & HERMES_TOTAL_ERROR_MASK) == HERMES_TOTAL_ERROR_REL)
        component_errors->push_back(sqrt(errors_components[i]/norms[i]));
      else
      {
        error("Unknown total error type (0x%x).", error_flags & HERMES_TOTAL_ERROR_MASK);
        return -1.0;
      }
    }
  }

  tmr.tick();
  error_time = tmr.accumulated();

  // Make the error relative if needed.
  if ((error_flags & HERMES_ELEMENT_ERROR_MASK) == HERMES_ELEMENT_ERROR_REL)
  {
    for (int i = 0; i < num; i++)
    {
      Element* e;
      for_all_active_elements(e, stage.meshes[i])
        errors[i][e->id] /= norms[i];
    }
  }

  this->errors_squared_sum = total_error;

  // Element error mask is used here, because this variable is used in the adapt()
  // function, where the processed error (sum of errors of processed element errors)
  // is matched to this variable.
  if ((error_flags & HERMES_TOTAL_ERROR_MASK) == HERMES_ELEMENT_ERROR_REL)
    errors_squared_sum /= total_norm;

  // Prepare an ordered list of elements according to an error.
  fill_regular_queue(&(stage.meshes.front()));
  have_errors = true;

  if (calc_norm)
    delete [] norms;
  delete [] errors_components;

  // Return error value.
  if ((error_flags & HERMES_TOTAL_ERROR_MASK) == HERMES_TOTAL_ERROR_ABS)
    return sqrt(total_error);
  else if ((error_flags & HERMES_TOTAL_ERROR_MASK) == HERMES_TOTAL_ERROR_REL)
    return sqrt(total_error / total_norm);
  else
  {
    error("Unknown total error type (0x%x).", error_flags & HERMES_TOTAL_ERROR_MASK);
    return -1.0;
  }
}
Ejemplo n.º 21
0
    void WeakForm<Scalar>::get_stages(Hermes::vector<const Space<Scalar> *> spaces, Hermes::vector<Solution<Scalar> *>& u_ext,
      Hermes::vector<Stage<Scalar> >& stages, bool want_matrix, bool want_vector, bool one_stage) const
    {
      _F_;

      if (!want_matrix && !want_vector) return;

      unsigned int i;
      stages.clear();

      if (want_matrix || want_vector)
      {
        // This is because of linear problems where
        // matrix terms with the Dirichlet lift go to rhs.
        // Process volume matrix forms.
        for (i = 0; i < mfvol.size(); i++)
        {
          unsigned int ii = mfvol[i]->i, jj = mfvol[i]->j;
          Mesh* m1 = spaces[ii]->get_mesh();
          Mesh* m2 = spaces[jj]->get_mesh();
          Stage<Scalar>* s = find_stage(stages, ii, jj, m1, m2, mfvol[i]->ext, u_ext, one_stage);
          s->mfvol.push_back(mfvol[i]);
        }

        // Process surface matrix forms.
        for (i = 0; i < mfsurf.size(); i++)
        {
          unsigned int ii = mfsurf[i]->i, jj = mfsurf[i]->j;
          Mesh* m1 = spaces[ii]->get_mesh();
          Mesh* m2 = spaces[jj]->get_mesh();
          Stage<Scalar>* s = find_stage(stages, ii, jj, m1, m2, mfsurf[i]->ext, u_ext, one_stage);
          s->mfsurf.push_back(mfsurf[i]);
        }

        // Multi component forms.
        for (unsigned i = 0; i < mfvol_mc.size(); i++)
        {
          Mesh* the_one_mesh = spaces[mfvol_mc.at(i)->coordinates.at(0).first]->get_mesh();
          for(unsigned int form_i = 0; form_i < mfvol_mc.at(i)->coordinates.size(); form_i++)
          {
            if(spaces[mfvol_mc.at(i)->coordinates.at(form_i).first]->get_mesh()->get_seq() != the_one_mesh->get_seq())
              error("When using multi-component forms, the Meshes have to be identical.");
            if(spaces[mfvol_mc.at(i)->coordinates.at(form_i).second]->get_mesh()->get_seq() != the_one_mesh->get_seq())
              error("When using multi-component forms, the Meshes have to be identical.");
          }

          Stage<Scalar>* s = find_stage(stages, mfvol_mc.at(i)->coordinates, the_one_mesh, the_one_mesh, mfvol_mc[i]->ext, u_ext, one_stage);
          s->mfvol_mc.push_back(mfvol_mc[i]);
        }
        for (unsigned i = 0; i < mfsurf_mc.size(); i++)
        {
          Mesh* the_one_mesh = spaces[mfsurf_mc.at(i)->coordinates.at(0).first]->get_mesh();
          for(unsigned int form_i = 0; form_i < mfsurf_mc.at(i)->coordinates.size(); form_i++)
          {
            if(spaces[mfsurf_mc.at(i)->coordinates.at(form_i).first]->get_mesh()->get_seq() != the_one_mesh->get_seq())
              error("When using multi-component forms, the Meshes have to be identical.");
            if(spaces[mfsurf_mc.at(i)->coordinates.at(form_i).second]->get_mesh()->get_seq() != the_one_mesh->get_seq())
              error("When using multi-component forms, the Meshes have to be identical.");
          }

          Stage<Scalar>* s = find_stage(stages, mfsurf_mc.at(i)->coordinates, the_one_mesh, the_one_mesh, mfsurf_mc[i]->ext, u_ext, one_stage);
          s->mfsurf_mc.push_back(mfsurf_mc[i]);
        }
      }
      if (want_vector)
      {
        // Process volume vector forms.
        for (unsigned i = 0; i < vfvol.size(); i++)
        {
          unsigned int ii = vfvol[i]->i;
          Mesh *m = spaces[ii]->get_mesh();
          Stage<Scalar>*s = find_stage(stages, ii, ii, m, m, vfvol[i]->ext, u_ext, one_stage);
          s->vfvol.push_back(vfvol[i]);
        }

        // Process surface vector forms.
        for (unsigned i = 0; i < vfsurf.size(); i++)
        {
          unsigned int ii = vfsurf[i]->i;
          Mesh *m = spaces[ii]->get_mesh();
          Stage<Scalar>*s = find_stage(stages, ii, ii, m, m, vfsurf[i]->ext, u_ext, one_stage);
          s->vfsurf.push_back(vfsurf[i]);
        }

        // Multi component forms.
        for (unsigned i = 0; i < vfvol_mc.size(); i++)
        {
          Mesh* the_one_mesh = spaces[vfvol_mc.at(i)->coordinates.at(0)]->get_mesh();
          for(unsigned int form_i = 0; form_i < vfvol_mc.at(i)->coordinates.size(); form_i++)
            if(spaces[vfvol_mc.at(i)->coordinates.at(form_i)]->get_mesh()->get_seq() != the_one_mesh->get_seq())
              error("When using multi-component forms, the Meshes have to be identical.");

          Stage<Scalar>*s = find_stage(stages, vfvol_mc.at(i)->coordinates, the_one_mesh, the_one_mesh, vfvol_mc[i]->ext, u_ext, one_stage);
          s->vfvol_mc.push_back(vfvol_mc[i]);
        }

        for (unsigned i = 0; i < vfsurf_mc.size(); i++)
        {
          Mesh* the_one_mesh = spaces[vfsurf_mc.at(i)->coordinates.at(0)]->get_mesh();
          for(unsigned int form_i = 0; form_i < vfsurf_mc.at(i)->coordinates.size(); form_i++)
            if(spaces[vfsurf_mc.at(i)->coordinates.at(form_i)]->get_mesh()->get_seq() != the_one_mesh->get_seq())
              error("When using multi-component forms, the Meshes have to be identical.");

          Stage<Scalar>*s = find_stage(stages, vfsurf_mc.at(i)->coordinates, the_one_mesh, the_one_mesh, vfsurf_mc[i]->ext, u_ext, one_stage);
          s->vfsurf_mc.push_back(vfsurf_mc[i]);
        }
      }

      // Helper macro for iterating in a set,
#define set_for_each(myset, type) \
  for (typename std::set<type>::iterator it = (myset).begin(); it != (myset).end(); it++)

      // Initialize the arrays meshes and fns needed by Traverse for each stage.
      for (i = 0; i < stages.size(); i++)
      {
        Stage<Scalar>* s = &stages[i];

        // First, initialize arrays for the test functions. A pointer to the PrecalcShapeset
        // corresponding to each space will be assigned to s->fns later during assembling.
        set_for_each(s->idx_set, int)
        {
          s->idx.push_back(*it);
          s->meshes.push_back(spaces[*it]->get_mesh());
          s->fns.push_back(NULL);
        }

        // Next, append to the existing arrays the external functions (including the solutions
        // from previous Newton iteration) and their meshes. Also fill in a special array with
        // these external functions only.
        set_for_each(s->ext_set, MeshFunction<Scalar>*)
        {
          s->ext.push_back(*it);
          s->meshes.push_back((*it)->get_mesh());
          s->fns.push_back(*it);
        }

        s->idx_set.clear();
        s->seq_set.clear();
        s->ext_set.clear();
      }
    }