void readnextblock(std::istream& sin, libbase::matrix<S>& result, int blocklength, const libbase::size_type<libbase::matrix>& txsize) { assertalways(blocklength == 0); result.init(txsize); result.serialize(sin); }
void lut_interleaver<real>::inverse(const libbase::matrix<real>& in, libbase::matrix<real>& out) const { const int tau = lut.size(); const int K = in.size().cols(); assertalways(in.size().rows() == tau); out.init(in.size()); for (int t = 0; t < tau; t++) if (lut(t) == fsm::tail) for (int i = 0; i < K; i++) out(t, i) = real(1.0 / K); else for (int i = 0; i < K; i++) out(lut(t), i) = in(t, i); }
void limitfilter<T>::process(const libbase::matrix<T>& in, libbase::matrix<T>& out) const { const int M = in.size().rows(); const int N = in.size().cols(); out.init(M, N); for (int i = 0; i < M; i++) for (int j = 0; j < N; j++) if (in(i, j) < m_lo) out(i, j) = m_lo; else if (in(i, j) > m_hi) out(i, j) = m_hi; else out(i, j) = in(i, j); }
void variancefilter<T>::process(const libbase::matrix<T>& in, libbase::matrix<T>& out) const { const int M = in.size().rows(); const int N = in.size().cols(); out.init(M, N); for (int i = 0; i < M; i++) for (int j = 0; j < N; j++) { // compute the variance of neighbouring pixels libbase::rvstatistics r; for (int ii = std::max(i - m_d, 0); ii <= std::min(i + m_d, M - 1); ii++) for (int jj = std::max(j - m_d, 0); jj <= std::min(j + m_d, N - 1); jj++) r.insert(double(in(ii, jj))); out(i, j) = T(r.var()); } }
void limitfilter<T>::process(libbase::matrix<T>& m) const { const int M = m.size().rows(); const int N = m.size().cols(); for (int i = 0; i < M; i++) for (int j = 0; j < N; j++) if (m(i, j) < m_lo) m(i, j) = m_lo; else if (m(i, j) > m_hi) m(i, j) = m_hi; }