Ejemplo n.º 1
0
    /**
     * @brief readH5Data
     * @param parentId
     * @return
     */
    virtual int readH5Data(hid_t parentId)
    {
      int err = 0;
      this->resize(0);
      std::vector<std::string> strings;
      err = H5Lite::readVectorOfStringDataset(parentId, getName().toStdString(), strings);

      m_Array.resize(strings.size());
      for(std::vector<QString>::size_type i = 0; i < strings.size(); i++)
      {
        m_Array[i] = QString::fromStdString(strings[i]);
      }
#if 0
      IDataArray::Pointer p = H5DataArrayReader::ReadStringDataArray(parentId, getName());
      if (p.get() == NULL)
      {
        return -1;
      }
      StringDataArray* srcPtr = StringDataArray::SafePointerDownCast(p.get());
      size_t count = srcPtr->getNumberOfTuples();
      for (size_t i = 0; i < count; ++i)
      {
        m_Array.push_back( srcPtr->getValue(i) );
      }
#endif
      return err;
    }
Ejemplo n.º 2
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void FlattenImage::dataCheck(bool preflight, size_t voxels, size_t fields, size_t ensembles)
{
  setErrorCondition(0);
  std::stringstream ss;
  VoxelDataContainer* m = getVoxelDataContainer();
  //int err = 0;

  int numImageComp = 1;
  IDataArray::Pointer iDataArray = m->getCellData(m_ImageDataArrayName);
  if(NULL != iDataArray.get())
  {
    UInt8ArrayType* imageDataPtr = UInt8ArrayType::SafePointerDownCast(iDataArray.get());
    if (NULL != imageDataPtr)
    {
      numImageComp = imageDataPtr->GetNumberOfComponents();
    }
  }

  GET_PREREQ_DATA(m, DREAM3D, CellData, ImageData, ss, -301, unsigned char, UCharArrayType, voxels, numImageComp)
//  if(err == -301)
//  {
//    setErrorCondition(0);
//    err = 0;
//    GET_PREREQ_DATA(m, DREAM3D, CellData, ImageData, ss, -302, unsigned char, UCharArrayType, voxels, 3)
//  }

  CREATE_NON_PREREQ_DATA(m, DREAM3D, CellData, FlatImageData, ss, int32_t, Int32ArrayType, 0, voxels, 1)
}
Ejemplo n.º 3
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void FlattenImage::dataCheck()
{
  setErrorCondition(0);

  DataArrayPath tempPath;
  int32_t numImageComp = 1;

  IDataArray::Pointer iDataArray = getDataContainerArray()->getPrereqIDataArrayFromPath<IDataArray, AbstractFilter>(this, getImageDataArrayPath());
  if (getErrorCondition() < 0) { return; }
  if (NULL != iDataArray.get())
  {
    numImageComp = iDataArray->getNumberOfComponents();
  }

  QVector<size_t> cDims(1, numImageComp);
  m_ImageDataPtr = getDataContainerArray()->getPrereqArrayFromPath<DataArray<uint8_t>, AbstractFilter>(this, getImageDataArrayPath(), cDims); /* Assigns the shared_ptr<> to an instance variable that is a weak_ptr<> */
  if( NULL != m_ImageDataPtr.lock().get() ) /* Validate the Weak Pointer wraps a non-NULL pointer to a DataArray<T> object */
  { m_ImageData = m_ImageDataPtr.lock()->getPointer(0); } /* Now assign the raw pointer to data from the DataArray<T> object */

  cDims[0] = 1;
  tempPath.update(m_ImageDataArrayPath.getDataContainerName(), m_ImageDataArrayPath.getAttributeMatrixName(), getFlatImageDataArrayName() );
  m_FlatImageDataPtr = getDataContainerArray()->createNonPrereqArrayFromPath<DataArray<uint8_t>, AbstractFilter, uint8_t>(this, tempPath, 0, cDims); /* Assigns the shared_ptr<> to an instance variable that is a weak_ptr<> */
  if( NULL != m_FlatImageDataPtr.lock().get() ) /* Validate the Weak Pointer wraps a non-NULL pointer to a DataArray<T> object */
  { m_FlatImageData = m_FlatImageDataPtr.lock()->getPointer(0); } /* Now assign the raw pointer to data from the DataArray<T> object */
}
void writePointScalarData(DataContainer::Pointer dc, const QString& vertexAttributeMatrixName, const QString& dataName, const QString& dataType,
                          bool writeBinaryData, FILE* vtkFile, int nT)
{
  IDataArray::Pointer data = dc->getAttributeMatrix(vertexAttributeMatrixName)->getAttributeArray(dataName);
  QString ss;
  if (NULL != data.get())
  {
    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "SCALARS %s %s\n", dataName.toLatin1().data(), dataType.toLatin1().data());
    fprintf(vtkFile, "LOOKUP_TABLE default\n");
    for(int i = 0; i < nT; ++i)
    {
      T swapped = 0x00;
      if(writeBinaryData == true)
      {
        swapped = static_cast<T>(m[i]);
        SIMPLib::Endian::FromSystemToBig::convert(swapped);
        fwrite(&swapped, sizeof(T), 1, vtkFile);
      }
      else
      {

        ss = QString::number(m[i]) + " ";
        fprintf(vtkFile, "%s ", ss.toLatin1().data());
        //if (i%50 == 0)
        { fprintf(vtkFile, "\n"); }
      }

    }
  }
}
void findHistogram(IDataArray::Pointer inputData, int32_t* ensembleArray, int32_t* eIds, int NumberOfBins, bool removeBiasedFeatures, bool* biasedFeatures)
{
  DataArray<T>* featureArray = DataArray<T>::SafePointerDownCast(inputData.get());
  if (NULL == featureArray)
  {
    return;
  }

  T* fPtr = featureArray->getPointer(0);
  size_t numfeatures = featureArray->getNumberOfTuples();

  int32_t bin;
  int32_t ensemble;
  float min = 1000000.0f;
  float max = 0.0f;
  float value;
  for (size_t i = 1; i < numfeatures; i++)
  {
    value = fPtr[i];
    if(value > max) { max = value; }
    if(value < min) { min = value; }
  }
  float stepsize = (max - min) / NumberOfBins;

  for (size_t i = 1; i < numfeatures; i++)
  {
    if(removeBiasedFeatures == false || biasedFeatures[i] == false)
    {
      ensemble = eIds[i];
      bin = (fPtr[i] - min) / stepsize;
      if(bin >= NumberOfBins) { bin = NumberOfBins - 1; }
      ensembleArray[(NumberOfBins * ensemble) + bin]++;
    }
  }
}
Ejemplo n.º 6
0
    /**
     * @brief
     * @param parentId
     * @return
     */
    virtual int readH5Data(hid_t parentId)
    {
      int err = 0;

      resize(0);
      IDataArray::Pointer p = H5DataArrayReader::ReadIDataArray(parentId, getName());
      if (p.get() == NULL)
      {
        return -1;
      }
      m_Array = reinterpret_cast<T*>(p->getVoidPointer(0));
      m_Size = p->getSize();
      m_OwnsData = true;
      m_MaxId = (m_Size == 0) ? 0 : m_Size - 1;
      m_IsAllocated = true;
      m_Name = p->getName();
      m_NumTuples = p->getNumberOfTuples();
      m_CompDims = p->getComponentDimensions();
      m_NumComponents = p->getNumberOfComponents();

      // Tell the intermediate DataArray to release ownership of the data as we are going to be responsible
      // for deleting the memory
      p->releaseOwnership();
      return err;
    }
void writeCellScalarData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType,
                         bool writeBinaryData, FILE* vtkFile, QMap<int32_t, int32_t>& featureIds, int32_t* m_SurfaceMeshFaceLabels)
{
  TriangleGeom::Pointer triangleGeom = dc->getGeometryAs<TriangleGeom>();

  int64_t numTriangles = triangleGeom->getNumberOfTris();
  IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName);

  QString ss;
  if (NULL != data.get())
  {
    int32_t totalCellsWritten = 0;

    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "SCALARS %s %s 1\n", dataName.toLatin1().data(), dataType.toLatin1().data());
    fprintf(vtkFile, "LOOKUP_TABLE default\n");
    // Loop over all the features
    for(QMap<int32_t, int32_t>::iterator featureIter = featureIds.begin(); featureIter != featureIds.end(); ++featureIter)
    {
      int32_t gid = featureIter.key(); // The current Feature Id
      size_t size = featureIter.value(); // The number of triangles for this feature id
      std::vector<T> buffer(size, 0);
      totalCellsWritten += size;
      size_t index = 0;

      for (int j = 0; j < numTriangles; j++)
      {
        if (m_SurfaceMeshFaceLabels[j * 2] != gid && m_SurfaceMeshFaceLabels[j * 2 + 1] != gid) { continue; }
        // Get the data
        T s0 = static_cast<T>(m[j]);
        if (m_SurfaceMeshFaceLabels[j * 2 + 1] == gid)
        { s0 = s0 * -1; }


        // Write the values to the buffer after an Endian swap.
        if(writeBinaryData == true)
        {
          SIMPLib::Endian::FromSystemToBig::convert(s0);
          buffer[index] = s0;
          ++index;
        }
        else
        {

          ss = QString::number(s0);
          fprintf(vtkFile, "%s\n", ss.toLatin1().data());
        }
      }

      // Write the Buffer
      if(writeBinaryData == true)
      {
        fwrite(&(buffer.front()), sizeof(T), size, vtkFile);
      }
    }
  }

}
Ejemplo n.º 8
0
void writeCellNormalData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType,
                         bool writeBinaryData, bool writeConformalMesh,
                         FILE* vtkFile, int nT)
{
  IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName);
  QString buf;
  QTextStream ss(&buf);
  if (NULL != data.get())
  {
    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "NORMALS %s %s\n", dataName.toLatin1().data(), dataType.toLatin1().data());
    for(int i = 0; i < nT; ++i)
    {
      T s0 = 0x00;
      T s1 = 0x00;
      T s2 = 0x00;
      if(writeBinaryData == true)
      {
        s0 = static_cast<T>(m[i * 3 + 0]);
        s1 = static_cast<T>(m[i * 3 + 1]);
        s2 = static_cast<T>(m[i * 3 + 2]);
        SIMPLib::Endian::FromSystemToBig::convert(s0);
        SIMPLib::Endian::FromSystemToBig::convert(s1);
        SIMPLib::Endian::FromSystemToBig::convert(s2);
        fwrite(&s0, sizeof(T), 1, vtkFile);
        fwrite(&s1, sizeof(T), 1, vtkFile);
        fwrite(&s2, sizeof(T), 1, vtkFile);
        if(false == writeConformalMesh)
        {
          s0 = static_cast<T>(m[i * 3 + 0]) * -1.0;
          s1 = static_cast<T>(m[i * 3 + 1]) * -1.0;
          s2 = static_cast<T>(m[i * 3 + 2]) * -1.0;
          SIMPLib::Endian::FromSystemToBig::convert(s0);
          SIMPLib::Endian::FromSystemToBig::convert(s1);
          SIMPLib::Endian::FromSystemToBig::convert(s2);
          fwrite(&s0, sizeof(T), 1, vtkFile);
          fwrite(&s1, sizeof(T), 1, vtkFile);
          fwrite(&s2, sizeof(T), 1, vtkFile);
        }
      }
      else
      {

        ss << m[i * 3 + 0] << " " << m[i * 3 + 1] << " " << m[i * 3 + 2] << " ";
        if(false == writeConformalMesh)
        {
          ss << -1.0 * m[i * 3 + 0] << " " << -1.0 * m[i * 3 + 1] << " " << -1.0 * m[i * 3 + 2] << " ";
        }
        fprintf(vtkFile, "%s ", buf.toLatin1().data());
        buf.clear();
        if (i % 50 == 0) { fprintf(vtkFile, "\n"); }
      }
    }
  }
}
Ejemplo n.º 9
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
int AttributeMatrix::readAttributeArraysFromHDF5(hid_t amGid, bool preflight, AttributeMatrixProxy& attrMatProxy)
{
    int err = 0;
    QMap<QString, DataArrayProxy> dasToRead = attrMatProxy.dataArrays;
    QString classType;
    for (QMap<QString, DataArrayProxy>::iterator iter = dasToRead.begin(); iter != dasToRead.end(); ++iter)
    {
        //qDebug() << "Reading the " << iter->name << " Array from the " << m_Name << " Attribute Matrix \n";
        if(iter->flag == DREAM3D::Unchecked)
        {
            continue;
        }
        QH5Lite::readStringAttribute(amGid, iter->name, DREAM3D::HDF5::ObjectType, classType);
        //   qDebug() << groupName << " Array: " << *iter << " with C++ ClassType of " << classType << "\n";
        IDataArray::Pointer dPtr = IDataArray::NullPointer();

        if(classType.startsWith("DataArray") == true)
        {
            dPtr = H5DataArrayReader::ReadIDataArray(amGid, iter->name, preflight);
        }
        else if(classType.compare("StringDataArray") == 0)
        {
            dPtr = H5DataArrayReader::ReadStringDataArray(amGid, iter->name, preflight);
        }
        else if(classType.compare("vector") == 0)
        {

        }
        else if(classType.compare("NeighborList<T>") == 0)
        {
            dPtr = H5DataArrayReader::ReadNeighborListData(amGid, iter->name, preflight);
        }
        else if(classType.compare("Statistics") == 0)
        {
            StatsDataArray::Pointer statsData = StatsDataArray::New();
            statsData->setName(iter->name);
            statsData->readH5Data(amGid);
            dPtr = statsData;
        }
        //    else if ( (iter->name).compare(DREAM3D::EnsembleData::Statistics) == 0)
        //    {
        //      StatsDataArray::Pointer statsData = StatsDataArray::New();
        //      statsData->setName(DREAM3D::EnsembleData::Statistics);
        //      statsData->readH5Data(amGid);
        //      dPtr = statsData;
        //    }

        if (NULL != dPtr.get())
        {
            addAttributeArray(dPtr->getName(), dPtr);
        }

    }
    H5Gclose(amGid); // Close the Cell Group
    return err;
}
Ejemplo n.º 10
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
int AttributeMatrix::addAttributeArrayFromHDF5Path(hid_t gid, QString name, bool preflight)
{
    int err = 0;
    QString classType;
    QH5Lite::readStringAttribute(gid, name, DREAM3D::HDF5::ObjectType, classType);
    //   qDebug() << groupName << " Array: " << *iter << " with C++ ClassType of " << classType << "\n";
    IDataArray::Pointer dPtr = IDataArray::NullPointer();

    if(classType.startsWith("DataArray") == true)
    {
        dPtr = H5DataArrayReader::ReadIDataArray(gid, name, preflight);
        if(preflight == true)
        {
            dPtr->resize(getNumTuples());
        }
    }
    else if(classType.compare("StringDataArray") == 0)
    {
        dPtr = H5DataArrayReader::ReadStringDataArray(gid, name, preflight);
        if (preflight == true)
        {
            dPtr->resize(getNumTuples());
        }
    }
    else if(classType.compare("vector") == 0)
    {

    }
    else if(classType.compare("NeighborList<T>") == 0)
    {
        dPtr = H5DataArrayReader::ReadNeighborListData(gid, name, preflight);
        if (preflight == true)
        {
            dPtr->resize(getNumTuples());
        }
    }
    else if ( name.compare(DREAM3D::EnsembleData::Statistics) == 0)
    {
        StatsDataArray::Pointer statsData = StatsDataArray::New();
        statsData->setName(DREAM3D::EnsembleData::Statistics);
        statsData->readH5Data(gid);
        dPtr = statsData;
        if (preflight == true)
        {
            dPtr->resize(getNumTuples());
        }
    }

    if (NULL != dPtr.get())
    {
        addAttributeArray(dPtr->getName(), dPtr);
    }

    return err;
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void VisualizeGBCDPoleFigure::dataCheck()
{
  setErrorCondition(0);

  getDataContainerArray()->getPrereqGeometryFromDataContainer<TriangleGeom, AbstractFilter>(this, getGBCDArrayPath().getDataContainerName());

  if (getOutputFile().isEmpty() == true)
  {
    QString ss = QObject::tr( "The output file must be set");
    setErrorCondition(-1000);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
  }

  QFileInfo fi(getOutputFile());
  QDir parentPath = fi.path();
  if (parentPath.exists() == false && getInPreflight())
  {
    QString ss = QObject::tr( "The directory path for the output file does not exist. DREAM.3D will attempt to create this path during execution of the filter");
    notifyWarningMessage(getHumanLabel(), ss, -1);
  }

  if (fi.suffix().compare("") == 0)
  {
    setOutputFile(getOutputFile().append(".vtk"));
  }

  QVector<size_t> cDims(1, 1);
  m_CrystalStructuresPtr = getDataContainerArray()->getPrereqArrayFromPath<DataArray<unsigned int>, AbstractFilter>(this, getCrystalStructuresArrayPath(), cDims); /* Assigns the shared_ptr<> to an instance variable that is a weak_ptr<> */
  if (NULL != m_CrystalStructuresPtr.lock().get()) /* Validate the Weak Pointer wraps a non-NULL pointer to a DataArray<T> object */
  {
    m_CrystalStructures = m_CrystalStructuresPtr.lock()->getPointer(0);
  } /* Now assign the raw pointer to data from the DataArray<T> object */

  IDataArray::Pointer tmpGBCDPtr = getDataContainerArray()->getPrereqIDataArrayFromPath<IDataArray, AbstractFilter>(this, getGBCDArrayPath());
  if(getErrorCondition() < 0) { return; }

  if (NULL != tmpGBCDPtr.get())
  {
    QVector<size_t> cDims = tmpGBCDPtr->getComponentDimensions();
    m_GBCDPtr = getDataContainerArray()->getPrereqArrayFromPath<DataArray<double>, AbstractFilter>(this, getGBCDArrayPath(), cDims); /* Assigns the shared_ptr<> to an instance variable that is a weak_ptr<> */
    if( NULL != m_GBCDPtr.lock().get() ) /* Validate the Weak Pointer wraps a non-NULL pointer to a DataArray<T> object */
    { m_GBCD = m_GBCDPtr.lock()->getPointer(0); } /* Now assign the raw pointer to data from the DataArray<T> object */
  }

  if (NULL != m_GBCDPtr.lock().get() && getPhaseOfInterest() >= m_GBCDPtr.lock()->getNumberOfTuples())
  {
    QString ss = QObject::tr("The phase index is larger than the number of Ensembles").arg(ClassName());
    setErrorCondition(-1);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
  }
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void LinkFieldMapToCellArray::dataCheck(bool preflight, size_t voxels, size_t fields, size_t ensembles)
{
  setErrorCondition(0);
  std::stringstream ss;
  VoxelDataContainer* m = getVoxelDataContainer();

  IDataArray::Pointer data = m->getCellData(m_SelectedCellDataArrayName);
  if (NULL == data.get())
  {
    ss.str("");
    ss << "Selected array '" << m_SelectedCellDataArrayName << "' does not exist in the Voxel Data Container. Was it spelled correctly?";
    setErrorCondition(-11001);
    addErrorMessage(getHumanLabel(),ss.str(),getErrorCondition());
    return;
  }

  std::string dType = data->getTypeAsString();
  IDataArray::Pointer p = IDataArray::NullPointer();
  if (dType.compare("int32_t") == 0)
  {
    DataArray<int32_t>* field = DataArray<int32_t>::SafePointerDownCast(data.get());
    m_SelectedCellData = field->GetPointer(0);
  }
  else
  {
    ss.str("");
    ss << "Selected array '" << m_SelectedCellDataArrayName << "' is not an Integer array. Is this the array you want to use?";
    setErrorCondition(-11001);
    addErrorMessage(getHumanLabel(),ss.str(),getErrorCondition());
    return;
  }

  m->clearFieldData();
  BoolArrayType::Pointer active = BoolArrayType::CreateArray(fields, 1, DREAM3D::FieldData::Active);
  // bool* mActive = m_Active->GetPointer(0);
  m->addFieldData(DREAM3D::FieldData::Active, active);

}
Ejemplo n.º 13
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
std::vector<int32_t> TriangleOps::findAdjacentTriangles(SurfaceMeshDataContainer* sm,
                                                        int32_t triangleIndex,
                                                        int32_t label)
{
  std::vector<int32_t> adjacentTris;
  // Get the master list of triangles for the mesh
  DREAM3D::SurfaceMesh::FaceList_t::Pointer facesPtr = sm->getFaces();
//  DREAM3D::SurfaceMesh::Face_t* faces = facesPtr->GetPointer(0);
  IDataArray::Pointer flPtr = sm->getFaceData(DREAM3D::FaceData::SurfaceMeshFaceLabels);
  DataArray<int32_t>* faceLabelsPtr = DataArray<int32_t>::SafePointerDownCast(flPtr.get());
  int32_t* faceLabels = faceLabelsPtr->GetPointer(0);

  // Get the Triangle Neighbor Structure
  MeshFaceNeighbors::Pointer triNeighbors = sm->getMeshFaceNeighborLists();

  // For the specific triangle that was passed, get its neighbor list
  uint16_t count = triNeighbors->getNumberOfFaces(triangleIndex);
  int32_t* nList = triNeighbors->getNeighborListPointer(triangleIndex);

  if (count < 3)
  {
    std::cout << "Triangle Neighbor List had only " << count << " neighbors. Must be at least 3." << std::endl;
    BOOST_ASSERT(false);
  }
  else if (count == 3) // This triangle only has 3 neighbors so we are assuming all three have the same label set.
  {
    for (uint16_t n = 0; n < count; ++n)
    {
      adjacentTris.push_back(nList[n]);
    }
  }
  else
  {
    // Iterate over the indices to find triangles that match the label and are NOT the current triangle index
    for (uint16_t n = 0; n < count; ++n)
    {
      int32_t fl_0 = faceLabels[nList[n]*2];
      int32_t fl_1 = faceLabels[nList[n]*2 + 1];
      if ( (fl_0 == label || fl_1 == label)  && (nList[n] != triangleIndex) )
      {
        //  std::cout << "    Found Adjacent Triangle: " << t->tIndex << std::endl;
        adjacentTris.push_back(nList[n]);
        // ++index;
      }
    }
  }
  return adjacentTris;
}
Ejemplo n.º 14
0
    /**
     * @brief copyData This method copies all data from the <b>sourceArray</b> into
     * the current array starting at the target destination tuple offset value.
     *
     * For example if the DataArray has 10 tuples and the destTupleOffset = 5 then
     * then source data will be copied into the destination array starting at
     * destination tuple 5. In psuedo code it would be the following:
     * @code
     *  destArray[5] = sourceArray[0];
     *  destArray[6] = sourceArray[1];
     *  .....
     * @endcode
     * @param destTupleOffset
     * @param sourceArray
     * @return
     */
    bool copyData(size_t destTupleOffset, IDataArray::Pointer sourceArray)
    {

      if(destTupleOffset >= m_Array.size()) { return false; }
      if(!sourceArray->isAllocated()) { return false; }
      if(sourceArray->getNumberOfComponents() != getNumberOfComponents()) { return false; }

      Self* source = dynamic_cast<Self*>(sourceArray.get());
      size_t sourceNTuples = source->getNumberOfTuples();

      for(size_t i = 0; i < sourceNTuples; i++)
      {
        m_Array[destTupleOffset + i] = source->getValue(i);
      }
      return true;
    }
Ejemplo n.º 15
0
    /**
     * @brief
     * @param parentId
     * @return
     */
    virtual int readH5Data(hid_t parentId)
    {
      int err = 0;

      this->Resize(0);
      IDataArray::Pointer p = H5DataArrayReader::readIDataArray(parentId, GetName());
      if (p.get() == NULL)
      {
        return -1;
      }
      this->NumberOfComponents = p->GetNumberOfComponents();
      this->Size = p->GetSize();
      this->MaxId = (Size == 0) ? 0 : Size -1;
      this->Array = reinterpret_cast<T*>(p->GetVoidPointer(0));
      p->releaseOwnership();

      return err;
    }
void writeCellVectorData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType,
                         bool writeBinaryData, const QString& vtkAttributeType,
                         FILE* vtkFile, QMap<int32_t, int32_t>& featureIds)
{
  TriangleGeom::Pointer triangleGeom = dc->getGeometryAs<TriangleGeom>();

  int64_t numTriangles = triangleGeom->getNumberOfTris();

  IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName);
  QString ss;
  if (NULL != data.get())
  {
    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "%s %s %s\n", vtkAttributeType.toLatin1().data(), dataName.toLatin1().data(), dataType.toLatin1().data());
    for(int i = 0; i < numTriangles; ++i)
    {
      T s0 = 0x00;
      T s1 = 0x00;
      T s2 = 0x00;
      if(writeBinaryData == true)
      {
        s0 = static_cast<T>(m[i * 3 + 0]);
        s1 = static_cast<T>(m[i * 3 + 1]);
        s2 = static_cast<T>(m[i * 3 + 2]);
        SIMPLib::Endian::FromSystemToBig::convert(s0);
        SIMPLib::Endian::FromSystemToBig::convert(s1);
        SIMPLib::Endian::FromSystemToBig::convert(s2);
        fwrite(&s0, sizeof(T), 1, vtkFile);
        fwrite(&s1, sizeof(T), 1, vtkFile);
        fwrite(&s2, sizeof(T), 1, vtkFile);

      }
      else
      {

        ss << m[i * 3 + 0] << " " << m[i * 3 + 1] << " " << m[i * 3 + 2] << " ";

        fprintf(vtkFile, "%s ", ss.toLatin1().data());
        if (i % 25 == 0) { fprintf(vtkFile, "\n"); }
      }
    }
  }
}
Ejemplo n.º 17
0
void writeCellScalarData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType,
                         bool writeBinaryData, bool writeConformalMesh, FILE* vtkFile, int nT)
{
  // Write the Feature Face ID Data to the file
  IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName);
  QString buf;
  QTextStream ss(&buf);
  if (NULL != data.get())
  {
    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "SCALARS %s %s 1\n", dataName.toLatin1().data(), dataType.toLatin1().data());
    fprintf(vtkFile, "LOOKUP_TABLE default\n");
    for(int i = 0; i < nT; ++i)
    {
      T swapped = 0x00;
      if(writeBinaryData == true)
      {
        swapped = static_cast<T>(m[i]);
        SIMPLib::Endian::FromSystemToBig::convert(swapped);
        fwrite(&swapped, sizeof(T), 1, vtkFile);
        if(false == writeConformalMesh)
        {
          fwrite(&swapped, sizeof(T), 1, vtkFile);
        }
      }
      else
      {

        ss << m[i] << " ";
        if(false == writeConformalMesh)
        {
          ss << m[i] << " ";
        }
        fprintf(vtkFile, "%s", buf.toLatin1().data());
        buf.clear();
        if (i % 50 == 0) { fprintf(vtkFile, "\n"); }
      }
    }
  }
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
bool ModifiedLambertProjectionArray::copyData(size_t destTupleOffset, IDataArray::Pointer sourceArray)
{
  if(!m_IsAllocated) { return false; }
  if(0 == m_ModifiedLambertProjectionArray.size()) { return false; }
  if(destTupleOffset >= m_ModifiedLambertProjectionArray.size()) { return false; }
  if(!sourceArray->isAllocated()) { return false; }
  Self* source = dynamic_cast<Self*>(sourceArray.get());

  if(sourceArray->getNumberOfComponents() != getNumberOfComponents()) { return false; }

  if( sourceArray->getNumberOfTuples()*sourceArray->getNumberOfComponents() + destTupleOffset*getNumberOfComponents() > m_ModifiedLambertProjectionArray.size() ) { return false; }

  size_t sourceNTuples = source->getNumberOfTuples();

  for(size_t i = 0; i < sourceNTuples; i++)
  {
    m_ModifiedLambertProjectionArray[destTupleOffset + i] = (*source)[i];
  }

  return true;
}
Ejemplo n.º 19
0
void writePointVectorData(DataContainer::Pointer dc, const QString& vertexAttributeMatrixName, const QString& dataName, const QString& dataType,
                          bool writeBinaryData, bool writeConformalMesh, const QString& vtkAttributeType,
                          FILE* vtkFile, int nT)
{
  IDataArray::Pointer data = dc->getAttributeMatrix(vertexAttributeMatrixName)->getAttributeArray(dataName);
  QString ss;
  if (NULL != data.get())
  {
    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "%s %s %s\n", vtkAttributeType.toLatin1().data(), dataName.toLatin1().data(), dataType.toLatin1().data());
    for(int i = 0; i < nT; ++i)
    {
      T s0 = 0x00;
      T s1 = 0x00;
      T s2 = 0x00;
      if(writeBinaryData == true)
      {
        s0 = static_cast<T>(m[i * 3 + 0]);
        s1 = static_cast<T>(m[i * 3 + 1]);
        s2 = static_cast<T>(m[i * 3 + 2]);
        SIMPLib::Endian::FromSystemToBig::convert(s0);
        SIMPLib::Endian::FromSystemToBig::convert(s1);
        SIMPLib::Endian::FromSystemToBig::convert(s2);
        fwrite(&s0, sizeof(T), 1, vtkFile);
        fwrite(&s1, sizeof(T), 1, vtkFile);
        fwrite(&s1, sizeof(T), 1, vtkFile);
      }
      else
      {

        ss = QString::number(m[i * 3 + 0]) + " " + QString::number(m[i * 3 + 1]) + " " + QString::number(m[i * 3 + 2]) + " ";
        fprintf(vtkFile, "%s ", ss.toLatin1().data());
        //if (i%50 == 0)
        { fprintf(vtkFile, "\n"); }
      }

    }
  }
}
    static void PopulateAttributeArrayComboBox(AbstractFilter* filter, FilterParameter* filterParameter,
                                      QComboBox* dcCombo, QComboBox* amCombo, QComboBox* aaCombo,
                                      DataContainerArrayProxy& dcaProxy)
    {
      FilterParameterType* fp = dynamic_cast<FilterParameterType*>(filterParameter);
      assert(fp != NULL);

      DataContainerArray::Pointer dca = filter->getDataContainerArray();
      if (NULL == dca.get()) { return; }
      bool alreadyBlocked = false;
      if(aaCombo->signalsBlocked()) { alreadyBlocked = true; }
      aaCombo->blockSignals(true);
      aaCombo->clear();

      // Get the selected Data Container Name from the DataContainerList Widget
      QString currentDCName = dcCombo->currentText();
      QString currentAttrMatName = amCombo->currentText();

      // Loop over the data containers until we find the proper data container
      QList<DataContainerProxy> containers = dcaProxy.dataContainers.values();
      QListIterator<DataContainerProxy> containerIter(containers);
      QVector<QString> daTypes = fp->getDefaultAttributeArrayTypes();
      QVector< QVector<size_t> > cDims = fp->getDefaultComponentDimensions();
      while (containerIter.hasNext())
      {
        DataContainerProxy dc = containerIter.next();
        if (dc.name.compare(currentDCName) == 0)
        {
          // We found the proper Data Container, now populate the AttributeMatrix List
          QMap<QString, AttributeMatrixProxy> attrMats = dc.attributeMatricies;
          QMapIterator<QString, AttributeMatrixProxy> attrMatsIter(attrMats);
          while (attrMatsIter.hasNext())
          {
            attrMatsIter.next();
            QString amName = attrMatsIter.key();
            if (amName.compare(currentAttrMatName) == 0)
            {
              // Clear the list of arrays from the QListWidget
              aaCombo->clear();
              // We found the selected AttributeMatrix, so loop over this attribute matrix arrays and populate the list widget
              AttributeMatrixProxy amProxy = attrMatsIter.value();
              QMap<QString, DataArrayProxy> dataArrays = amProxy.dataArrays;
              QMapIterator<QString, DataArrayProxy> dataArraysIter(dataArrays);
              while (dataArraysIter.hasNext())
              {
                dataArraysIter.next();
                //DataArrayProxy daProxy = dataArraysIter.value();
                QString daName = dataArraysIter.key();
                IDataArray::Pointer da = dca->getPrereqIDataArrayFromPath<IDataArray, AbstractFilter>(NULL, DataArrayPath(dc.name, amProxy.name, daName));
                aaCombo->addItem(daName);

                if (NULL != da.get() && ((daTypes.isEmpty() == false && daTypes.contains(da->getTypeAsString()) == false) || (cDims.isEmpty() == false && cDims.contains(da->getComponentDimensions()) == false)))
                {
                  QStandardItemModel* model = qobject_cast<QStandardItemModel*>(aaCombo->model());
                  if (NULL != model)
                  {
                    QStandardItem* item = model->item(aaCombo->findText(daName));
                    if (NULL != item)
                    {
                      item->setFlags(item->flags() & ~Qt::ItemIsEnabled);
                    }
                  }
                }
              }
            }
          }
        }

        aaCombo->setCurrentIndex(-1);
        if(alreadyBlocked == false)
        {
          aaCombo->blockSignals(false);
        }
      }
    }
void writeCellNormalData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType,
                         bool writeBinaryData, FILE* vtkFile, QMap<int32_t, int32_t>& featureIds, int32_t* m_SurfaceMeshFaceLabels)
{
  TriangleGeom::Pointer triangleGeom = dc->getGeometryAs<TriangleGeom>();

  int64_t numTriangles = triangleGeom->getNumberOfTris();
  IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName);
  QString buf;
  QTextStream ss(&buf);
  if (NULL != data.get())
  {
    int32_t totalCellsWritten = 0;

    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "NORMALS %s %s\n", dataName.toLatin1().data(), dataType.toLatin1().data());
    // Loop over all the features
    for(QMap<int32_t, int32_t>::iterator featureIter = featureIds.begin(); featureIter != featureIds.end(); ++featureIter)
    {
      int32_t gid = featureIter.key(); // The current Feature Id
      size_t size = featureIter.value(); // The number of triangles for this feature id
      std::vector<T> buffer(size * 3, 0);
      totalCellsWritten += size * 3;
      size_t index = 0;

      for (int j = 0; j < numTriangles; j++)
      {
        if (m_SurfaceMeshFaceLabels[j * 2] != gid && m_SurfaceMeshFaceLabels[j * 2 + 1] != gid) { continue; }
        // Get the data
        T s0 = static_cast<T>(m[j * 3 + 0]);
        T s1 = static_cast<T>(m[j * 3 + 1]);
        T s2 = static_cast<T>(m[j * 3 + 2]);
        // Flip the normal if needed because the current feature id is assigned to the triangle.labels[1]
        if (m_SurfaceMeshFaceLabels[j * 2 + 1] == gid )
        {
          s0 *= -1.0;
          s1 *= -1.0;
          s2 *= -1.0;
        }
        // Write the values to the buffer after an Endian swap.
        if(writeBinaryData == true)
        {
          SIMPLib::Endian::FromSystemToBig::convert(s0);
          buffer[index] = s0;
          ++index;

          SIMPLib::Endian::FromSystemToBig::convert(s1);
          buffer[index] = s1;
          ++index;

          SIMPLib::Endian::FromSystemToBig::convert(s2);
          buffer[index] = s2;
          ++index;
        }
        else
        {

          ss << s0 << " " << s1 << " " << s2;
          fprintf(vtkFile, "%s\n", buf.toLatin1().data());
          buf.clear();
        }
      }

      // Write the Buffer
      if(writeBinaryData == true)
      {
        fwrite(&(buffer.front()), sizeof(T), size * 3, vtkFile);
      }
    }
  }
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void FindFeatureHistogram::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(m_SelectedFeatureArrayPath.getDataContainerName());

  QString ss;

  IDataArray::Pointer inputData = m->getAttributeMatrix(m_SelectedFeatureArrayPath.getAttributeMatrixName())->getAttributeArray(m_SelectedFeatureArrayPath.getDataArrayName());
  if (NULL == inputData.get())
  {
    ss = QObject::tr("Selected array '%1' does not exist in the Voxel Data Container. Was it spelled correctly?").arg(m_SelectedFeatureArrayPath.getDataArrayName());
    setErrorCondition(-11001);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  QString dType = inputData->getTypeAsString();
  IDataArray::Pointer p = IDataArray::NullPointer();
  if (dType.compare("int8_t") == 0)
  {
    findHistogram<int8_t>(inputData, m_NewEnsembleArray, m_FeaturePhases, m_NumberOfBins, m_RemoveBiasedFeatures, m_BiasedFeatures);
  }
  else if (dType.compare("uint8_t") == 0)
  {
    findHistogram<uint8_t>(inputData, m_NewEnsembleArray, m_FeaturePhases, m_NumberOfBins, m_RemoveBiasedFeatures, m_BiasedFeatures);
  }
  else if (dType.compare("int16_t") == 0)
  {
    findHistogram<int16_t>(inputData, m_NewEnsembleArray, m_FeaturePhases, m_NumberOfBins, m_RemoveBiasedFeatures, m_BiasedFeatures);
  }
  else if (dType.compare("uint16_t") == 0)
  {
    findHistogram<uint16_t>(inputData, m_NewEnsembleArray, m_FeaturePhases, m_NumberOfBins, m_RemoveBiasedFeatures, m_BiasedFeatures);
  }
  else if (dType.compare("int32_t") == 0)
  {
    findHistogram<int32_t>(inputData, m_NewEnsembleArray, m_FeaturePhases, m_NumberOfBins, m_RemoveBiasedFeatures, m_BiasedFeatures);
  }
  else if (dType.compare("uint32_t") == 0)
  {
    findHistogram<uint32_t>(inputData, m_NewEnsembleArray, m_FeaturePhases, m_NumberOfBins, m_RemoveBiasedFeatures, m_BiasedFeatures);
  }
  else if (dType.compare("int64_t") == 0)
  {
    findHistogram<int64_t>(inputData, m_NewEnsembleArray, m_FeaturePhases, m_NumberOfBins, m_RemoveBiasedFeatures, m_BiasedFeatures);
  }
  else if (dType.compare("uint64_t") == 0)
  {
    findHistogram<uint64_t>(inputData, m_NewEnsembleArray, m_FeaturePhases, m_NumberOfBins, m_RemoveBiasedFeatures, m_BiasedFeatures);
  }
  else if (dType.compare("float") == 0)
  {
    findHistogram<float>(inputData, m_NewEnsembleArray, m_FeaturePhases, m_NumberOfBins, m_RemoveBiasedFeatures, m_BiasedFeatures);
  }
  else if (dType.compare("double") == 0)
  {
    findHistogram<double>(inputData, m_NewEnsembleArray, m_FeaturePhases, m_NumberOfBins, m_RemoveBiasedFeatures, m_BiasedFeatures);
  }
  else if (dType.compare("bool") == 0)
  {
    findHistogram<bool>(inputData, m_NewEnsembleArray, m_FeaturePhases, m_NumberOfBins, m_RemoveBiasedFeatures, m_BiasedFeatures);
  }

  notifyStatusMessage(getHumanLabel(), "Complete");
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
IDataArray::Pointer H5DataArrayReader::readStringDataArray(hid_t gid, const std::string &name, bool preflightOnly)
{
  herr_t err = -1;
  herr_t retErr = 1;
  hid_t typeId = -1;
  H5T_class_t attr_type;
  size_t attr_size;
  std::string res;

  std::vector<hsize_t> dims; //Reusable for the loop
  IDataArray::Pointer ptr = IDataArray::NullPointer();
  //std::cout << "Reading Attribute " << *iter << std::endl;
  typeId = H5Lite::getDatasetType(gid, name);
  if (typeId < 0)
  {
    return ptr;
  }
  err = H5Lite::getDatasetInfo(gid, name, dims, attr_type, attr_size);
  if(err < 0)
  {
    std::cout << "Error in getAttributeInfo method in readUserMetaData." << std::endl;
  }
  else
  {
    std::string classType;
    err = H5Lite::readStringAttribute(gid, name, DREAM3D::HDF5::ObjectType, classType);
    if (err < 0)
    {
      return ptr;
    }
    int numComp = 1;
    err = H5Lite::readScalarAttribute(gid, name, DREAM3D::HDF5::NumComponents, numComp);
    if (err < 0)
    {
      numComp = 1;
    }
    if(H5Tequal(typeId, H5T_STD_U8BE) || H5Tequal(typeId, H5T_STD_U8LE)
       || H5Tequal(typeId, H5T_STD_I8BE) || H5Tequal(typeId, H5T_STD_I8LE) )
    {
      if (preflightOnly == false) {
        IDataArray::Pointer bufferPtr = Detail::readH5Dataset<char>(gid, name, dims);
        const char* buf = reinterpret_cast<char*>(bufferPtr->GetVoidPointer(0));
        // count the number of 0x00 characters which are the 'null termination' of each string

        size_t size = bufferPtr->GetNumberOfTuples();
        size_t count = 0;
        for(size_t i = 0; i < size; ++i)
        {
          if(buf[i] == 0)
          {
            ++count;
          }
        }
        ptr = StringDataArray::CreateArray(count, name);
        StringDataArray* strArray = StringDataArray::SafePointerDownCast(ptr.get());
        size_t start = 0;
        size_t index = 0;
        for(size_t i = 0; i < size; ++i)
        {
          if(buf[i] == 0)
          {
            std::string str( &(buf[start]) );
            strArray->SetValue(index, str);
            ++index;
            start = i + 1;
          }
        }

      }
      else // We are preflighting only so just create a StringDataArray of lenght 1
      {
        ptr = StringDataArray::CreateArray(1, name);
      }
    }

  }
  CloseH5T(typeId, err, retErr);
  return ptr;
}
Ejemplo n.º 24
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
int VoxelDataContainerWriter::writeFieldData(hid_t dcGid)
{
  std::stringstream ss;
  int err = 0;
  VoxelDataContainer* m = getVoxelDataContainer();

#if WRITE_FIELD_XDMF
// Get the name of the .dream3d file that we are writing to:
  ssize_t nameSize = H5Fget_name(m_HdfFileId, NULL, 0) + 1;
  std::vector<char> nameBuffer(nameSize, 0);
  nameSize = H5Fget_name(m_HdfFileId, &(nameBuffer.front()), nameSize);

  std::string hdfFileName(&(nameBuffer.front()), nameSize);
  hdfFileName = MXAFileInfo::filename(hdfFileName);
  std::string xdmfGroupPath = std::string(":/") + VoxelDataContainer::ClassName() + std::string("/") + H5_FIELD_DATA_GROUP_NAME;
#endif

  int64_t volDims[3] = { 0,0,0 };


  // Write the Field Data
  err = H5Utilities::createGroupsFromPath(H5_FIELD_DATA_GROUP_NAME, dcGid);
  if(err < 0)
  {
    std::cout << "Error creating HDF Group " << H5_FIELD_DATA_GROUP_NAME << std::endl;
    return err;
  }
  err = H5Lite::writeStringAttribute(dcGid, H5_FIELD_DATA_GROUP_NAME, H5_NAME, H5_FIELD_DATA_DEFAULT);
  if(err < 0)
  {
    return err;
  }

  hid_t fieldGroupId = H5Gopen(dcGid, H5_FIELD_DATA_GROUP_NAME, H5P_DEFAULT);
  if(err < 0)
  {
    ss.str("");
    ss << "Error opening field Group " << H5_FIELD_DATA_GROUP_NAME << std::endl;
    setErrorCondition(-65);
    notifyErrorMessage( ss.str(), err);
    H5Gclose(dcGid); // Close the Data Container Group
    return err;
  }

  size_t total = 0;
  typedef std::vector<IDataArray*> VectorOfIDataArrays_t;
  VectorOfIDataArrays_t neighborListArrays;

  NameListType names = m->getFieldArrayNameList();
  if (names.size() > 0)
  {
    IDataArray::Pointer array = m->getFieldData(names.front());
    total = array->GetSize();
    volDims[0] = total;
    volDims[1] = 1;
    volDims[2] = 1;
#if WRITE_FIELD_XDMF
    ss.str("");
    ss << "Field Data (" << total << ")";
    writeFieldXdmfGridHeader(total, ss.str());
#endif
  }
  // Now loop over all the field data and write it out, possibly wrapping it with XDMF code also.
  for (NameListType::iterator iter = names.begin(); iter != names.end(); ++iter)
  {
    IDataArray::Pointer array = m->getFieldData(*iter);
    if (array->getTypeAsString().compare(NeighborList<int>::ClassName()) == 0)
    {
      neighborListArrays.push_back(array.get());
    }
    else if (NULL != array.get())
    {
      err = array->writeH5Data(fieldGroupId);
      if(err < 0)
      {
        ss.str("");
        ss << "Error writing field array '" << (*iter).c_str() << "' to the HDF5 File";
        notifyErrorMessage( ss.str(), err);
        setErrorCondition(err);
        H5Gclose(fieldGroupId); // Close the Cell Group
        H5Gclose(dcGid); // Close the Data Container Group
        return err;
      }
#if WRITE_FIELD_XDMF
      array->writeXdmfAttribute( *m_XdmfPtr, volDims, hdfFileName, xdmfGroupPath, " (Field)");
#endif
    }
  }


#if WRITE_FIELD_XDMF
  if (names.size() > 0)
  {
    writeXdmfGridFooter("Field Data");
  }
#endif

  // Write the NeighborLists onto their own grid
  // We need to determine how many total elements we are going to end up with and group the arrays by
  // those totals so we can minimize the number of grids
  typedef std::map<size_t, VectorOfIDataArrays_t> SizeToIDataArrays_t;
  SizeToIDataArrays_t sizeToDataArrays;

  for(VectorOfIDataArrays_t::iterator iter = neighborListArrays.begin(); iter < neighborListArrays.end(); ++iter)
  {
    IDataArray* array = (*iter);
    sizeToDataArrays[array->GetSize()].push_back(array);
  }

  // Now loop over each pair in the map creating a section in the XDMF and also writing the data to the HDF5 file
  for(SizeToIDataArrays_t::iterator pair = sizeToDataArrays.begin(); pair != sizeToDataArrays.end(); ++pair)
  {
    total = (*pair).first;
    VectorOfIDataArrays_t& arrays = (*pair).second;
    volDims[0] = total;
    volDims[1] = 1;
    volDims[2] = 1;
    #if WRITE_FIELD_XDMF
    ss.str("");
    ss << "Neighbor Data (" << total << ")";
    writeFieldXdmfGridHeader(total, ss.str());
    #endif
    for(VectorOfIDataArrays_t::iterator iter = arrays.begin(); iter < arrays.end(); ++iter)
    {
      err = (*iter)->writeH5Data(fieldGroupId);
      if(err < 0)
      {
        ss.str("");
        ss << "Error writing neighbor list field array '" << (*iter)->GetName() << "' to the HDF5 File";
        notifyErrorMessage( ss.str(), err);
        setErrorCondition(err);
        H5Gclose(fieldGroupId); // Close the Cell Group
        H5Gclose(dcGid); // Close the Data Container Group
        return err;
      }
#if WRITE_FIELD_XDMF
      (*iter)->writeXdmfAttribute( *m_XdmfPtr, volDims, hdfFileName, xdmfGroupPath, " (Neighbor Data)");
#endif
    }
#if WRITE_FIELD_XDMF
    writeXdmfGridFooter(ss.str());
#endif

  }

  H5Gclose(fieldGroupId);
  return err;
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void CalculateTriangleGroupCurvatures::operator()() const
{

  // Get the Triangles Array
//  DREAM3D::SurfaceMesh::FaceList_t::Pointer trianglesPtr = m_SurfaceMeshDataContainer->getFaces();
//  DREAM3D::SurfaceMesh::Face_t* triangles = trianglesPtr->GetPointer(0);

  IDataArray::Pointer flPtr = m_SurfaceMeshDataContainer->getFaceData(DREAM3D::FaceData::SurfaceMeshFaceLabels);
  DataArray<int32_t>* faceLabelsPtr = DataArray<int32_t>::SafePointerDownCast(flPtr.get());
  int32_t* faceLabels = faceLabelsPtr->GetPointer(0);

  // Instantiate a FindNRingNeighbors class to use during the loop
  FindNRingNeighbors::Pointer nRingNeighborAlg = FindNRingNeighbors::New();

  // Make Sure we have triangle centroids calculated
  IDataArray::Pointer centroidPtr = m_SurfaceMeshDataContainer->getFaceData(DREAM3D::FaceData::SurfaceMeshFaceCentroids);
  if (NULL == centroidPtr.get())
  {
    std::cout << "Triangle Centroids are required for this algorithm" << std::endl;
    return;
  }
  DataArray<double>* centroids = DataArray<double>::SafePointerDownCast(centroidPtr.get());

  // Make sure we have triangle normals calculated
  IDataArray::Pointer normalPtr = m_SurfaceMeshDataContainer->getFaceData(DREAM3D::FaceData::SurfaceMeshFaceNormals);
  if (NULL == normalPtr.get())
  {
    std::cout << "Triangle Normals are required for this algorithm" << std::endl;
    return;
  }
  DataArray<double>* normals = DataArray<double>::SafePointerDownCast(normalPtr.get());


  int32_t* fl = faceLabels + m_TriangleIds[0] * 2;
  int grain0 = 0;
  int grain1 = 0;
  if (fl[0] < fl[1])
  {
    grain0 = fl[0];
    grain1 = fl[1];
  }
  else
  {
    grain0 = fl[1];
    grain1 = fl[0];
  }

  bool computeGaussian = (m_GaussianCurvature.get() != NULL);
  bool computeMean = (m_MeanCurvature.get() != NULL);
  bool computeDirection = (m_PrincipleDirection1.get() != NULL);

  std::stringstream ss;
  std::vector<int>::size_type tCount = m_TriangleIds.size();
  // For each triangle in the group
  for(std::vector<int>::size_type i = 0; i < tCount; ++i)
  {
    if (m_ParentFilter->getCancel() == true) { return; }
    int triId = m_TriangleIds[i];
    nRingNeighborAlg->setTriangleId(triId);
    nRingNeighborAlg->setRegionId0(grain0);
    nRingNeighborAlg->setRegionId1(grain1);
    nRingNeighborAlg->setRing(m_NRing);
    nRingNeighborAlg->setSurfaceMeshDataContainer(m_SurfaceMeshDataContainer);
    nRingNeighborAlg->generate();

    DREAM3D::SurfaceMesh::UniqueFaceIds_t triPatch = nRingNeighborAlg->getNRingTriangles();
    BOOST_ASSERT(triPatch.size() > 1);

    DataArray<double>::Pointer patchCentroids = extractPatchData(triId, triPatch, centroids->GetPointer(0), std::string("Patch_Centroids"));
    DataArray<double>::Pointer patchNormals = extractPatchData(triId, triPatch, normals->GetPointer(0), std::string("Patch_Normals"));

    // Translate the patch to the 0,0,0 origin
    double sub[3] = {patchCentroids->GetComponent(0,0),patchCentroids->GetComponent(0,1), patchCentroids->GetComponent(0,2)};
    subtractVector3d(patchCentroids, sub);

    double np[3] = {patchNormals->GetComponent(0,0), patchNormals->GetComponent(0,1), patchNormals->GetComponent(0, 2) };

    double seedCentroid[3] = {patchCentroids->GetComponent(0,0), patchCentroids->GetComponent(0,1), patchCentroids->GetComponent(0,2) };
    double firstCentroid[3] = {patchCentroids->GetComponent(1,0), patchCentroids->GetComponent(1,1), patchCentroids->GetComponent(1,2) };

    double temp[3] = {firstCentroid[0] - seedCentroid[0], firstCentroid[1] - seedCentroid[1], firstCentroid[2] - seedCentroid[2]};
    double vp[3] = {0.0, 0.0, 0.0};

    // Cross Product of np and temp
    MatrixMath::NormalizeVector(np);
    MatrixMath::CrossProduct(np, temp, vp);
    MatrixMath::NormalizeVector(vp);

    // get the third orthogonal vector
    double up[3] = {0.0, 0.0, 0.0};
    MatrixMath::CrossProduct(vp, np, up);

    // this constitutes a rotation matrix to a local coordinate system
    double rot[3][3] = {{up[0], up[1], up[2]},
                        {vp[0], vp[1], vp[2]},
                        {np[0], np[1], np[2]} };
    double out[3];
    // Transform all centroids and normals to new coordinate system
    for(size_t m = 0; m < patchCentroids->GetNumberOfTuples(); ++m)
    {
      ::memcpy(out, patchCentroids->GetPointer(m*3), 3*sizeof(double));
      MatrixMath::Multiply3x3with3x1(rot, patchCentroids->GetPointer(m*3), out);
      ::memcpy(patchCentroids->GetPointer(m*3), out, 3*sizeof(double));

      ::memcpy(out, patchNormals->GetPointer(m*3), 3*sizeof(double));
      MatrixMath::Multiply3x3with3x1(rot, patchNormals->GetPointer(m*3), out);
      ::memcpy(patchNormals->GetPointer(m*3), out, 3*sizeof(double));

      // We rotate the normals now but we dont use them yet. If we start using part 3 of Goldfeathers paper then we
      // will need the normals.
    }

    {
      // Solve the Least Squares fit
      static const unsigned int NO_NORMALS = 3;
      static const unsigned int USE_NORMALS = 7;
      int cols = NO_NORMALS;
      if (m_UseNormalsForCurveFitting == true)
      { cols = USE_NORMALS; }
      int rows = patchCentroids->GetNumberOfTuples();
      Eigen::MatrixXd A(rows, cols);
      Eigen::VectorXd b(rows);
      double x, y, z;
      for(int m = 0; m < rows; ++m)
      {
        x = patchCentroids->GetComponent(m, 0);
        y = patchCentroids->GetComponent(m, 1);
        z = patchCentroids->GetComponent(m, 2);

        A(m) = 0.5 * x * x;  // 1/2 x^2
        A(m + rows) = x * y; // x*y
        A(m + rows*2) = 0.5 * y * y;  // 1/2 y^2
        if (m_UseNormalsForCurveFitting == true)
        {
          A(m + rows*3) = x*x*x;
          A(m + rows*4) = x*x*y;
          A(m + rows*5) = x*y*y;
          A(m + rows*6) = y*y*y;
        }
        b[m] = z; // The Z Values
      }

      Eigen::Matrix2d M;

      if (false == m_UseNormalsForCurveFitting)
      {
      typedef Eigen::Matrix<double, NO_NORMALS, 1> Vector3d;
        Vector3d sln1 = A.colPivHouseholderQr().solve(b);
        // Now that we have the A, B, C constants we can solve the Eigen value/vector problem
        // to get the principal curvatures and pricipal directions.
        M << sln1(0), sln1(1), sln1(1), sln1(2);
      }
      else
      {
        typedef Eigen::Matrix<double, USE_NORMALS, 1> Vector7d;
        Vector7d sln1 = A.colPivHouseholderQr().solve(b);
        // Now that we have the A, B, C, D, E, F & G constants we can solve the Eigen value/vector problem
        // to get the principal curvatures and pricipal directions.
        M << sln1(0), sln1(1), sln1(1), sln1(2);
      }

      Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d> eig(M);
      Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d>::RealVectorType eValues = eig.eigenvalues();
      Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d>::MatrixType eVectors = eig.eigenvectors();

      // Kappa1 >= Kappa2
      double kappa1 = eValues(0) * -1;// Kappa 1
      double kappa2 = eValues(1) * -1; //kappa 2
      BOOST_ASSERT(kappa1 >= kappa2);
      m_PrincipleCurvature1->SetValue(triId, kappa1);
      m_PrincipleCurvature2->SetValue(triId, kappa2);

      if (computeGaussian == true)
      {
        m_GaussianCurvature->SetValue(triId, kappa1*kappa2);
      }
      if (computeMean == true)
      {
        m_MeanCurvature->SetValue(triId, (kappa1+kappa2)/2.0);
      }

      if (computeDirection == true)
      {
        Eigen::Matrix3d e_rot_T;
        e_rot_T.row(0) = Eigen::Vector3d(up[0], vp[0], np[0]);
        e_rot_T.row(1) = Eigen::Vector3d(up[1], vp[1], np[1]);
        e_rot_T.row(2) = Eigen::Vector3d(up[2], vp[2], np[2]);

        // Rotate our principal directions back into the original coordinate system
        Eigen::Vector3d dir1 ( eVectors.col(0)(0),  eVectors.col(0)(1), 0.0 );
        dir1 = e_rot_T * dir1;
        ::memcpy(m_PrincipleDirection1->GetPointer(triId * 3), dir1.data(), 3*sizeof(double) );

        Eigen::Vector3d dir2 ( eVectors.col(1)(0),  eVectors.col(1)(1), 0.0 );
        dir2 = e_rot_T * dir2;
        ::memcpy(m_PrincipleDirection2->GetPointer(triId * 3), dir2.data(), 3*sizeof(double) );
      }
    }

  } // End Loop over this triangle

  m_ParentFilter->tbbTaskProgress();
}
Ejemplo n.º 26
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void MultiThresholdCells::execute()
{
  int err = 0;
  std::stringstream ss;
  setErrorCondition(err);
  VoxelDataContainer* m = getVoxelDataContainer();
  if(NULL == m)
  {
    setErrorCondition(-999);
    notifyErrorMessage("The Voxel DataContainer Object was NULL", -999);
    return;
  }
  setErrorCondition(0);
  int64_t nPoints = m->getTotalPoints();
  dataCheck(false, m->getTotalPoints(), m->getNumFieldTuples(), m->getNumEnsembleTuples());
  if (getErrorCondition() < 0)
  {
    return;
  }
  /* Place all your code to execute your filter here. */

  IDataArray::Pointer outputArrayPtr = m->getCellData(m_OutputArrayName);
  BoolArrayType* outputArray = BoolArrayType::SafeObjectDownCast<IDataArray*, BoolArrayType*>(outputArrayPtr.get());
  if (NULL == outputArray)
  {
    setErrorCondition(-11002);
    notifyErrorMessage("Could not properly cast the output array to a BoolArrayType", getErrorCondition());
    return;
  }
  m_Output = outputArray->GetPointer(0);

  // Prime our output array with the result of the first comparison
  {
    ComparisonInput_t& comp_0 = m_ComparisonInputs[0];

    ThresholdFilterHelper filter(static_cast<DREAM3D::Comparison::Enumeration>(comp_0.compOperator),
                                 comp_0.compValue,
                                 outputArray);

    err = filter.execute(m->getCellData(comp_0.arrayName).get(), outputArrayPtr.get());

    if (err < 0)
    {
      setErrorCondition(-13001);
      notifyErrorMessage("Error Executing threshold filter on first array", getErrorCondition());
      return;
    }
  }
  for(size_t i = 1; i < m_ComparisonInputs.size(); ++i)
  {

    BoolArrayType::Pointer currentArrayPtr = BoolArrayType::CreateArray(m->getTotalPoints(), "TEMP");
    currentArrayPtr->initializeWithZeros();
    bool* currentArray = currentArrayPtr->GetPointer(0);

    ComparisonInput_t& compRef = m_ComparisonInputs[i];

    ThresholdFilterHelper filter(static_cast<DREAM3D::Comparison::Enumeration>(compRef.compOperator),
                                 compRef.compValue,
                                 currentArrayPtr.get());

    err = filter.execute(m->getCellData(compRef.arrayName).get(), currentArrayPtr.get());
    if (err < 0)
    {
      setErrorCondition(-13002);
      notifyErrorMessage("Error Executing threshold filter on array", getErrorCondition());
      return;
    }
    for (int64_t p = 0; p < nPoints; ++p)
    {
      if(m_Output[p] == false || currentArray[p] == false)
      {
        m_Output[p] = false;
      }
    }

  }



  /* Let the GUI know we are done with this filter */
  notifyStatusMessage("Complete");
}
Ejemplo n.º 27
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void MatrixPhaseWidget::extractStatsData(AttributeMatrix::Pointer attrMat, int index)
{
  setPhaseIndex(index);

  IDataArray::Pointer iDataArray = attrMat->getAttributeArray(DREAM3D::EnsembleData::CrystalStructures);
  unsigned int* attributeArray = boost::dynamic_pointer_cast< UInt32ArrayType >(iDataArray)->getPointer(0);
  m_CrystalStructure = attributeArray[index];

  iDataArray = attrMat->getAttributeArray(DREAM3D::EnsembleData::PhaseTypes);
  attributeArray = boost::dynamic_pointer_cast< UInt32ArrayType >(iDataArray)->getPointer(0);
  m_PhaseType = attributeArray[index];

  iDataArray = attrMat->getAttributeArray(DREAM3D::EnsembleData::Statistics);
  StatsDataArray* statsDataArray = StatsDataArray::SafeObjectDownCast<IDataArray*, StatsDataArray*>(iDataArray.get());
  if (statsDataArray == NULL)
  {
    return;
  }
  StatsData::Pointer statsData = statsDataArray->getStatsData(index);
  MatrixStatsData* matrixStatsData = MatrixStatsData::SafePointerDownCast(statsData.get());

  m_PhaseFraction = matrixStatsData->getPhaseFraction();

}
Ejemplo n.º 28
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void FindFaceAverage::dataCheckSurfaceMesh(bool preflight, size_t voxels, size_t fields, size_t ensembles)
{
  setErrorCondition(0);
  std::stringstream ss;
  SurfaceMeshDataContainer* sm = getSurfaceMeshDataContainer();
  if(NULL == sm)
  {
    addErrorMessage(getHumanLabel(), "SurfaceMeshDataContainer is missing", -383);
    setErrorCondition(-383);
  }
  else
  {
    // We MUST have Triangles defined.
    if(sm->getFaces().get() == NULL)
    {
      addErrorMessage(getHumanLabel(), "SurfaceMesh DataContainer missing Triangles", -385);
      setErrorCondition(-385);
    }
    else
    {
      GET_PREREQ_DATA(sm, DREAM3D, FaceData, SurfaceMeshGrainFaceId, ss, -387, int32_t, Int32ArrayType, fields, 1)
      if(1==m_AverageMethod)
      {
        GET_PREREQ_DATA(sm, DREAM3D, FaceData, SurfaceMeshTriangleAreas, ss, -387, double, DoubleArrayType, fields, 1)
      }

      if(m_SelectedFaceArrayName.empty() == true)
      {
        setErrorCondition(-11000);
        addErrorMessage(getHumanLabel(), "An array from the Face Data Container must be selected.", getErrorCondition());
      }
      else if(preflight)
      {
        IDataArray::Pointer inputData = sm->getFaceData(m_SelectedFaceArrayName);
        if (NULL == inputData.get())
        {
          ss.str("");
          ss << "Selected array '" << m_SelectedFaceArrayName << "' does not exist in the Surface Mesh Data Container. Was it spelled correctly?";
          setErrorCondition(-11001);
          notifyErrorMessage(ss.str(), getErrorCondition());
          return;
        }

        int numberOfComponents = inputData->GetNumberOfComponents();
        std::string dType = inputData->getTypeAsString();
        IDataArray::Pointer p = IDataArray::NullPointer();
        if (dType.compare("int8_t") == 0)
        {
          p = Int8ArrayType::CreateArray(1, numberOfComponents, m_SelectedFaceArrayName);
        }
        else if (dType.compare("uint8_t") == 0)
        {
          p = UInt8ArrayType::CreateArray(1, numberOfComponents, m_SelectedFaceArrayName);
        }
        else if (dType.compare("int16_t") == 0)
        {
          p = Int16ArrayType::CreateArray(1, numberOfComponents, m_SelectedFaceArrayName);
        }
        else if (dType.compare("uint16_t") == 0)
        {
          p = UInt16ArrayType::CreateArray(1, numberOfComponents, m_SelectedFaceArrayName);
        }
        else if (dType.compare("int32_t") == 0)
        {
          p = Int32ArrayType::CreateArray(1, numberOfComponents, m_SelectedFaceArrayName);
        }
        else if (dType.compare("uint32_t") == 0)
        {
          p = UInt32ArrayType::CreateArray(1, numberOfComponents, m_SelectedFaceArrayName);
        }
        else if (dType.compare("int64_t") == 0)
        {
          p = Int64ArrayType::CreateArray(1, numberOfComponents, m_SelectedFaceArrayName);
        }
        else if (dType.compare("uint64_t") == 0)
        {
          p = UInt64ArrayType::CreateArray(1, numberOfComponents, m_SelectedFaceArrayName);
        }
        else if (dType.compare("float") == 0)
        {
          p = FloatArrayType::CreateArray(1, numberOfComponents, m_SelectedFaceArrayName);
        }
        else if (dType.compare("double") == 0)
        {
          p = DoubleArrayType::CreateArray(1, numberOfComponents, m_SelectedFaceArrayName);
        }
        else if (dType.compare("bool") == 0)
        {
          p = BoolArrayType::CreateArray(1, numberOfComponents, m_SelectedFaceArrayName);
        }
        sm->addFieldData(p->GetName(), p);
      }
    }
  }
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void CopyFeatureArrayToElementArray::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  // Validate that the selected InArray has tuples equal to the largest
  // Feature Id; the filter would not crash otherwise, but the user should
  // be notified of unanticipated behavior ; this cannot be done in the dataCheck since
  // we don't have acces to the data yet
  int32_t numFeatures = static_cast<int32_t>(m_InArrayPtr.lock()->getNumberOfTuples());
  bool mismatchedFeatures = false;
  int32_t largestFeature = 0;
  size_t totalPoints = m_FeatureIdsPtr.lock()->getNumberOfTuples();
  for (size_t i = 0; i < totalPoints; i ++)
  {
    if (m_FeatureIds[i] > largestFeature)
    {
      largestFeature = m_FeatureIds[i];
      if (largestFeature >= numFeatures)
      {
        mismatchedFeatures = true;
        break;
      }
    }
  }

  if (mismatchedFeatures == true)
  {
    QString ss = QObject::tr("The number of Features in the InArray array (%1) is larger than the largest Feature Id in the FeatureIds array").arg(numFeatures);
    setErrorCondition(-5555);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  if (largestFeature != (numFeatures - 1))
  {
    QString ss = QObject::tr("The number of Features in the InArray array (%1) does not match the largest Feature Id in the FeatureIds array").arg(numFeatures);
    setErrorCondition(-5555);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  IDataArray::Pointer p = IDataArray::NullPointer();

  if (TemplateHelpers::CanDynamicCast<Int8ArrayType>()(m_InArrayPtr.lock()))
  {
    p = copyData<int8_t>(m_InArrayPtr.lock(), totalPoints, m_FeatureIds);
  }
  else if (TemplateHelpers::CanDynamicCast<UInt8ArrayType>()(m_InArrayPtr.lock()))
  {
    p = copyData<uint8_t>(m_InArrayPtr.lock(), totalPoints, m_FeatureIds);
  }
  else if (TemplateHelpers::CanDynamicCast<Int16ArrayType>()(m_InArrayPtr.lock()))
  {
    p = copyData<int16_t>(m_InArrayPtr.lock(), totalPoints, m_FeatureIds);
  }
  else if (TemplateHelpers::CanDynamicCast<UInt16ArrayType>()(m_InArrayPtr.lock()))
  {
    p = copyData<uint16_t>(m_InArrayPtr.lock(), totalPoints, m_FeatureIds);
  }
  else if (TemplateHelpers::CanDynamicCast<Int32ArrayType>()(m_InArrayPtr.lock()))
  {
    p = copyData<int32_t>(m_InArrayPtr.lock(), totalPoints, m_FeatureIds);
  }
  else if (TemplateHelpers::CanDynamicCast<UInt32ArrayType>()(m_InArrayPtr.lock()))
  {
    p = copyData<uint32_t>(m_InArrayPtr.lock(), totalPoints, m_FeatureIds);
  }
  else if (TemplateHelpers::CanDynamicCast<Int64ArrayType>()(m_InArrayPtr.lock()))
  {
    p = copyData<int64_t>(m_InArrayPtr.lock(), totalPoints, m_FeatureIds);
  }
  else if (TemplateHelpers::CanDynamicCast<UInt64ArrayType>()(m_InArrayPtr.lock()))
  {
    p = copyData<uint64_t>(m_InArrayPtr.lock(), totalPoints, m_FeatureIds);
  }
  else if (TemplateHelpers::CanDynamicCast<FloatArrayType>()(m_InArrayPtr.lock()))
  {
    p = copyData<float>(m_InArrayPtr.lock(), totalPoints, m_FeatureIds);
  }
  else if (TemplateHelpers::CanDynamicCast<DoubleArrayType>()(m_InArrayPtr.lock()))
  {
    p = copyData<double>(m_InArrayPtr.lock(), totalPoints, m_FeatureIds);
  }
  else if (TemplateHelpers::CanDynamicCast<BoolArrayType>()(m_InArrayPtr.lock()))
  {
    p = copyData<bool>(m_InArrayPtr.lock(), totalPoints, m_FeatureIds);
  }
  else
  {
    QString ss = QObject::tr("The selected array was of unsupported type. The path is %1").arg(m_SelectedFeatureArrayPath.serialize());
    setErrorCondition(-14000);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
  }

  if (p.get() != NULL)
  {
    p->setName(getCreatedArrayName());
    AttributeMatrix::Pointer am = getDataContainerArray()->getAttributeMatrix(getFeatureIdsArrayPath());
    am->addAttributeArray(p->getName(), p);
  }

  notifyStatusMessage(getHumanLabel(), "Complete");
}
    static void PopulateAttributeArrayList(AbstractFilter* filter, FilterParameter* filterParameter,
                                           QComboBox* dcCombo, QComboBox* amCombo, WidgetType* attributeArraysWidget,
                                           DataContainerArrayProxy& dcaProxy,
                                           QVector<DataArrayPath> selectedPaths)
    {
      FilterParameterType* fp = dynamic_cast<FilterParameterType*>(filterParameter);
      assert(fp != NULL);

      DataContainerArray::Pointer dca = filter->getDataContainerArray();
      if (NULL == dca.get()) { return; }

      attributeArraysWidget->blockSignals(true);
      attributeArraysWidget->clear();

      // Get the selected Data Container Name from the DataContainerList Widget
      QString currentDCName = dcCombo->currentText();
      QString currentAttrMatName = amCombo->currentText();

      // Loop over the data containers until we find the proper data container
      QList<DataContainerProxy> containers = dcaProxy.dataContainers.values();
      QListIterator<DataContainerProxy> containerIter(containers);
      QVector<QString> daTypes = fp->getDefaultAttributeArrayTypes();
      QVector< QVector<size_t> > cDims = fp->getDefaultComponentDimensions();
      while (containerIter.hasNext())
      {
        DataContainerProxy dc = containerIter.next();
        if (dc.name.compare(currentDCName) == 0)
        {
          // We found the proper Data Container, now populate the AttributeMatrix List
          QMap<QString, AttributeMatrixProxy> attrMats = dc.attributeMatricies;
          QMapIterator<QString, AttributeMatrixProxy> attrMatsIter(attrMats);
          while (attrMatsIter.hasNext())
          {
            attrMatsIter.next();
            QString amName = attrMatsIter.key();
            if (amName.compare(currentAttrMatName) == 0)
            {
              // Clear the list of arrays from the QListWidget
              attributeArraysWidget->clear();
              // We found the selected AttributeMatrix, so loop over this attribute matrix arrays and populate the list widget
              AttributeMatrixProxy amProxy = attrMatsIter.value();
              QMap<QString, DataArrayProxy> dataArrays = amProxy.dataArrays;
              QMapIterator<QString, DataArrayProxy> dataArraysIter(dataArrays);
              while (dataArraysIter.hasNext())
              {
                dataArraysIter.next();
                QString daName = dataArraysIter.key();
                QListWidgetItem* daItem = new QListWidgetItem(daName);
                daItem->setCheckState(Qt::Unchecked);

                for (int i = 0; i < selectedPaths.size(); i++)
                {
                  if (selectedPaths.at(i).getDataArrayName() == daName)
                  {
                    daItem->setCheckState(Qt::Checked);
                  }
                }

                IDataArray::Pointer da = dca->getPrereqIDataArrayFromPath<IDataArray, AbstractFilter>(NULL, DataArrayPath(dc.name, amProxy.name, daName));
                attributeArraysWidget->addItem(daItem);

                if (NULL != da.get() && ((daTypes.isEmpty() == false && daTypes.contains(da->getTypeAsString()) == false) || (cDims.isEmpty() == false && cDims.contains(da->getComponentDimensions()) == false)))
                {
                  QList<QListWidgetItem*> rejectList = attributeArraysWidget->findItems(daName, Qt::MatchRecursive);
                  for (int i = 0; i < rejectList.size(); i++)
                  {
                    QListWidgetItem* item = rejectList[i];
                    item->setFlags(item->flags() & ~Qt::ItemIsEnabled);
                  }
                }
              }
            }
          }
        }
      }

      attributeArraysWidget->blockSignals(false);
    }