Ejemplo n.º 1
0
MacroAssemblerCodeRef osrEntryThunkGenerator(VM* vm)
{
    AssemblyHelpers jit(vm, nullptr);

    // We get passed the address of a scratch buffer. The first 8-byte slot of the buffer
    // is the frame size. The second 8-byte slot is the pointer to where we are supposed to
    // jump. The remaining bytes are the new call frame header followed by the locals.
    
    ptrdiff_t offsetOfFrameSize = 0; // This is the DFG frame count.
    ptrdiff_t offsetOfTargetPC = offsetOfFrameSize + sizeof(EncodedJSValue);
    ptrdiff_t offsetOfPayload = offsetOfTargetPC + sizeof(EncodedJSValue);
    ptrdiff_t offsetOfLocals = offsetOfPayload + sizeof(Register) * CallFrame::headerSizeInRegisters;
    
    jit.move(GPRInfo::returnValueGPR2, GPRInfo::regT0);
    jit.loadPtr(MacroAssembler::Address(GPRInfo::regT0, offsetOfFrameSize), GPRInfo::regT1); // Load the frame size.
    jit.move(GPRInfo::regT1, GPRInfo::regT2);
    jit.lshiftPtr(MacroAssembler::Imm32(3), GPRInfo::regT2);
    jit.move(GPRInfo::callFrameRegister, MacroAssembler::stackPointerRegister);
    jit.subPtr(GPRInfo::regT2, MacroAssembler::stackPointerRegister);
    
    MacroAssembler::Label loop = jit.label();
    jit.subPtr(MacroAssembler::TrustedImm32(1), GPRInfo::regT1);
    jit.move(GPRInfo::regT1, GPRInfo::regT4);
    jit.negPtr(GPRInfo::regT4);
    jit.load32(MacroAssembler::BaseIndex(GPRInfo::regT0, GPRInfo::regT1, MacroAssembler::TimesEight, offsetOfLocals), GPRInfo::regT2);
    jit.load32(MacroAssembler::BaseIndex(GPRInfo::regT0, GPRInfo::regT1, MacroAssembler::TimesEight, offsetOfLocals + sizeof(int32_t)), GPRInfo::regT3);
    jit.store32(GPRInfo::regT2, MacroAssembler::BaseIndex(GPRInfo::callFrameRegister, GPRInfo::regT4, MacroAssembler::TimesEight, -static_cast<intptr_t>(sizeof(Register))));
    jit.store32(GPRInfo::regT3, MacroAssembler::BaseIndex(GPRInfo::callFrameRegister, GPRInfo::regT4, MacroAssembler::TimesEight, -static_cast<intptr_t>(sizeof(Register)) + static_cast<intptr_t>(sizeof(int32_t))));
    jit.branchPtr(MacroAssembler::NotEqual, GPRInfo::regT1, MacroAssembler::TrustedImmPtr(bitwise_cast<void*>(-static_cast<intptr_t>(CallFrame::headerSizeInRegisters)))).linkTo(loop, &jit);
    
    jit.loadPtr(MacroAssembler::Address(GPRInfo::regT0, offsetOfTargetPC), GPRInfo::regT1);
    MacroAssembler::Jump ok = jit.branchPtr(MacroAssembler::Above, GPRInfo::regT1, MacroAssembler::TrustedImmPtr(bitwise_cast<void*>(static_cast<intptr_t>(1000))));
    jit.abortWithReason(DFGUnreasonableOSREntryJumpDestination);

    ok.link(&jit);
    jit.restoreCalleeSavesFromVMEntryFrameCalleeSavesBuffer();
    jit.emitMaterializeTagCheckRegisters();

    jit.jump(GPRInfo::regT1);
    
    LinkBuffer patchBuffer(*vm, jit, GLOBAL_THUNK_ID);
    return FINALIZE_CODE(patchBuffer, ("DFG OSR entry thunk"));
}
Ejemplo n.º 2
0
MacroAssemblerCodeRef absThunkGenerator(JSGlobalData* globalData)
{
    SpecializedThunkJIT jit(1);
    if (!jit.supportsFloatingPointAbs())
        return MacroAssemblerCodeRef::createSelfManagedCodeRef(globalData->jitStubs->ctiNativeCall());
    MacroAssembler::Jump nonIntJump;
    jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
    jit.rshift32(SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(31), SpecializedThunkJIT::regT1);
    jit.add32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0);
    jit.xor32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0);
    jit.appendFailure(jit.branch32(MacroAssembler::Equal, SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(1 << 31)));
    jit.returnInt32(SpecializedThunkJIT::regT0);
    nonIntJump.link(&jit);
    // Shame about the double int conversion here.
    jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
    jit.absDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1);
    jit.returnDouble(SpecializedThunkJIT::fpRegT1);
    return jit.finalize(*globalData, globalData->jitStubs->ctiNativeCall(), "abs");
}
Ejemplo n.º 3
0
MacroAssemblerCodeRef clz32ThunkGenerator(VM* vm)
{
    SpecializedThunkJIT jit(vm, 1);
    MacroAssembler::Jump nonIntArgJump;
    jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntArgJump);

    SpecializedThunkJIT::Label convertedArgumentReentry(&jit);
    jit.countLeadingZeros32(SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1);
    jit.returnInt32(SpecializedThunkJIT::regT1);

    if (jit.supportsFloatingPointTruncate()) {
        nonIntArgJump.link(&jit);
        jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
        jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, SpecializedThunkJIT::BranchIfTruncateSuccessful).linkTo(convertedArgumentReentry, &jit);
        jit.appendFailure(jit.jump());
    } else
        jit.appendFailure(nonIntArgJump);

    return jit.finalize(vm->jitStubs->ctiNativeTailCall(vm), "clz32");
}
Ejemplo n.º 4
0
MacroAssemblerCodeRef floorThunkGenerator(VM* vm)
{
    SpecializedThunkJIT jit(vm, 1);
    MacroAssembler::Jump nonIntJump;
    if (!UnaryDoubleOpWrapper(floor) || !jit.supportsFloatingPoint())
        return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
    jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
    jit.returnInt32(SpecializedThunkJIT::regT0);
    nonIntJump.link(&jit);
    jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
#if CPU(ARM64)
    SpecializedThunkJIT::JumpList doubleResult;
    jit.floorDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
    jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
    jit.returnInt32(SpecializedThunkJIT::regT0);
    doubleResult.link(&jit);
    jit.returnDouble(SpecializedThunkJIT::fpRegT0);
#else
    SpecializedThunkJIT::Jump intResult;
    SpecializedThunkJIT::JumpList doubleResult;
    if (jit.supportsFloatingPointTruncate()) {
        jit.loadDouble(&zeroConstant, SpecializedThunkJIT::fpRegT1);
        doubleResult.append(jit.branchDouble(MacroAssembler::DoubleEqual, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
        SpecializedThunkJIT::JumpList slowPath;
        // Handle the negative doubles in the slow path for now.
        slowPath.append(jit.branchDouble(MacroAssembler::DoubleLessThanOrUnordered, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
        slowPath.append(jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0));
        intResult = jit.jump();
        slowPath.link(&jit);
    }
    jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(floor));
    jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
    if (jit.supportsFloatingPointTruncate())
        intResult.link(&jit);
    jit.returnInt32(SpecializedThunkJIT::regT0);
    doubleResult.link(&jit);
    jit.returnDouble(SpecializedThunkJIT::fpRegT0);
#endif // CPU(ARM64)
    return jit.finalize(vm->jitStubs->ctiNativeTailCall(vm), "floor");
}
Ejemplo n.º 5
0
MacroAssemblerCodeRef ceilThunkGenerator(VM* vm)
{
    SpecializedThunkJIT jit(vm, 1);
    if (!UnaryDoubleOpWrapper(ceil) || !jit.supportsFloatingPoint())
        return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
    MacroAssembler::Jump nonIntJump;
    jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
    jit.returnInt32(SpecializedThunkJIT::regT0);
    nonIntJump.link(&jit);
    jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
#if CPU(ARM64)
    jit.ceilDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
#else
    jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(ceil));
#endif // CPU(ARM64)
    SpecializedThunkJIT::JumpList doubleResult;
    jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
    jit.returnInt32(SpecializedThunkJIT::regT0);
    doubleResult.link(&jit);
    jit.returnDouble(SpecializedThunkJIT::fpRegT0);
    return jit.finalize(vm->jitStubs->ctiNativeTailCall(vm), "ceil");
}
Ejemplo n.º 6
0
MacroAssemblerCodePtr powThunkGenerator(JSGlobalData* globalData, ExecutablePool* pool)
{
#if USE(JSVALUE64) || USE(JSVALUE32_64)
    SpecializedThunkJIT jit(2, globalData, pool);
    if (!jit.supportsFloatingPoint())
        return globalData->jitStubs->ctiNativeCall();

    jit.loadDouble(&oneConstant, SpecializedThunkJIT::fpRegT1);
    jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
    MacroAssembler::Jump nonIntExponent;
    jit.loadInt32Argument(1, SpecializedThunkJIT::regT0, nonIntExponent);
    jit.appendFailure(jit.branch32(MacroAssembler::LessThan, SpecializedThunkJIT::regT0, MacroAssembler::Imm32(0)));
    
    MacroAssembler::Jump exponentIsZero = jit.branchTest32(MacroAssembler::Zero, SpecializedThunkJIT::regT0);
    MacroAssembler::Label startLoop(jit.label());

    MacroAssembler::Jump exponentIsEven = jit.branchTest32(MacroAssembler::Zero, SpecializedThunkJIT::regT0, MacroAssembler::Imm32(1));
    jit.mulDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1);
    exponentIsEven.link(&jit);
    jit.mulDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
    jit.rshift32(MacroAssembler::Imm32(1), SpecializedThunkJIT::regT0);
    jit.branchTest32(MacroAssembler::NonZero, SpecializedThunkJIT::regT0).linkTo(startLoop, &jit);

    exponentIsZero.link(&jit);

    {
        SpecializedThunkJIT::JumpList doubleResult;
        jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT1, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT0);
        jit.returnInt32(SpecializedThunkJIT::regT0);
        doubleResult.link(&jit);
        jit.returnDouble(SpecializedThunkJIT::fpRegT1);
    }

    if (jit.supportsFloatingPointSqrt()) {
        nonIntExponent.link(&jit);
        jit.loadDouble(&negativeHalfConstant, SpecializedThunkJIT::fpRegT3);
        jit.loadDoubleArgument(1, SpecializedThunkJIT::fpRegT2, SpecializedThunkJIT::regT0);
        jit.appendFailure(jit.branchDouble(MacroAssembler::DoubleLessThanOrEqual, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
        jit.appendFailure(jit.branchDouble(MacroAssembler::DoubleNotEqualOrUnordered, SpecializedThunkJIT::fpRegT2, SpecializedThunkJIT::fpRegT3));
        jit.sqrtDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
        jit.divDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1);

        SpecializedThunkJIT::JumpList doubleResult;
        jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT1, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT0);
        jit.returnInt32(SpecializedThunkJIT::regT0);
        doubleResult.link(&jit);
        jit.returnDouble(SpecializedThunkJIT::fpRegT1);
    } else
        jit.appendFailure(nonIntExponent);

    return jit.finalize(globalData->jitStubs->ctiNativeCall());
#else
    UNUSED_PARAM(pool);
    return globalData->jitStubs->ctiNativeCall();
#endif
}
Ejemplo n.º 7
0
MacroAssemblerCodeRef powThunkGenerator(JSGlobalData* globalData)
{
    SpecializedThunkJIT jit(2);
    if (!jit.supportsFloatingPoint())
        return MacroAssemblerCodeRef::createSelfManagedCodeRef(globalData->jitStubs->ctiNativeCall());

    jit.loadDouble(&oneConstant, SpecializedThunkJIT::fpRegT1);
    jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
    MacroAssembler::Jump nonIntExponent;
    jit.loadInt32Argument(1, SpecializedThunkJIT::regT0, nonIntExponent);
    jit.appendFailure(jit.branch32(MacroAssembler::LessThan, SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(0)));
    
    MacroAssembler::Jump exponentIsZero = jit.branchTest32(MacroAssembler::Zero, SpecializedThunkJIT::regT0);
    MacroAssembler::Label startLoop(jit.label());

    MacroAssembler::Jump exponentIsEven = jit.branchTest32(MacroAssembler::Zero, SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(1));
    jit.mulDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1);
    exponentIsEven.link(&jit);
    jit.mulDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
    jit.rshift32(MacroAssembler::TrustedImm32(1), SpecializedThunkJIT::regT0);
    jit.branchTest32(MacroAssembler::NonZero, SpecializedThunkJIT::regT0).linkTo(startLoop, &jit);

    exponentIsZero.link(&jit);

    {
        SpecializedThunkJIT::JumpList doubleResult;
        jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT1, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT0);
        jit.returnInt32(SpecializedThunkJIT::regT0);
        doubleResult.link(&jit);
        jit.returnDouble(SpecializedThunkJIT::fpRegT1);
    }

    if (jit.supportsFloatingPointSqrt()) {
        nonIntExponent.link(&jit);
        jit.loadDouble(&negativeHalfConstant, SpecializedThunkJIT::fpRegT3);
        jit.loadDoubleArgument(1, SpecializedThunkJIT::fpRegT2, SpecializedThunkJIT::regT0);
        jit.appendFailure(jit.branchDouble(MacroAssembler::DoubleLessThanOrEqual, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
        jit.appendFailure(jit.branchDouble(MacroAssembler::DoubleNotEqualOrUnordered, SpecializedThunkJIT::fpRegT2, SpecializedThunkJIT::fpRegT3));
        jit.sqrtDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
        jit.divDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1);

        SpecializedThunkJIT::JumpList doubleResult;
        jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT1, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT0);
        jit.returnInt32(SpecializedThunkJIT::regT0);
        doubleResult.link(&jit);
        jit.returnDouble(SpecializedThunkJIT::fpRegT1);
    } else
        jit.appendFailure(nonIntExponent);

    return jit.finalize(*globalData, globalData->jitStubs->ctiNativeCall(), "pow");
}
    MacroAssemblerCodeRef jitWriteThunkGenerator(void* writableAddr, void* stubBase, size_t stubSize)
    {
        using namespace ARM64Registers;
        using TrustedImm32 = MacroAssembler::TrustedImm32;

        MacroAssembler jit;

        jit.move(MacroAssembler::TrustedImmPtr(writableAddr), x7);
        jit.addPtr(x7, x0);

        jit.move(x0, x3);
        MacroAssembler::Jump smallCopy = jit.branch64(MacroAssembler::Below, x2, MacroAssembler::TrustedImm64(64));

        jit.add64(TrustedImm32(32), x3);
        jit.and64(TrustedImm32(-32), x3);
        jit.loadPair64(x1, x12, x13);
        jit.loadPair64(x1, TrustedImm32(16), x14, x15);
        jit.sub64(x3, x0, x5);
        jit.addPtr(x5, x1);

        jit.loadPair64(x1, x8, x9);
        jit.loadPair64(x1, TrustedImm32(16), x10, x11);
        jit.add64(TrustedImm32(32), x1);
        jit.sub64(x5, x2);
        jit.storePair64(x12, x13, x0);
        jit.storePair64(x14, x15, x0, TrustedImm32(16));
        MacroAssembler::Jump cleanup = jit.branchSub64(MacroAssembler::BelowOrEqual, TrustedImm32(64), x2);

        MacroAssembler::Label copyLoop = jit.label();
        jit.storePair64WithNonTemporalAccess(x8, x9, x3);
        jit.storePair64WithNonTemporalAccess(x10, x11, x3, TrustedImm32(16));
        jit.add64(TrustedImm32(32), x3);
        jit.loadPair64WithNonTemporalAccess(x1, x8, x9);
        jit.loadPair64WithNonTemporalAccess(x1, TrustedImm32(16), x10, x11);
        jit.add64(TrustedImm32(32), x1);
        jit.branchSub64(MacroAssembler::Above, TrustedImm32(32), x2).linkTo(copyLoop, &jit);

        cleanup.link(&jit);
        jit.add64(x2, x1);
        jit.loadPair64(x1, x12, x13);
        jit.loadPair64(x1, TrustedImm32(16), x14, x15);
        jit.storePair64(x8, x9, x3);
        jit.storePair64(x10, x11, x3, TrustedImm32(16));
        jit.addPtr(x2, x3);
        jit.storePair64(x12, x13, x3, TrustedImm32(32));
        jit.storePair64(x14, x15, x3, TrustedImm32(48));
        jit.ret();

        MacroAssembler::Label local0 = jit.label();
        jit.load64(x1, PostIndex(8), x6);
        jit.store64(x6, x3, PostIndex(8));
        smallCopy.link(&jit);
        jit.branchSub64(MacroAssembler::AboveOrEqual, TrustedImm32(8), x2).linkTo(local0, &jit);
        MacroAssembler::Jump local2 = jit.branchAdd64(MacroAssembler::Equal, TrustedImm32(8), x2);
        MacroAssembler::Label local1 = jit.label();
        jit.load8(x1, PostIndex(1), x6);
        jit.store8(x6, x3, PostIndex(1));
        jit.branchSub64(MacroAssembler::NotEqual, TrustedImm32(1), x2).linkTo(local1, &jit);
        local2.link(&jit);
        jit.ret();

        LinkBuffer linkBuffer(jit, stubBase, stubSize);
        return FINALIZE_CODE(linkBuffer, ("Bulletproof JIT write thunk"));
    }
Ejemplo n.º 9
0
static void compileStub(
    unsigned exitID, JITCode* jitCode, OSRExit& exit, VM* vm, CodeBlock* codeBlock)
{
    StackMaps::Record* record = nullptr;
    
    for (unsigned i = jitCode->stackmaps.records.size(); i--;) {
        record = &jitCode->stackmaps.records[i];
        if (record->patchpointID == exit.m_stackmapID)
            break;
    }
    
    RELEASE_ASSERT(record->patchpointID == exit.m_stackmapID);
    
    // This code requires framePointerRegister is the same as callFrameRegister
    static_assert(MacroAssembler::framePointerRegister == GPRInfo::callFrameRegister, "MacroAssembler::framePointerRegister and GPRInfo::callFrameRegister must be the same");

    CCallHelpers jit(vm, codeBlock);
    
    // We need scratch space to save all registers, to build up the JS stack, to deal with unwind
    // fixup, pointers to all of the objects we materialize, and the elements inside those objects
    // that we materialize.
    
    // Figure out how much space we need for those object allocations.
    unsigned numMaterializations = 0;
    size_t maxMaterializationNumArguments = 0;
    for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) {
        numMaterializations++;
        
        maxMaterializationNumArguments = std::max(
            maxMaterializationNumArguments,
            materialization->properties().size());
    }
    
    ScratchBuffer* scratchBuffer = vm->scratchBufferForSize(
        sizeof(EncodedJSValue) * (
            exit.m_values.size() + numMaterializations + maxMaterializationNumArguments) +
        requiredScratchMemorySizeInBytes() +
        codeBlock->calleeSaveRegisters()->size() * sizeof(uint64_t));
    EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
    EncodedJSValue* materializationPointers = scratch + exit.m_values.size();
    EncodedJSValue* materializationArguments = materializationPointers + numMaterializations;
    char* registerScratch = bitwise_cast<char*>(materializationArguments + maxMaterializationNumArguments);
    uint64_t* unwindScratch = bitwise_cast<uint64_t*>(registerScratch + requiredScratchMemorySizeInBytes());
    
    HashMap<ExitTimeObjectMaterialization*, EncodedJSValue*> materializationToPointer;
    unsigned materializationCount = 0;
    for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) {
        materializationToPointer.add(
            materialization, materializationPointers + materializationCount++);
    }
    
    // Note that we come in here, the stack used to be as LLVM left it except that someone called pushToSave().
    // We don't care about the value they saved. But, we do appreciate the fact that they did it, because we use
    // that slot for saveAllRegisters().

    saveAllRegisters(jit, registerScratch);
    
    // Bring the stack back into a sane form and assert that it's sane.
    jit.popToRestore(GPRInfo::regT0);
    jit.checkStackPointerAlignment();
    
    if (vm->m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation) {
        Profiler::Database& database = *vm->m_perBytecodeProfiler;
        Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get();
        
        Profiler::OSRExit* profilerExit = compilation->addOSRExit(
            exitID, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin),
            exit.m_kind, exit.m_kind == UncountableInvalidation);
        jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress()));
    }

    // The remaining code assumes that SP/FP are in the same state that they were in the FTL's
    // call frame.
    
    // Get the call frame and tag thingies.
    // Restore the exiting function's callFrame value into a regT4
    jit.move(MacroAssembler::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister);
    jit.move(MacroAssembler::TrustedImm64(TagMask), GPRInfo::tagMaskRegister);
    
    // Do some value profiling.
    if (exit.m_profileDataFormat != DataFormatNone) {
        record->locations[0].restoreInto(jit, jitCode->stackmaps, registerScratch, GPRInfo::regT0);
        reboxAccordingToFormat(
            exit.m_profileDataFormat, jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2);
        
        if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
            CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
            if (ArrayProfile* arrayProfile = jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) {
                jit.load32(MacroAssembler::Address(GPRInfo::regT0, JSCell::structureIDOffset()), GPRInfo::regT1);
                jit.store32(GPRInfo::regT1, arrayProfile->addressOfLastSeenStructureID());
                jit.load8(MacroAssembler::Address(GPRInfo::regT0, JSCell::indexingTypeOffset()), GPRInfo::regT1);
                jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::regT2);
                jit.lshift32(GPRInfo::regT1, GPRInfo::regT2);
                jit.or32(GPRInfo::regT2, MacroAssembler::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
            }
        }

        if (!!exit.m_valueProfile)
            jit.store64(GPRInfo::regT0, exit.m_valueProfile.getSpecFailBucket(0));
    }

    // Materialize all objects. Don't materialize an object until all
    // of the objects it needs have been materialized. We break cycles
    // by populating objects late - we only consider an object as
    // needing another object if the later is needed for the
    // allocation of the former.

    HashSet<ExitTimeObjectMaterialization*> toMaterialize;
    for (ExitTimeObjectMaterialization* materialization : exit.m_materializations)
        toMaterialize.add(materialization);

    while (!toMaterialize.isEmpty()) {
        unsigned previousToMaterializeSize = toMaterialize.size();

        Vector<ExitTimeObjectMaterialization*> worklist;
        worklist.appendRange(toMaterialize.begin(), toMaterialize.end());
        for (ExitTimeObjectMaterialization* materialization : worklist) {
            // Check if we can do anything about this right now.
            bool allGood = true;
            for (ExitPropertyValue value : materialization->properties()) {
                if (!value.value().isObjectMaterialization())
                    continue;
                if (!value.location().neededForMaterialization())
                    continue;
                if (toMaterialize.contains(value.value().objectMaterialization())) {
                    // Gotta skip this one, since it needs a
                    // materialization that hasn't been materialized.
                    allGood = false;
                    break;
                }
            }
            if (!allGood)
                continue;

            // All systems go for materializing the object. First we
            // recover the values of all of its fields and then we
            // call a function to actually allocate the beast.
            // We only recover the fields that are needed for the allocation.
            for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) {
                const ExitPropertyValue& property = materialization->properties()[propertyIndex];
                const ExitValue& value = property.value();
                if (!property.location().neededForMaterialization())
                    continue;

                compileRecovery(
                    jit, value, record, jitCode->stackmaps, registerScratch,
                    materializationToPointer);
                jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex);
            }
            
            // This call assumes that we don't pass arguments on the stack.
            jit.setupArgumentsWithExecState(
                CCallHelpers::TrustedImmPtr(materialization),
                CCallHelpers::TrustedImmPtr(materializationArguments));
            jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationMaterializeObjectInOSR)), GPRInfo::nonArgGPR0);
            jit.call(GPRInfo::nonArgGPR0);
            jit.storePtr(GPRInfo::returnValueGPR, materializationToPointer.get(materialization));

            // Let everyone know that we're done.
            toMaterialize.remove(materialization);
        }
        
        // We expect progress! This ensures that we crash rather than looping infinitely if there
        // is something broken about this fixpoint. Or, this could happen if we ever violate the
        // "materializations form a DAG" rule.
        RELEASE_ASSERT(toMaterialize.size() < previousToMaterializeSize);
    }

    // Now that all the objects have been allocated, we populate them
    // with the correct values. This time we can recover all the
    // fields, including those that are only needed for the allocation.
    for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) {
        for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) {
            const ExitValue& value = materialization->properties()[propertyIndex].value();
            compileRecovery(
                jit, value, record, jitCode->stackmaps, registerScratch,
                materializationToPointer);
            jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex);
        }

        // This call assumes that we don't pass arguments on the stack
        jit.setupArgumentsWithExecState(
            CCallHelpers::TrustedImmPtr(materialization),
            CCallHelpers::TrustedImmPtr(materializationToPointer.get(materialization)),
            CCallHelpers::TrustedImmPtr(materializationArguments));
        jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationPopulateObjectInOSR)), GPRInfo::nonArgGPR0);
        jit.call(GPRInfo::nonArgGPR0);
    }

    // Save all state from wherever the exit data tells us it was, into the appropriate place in
    // the scratch buffer. This also does the reboxing.
    
    for (unsigned index = exit.m_values.size(); index--;) {
        compileRecovery(
            jit, exit.m_values[index], record, jitCode->stackmaps, registerScratch,
            materializationToPointer);
        jit.store64(GPRInfo::regT0, scratch + index);
    }
    
    // Henceforth we make it look like the exiting function was called through a register
    // preservation wrapper. This implies that FP must be nudged down by a certain amount. Then
    // we restore the various things according to either exit.m_values or by copying from the
    // old frame, and finally we save the various callee-save registers into where the
    // restoration thunk would restore them from.
    
    // Before we start messing with the frame, we need to set aside any registers that the
    // FTL code was preserving.
    for (unsigned i = codeBlock->calleeSaveRegisters()->size(); i--;) {
        RegisterAtOffset entry = codeBlock->calleeSaveRegisters()->at(i);
        jit.load64(
            MacroAssembler::Address(MacroAssembler::framePointerRegister, entry.offset()),
            GPRInfo::regT0);
        jit.store64(GPRInfo::regT0, unwindScratch + i);
    }
    
    jit.load32(CCallHelpers::payloadFor(JSStack::ArgumentCount), GPRInfo::regT2);
    
    // Let's say that the FTL function had failed its arity check. In that case, the stack will
    // contain some extra stuff.
    //
    // We compute the padded stack space:
    //
    //     paddedStackSpace = roundUp(codeBlock->numParameters - regT2 + 1)
    //
    // The stack will have regT2 + CallFrameHeaderSize stuff.
    // We want to make the stack look like this, from higher addresses down:
    //
    //     - argument padding
    //     - actual arguments
    //     - call frame header

    // This code assumes that we're dealing with FunctionCode.
    RELEASE_ASSERT(codeBlock->codeType() == FunctionCode);
    
    jit.add32(
        MacroAssembler::TrustedImm32(-codeBlock->numParameters()), GPRInfo::regT2,
        GPRInfo::regT3);
    MacroAssembler::Jump arityIntact = jit.branch32(
        MacroAssembler::GreaterThanOrEqual, GPRInfo::regT3, MacroAssembler::TrustedImm32(0));
    jit.neg32(GPRInfo::regT3);
    jit.add32(MacroAssembler::TrustedImm32(1 + stackAlignmentRegisters() - 1), GPRInfo::regT3);
    jit.and32(MacroAssembler::TrustedImm32(-stackAlignmentRegisters()), GPRInfo::regT3);
    jit.add32(GPRInfo::regT3, GPRInfo::regT2);
    arityIntact.link(&jit);

    CodeBlock* baselineCodeBlock = jit.baselineCodeBlockFor(exit.m_codeOrigin);

    // First set up SP so that our data doesn't get clobbered by signals.
    unsigned conservativeStackDelta =
        (exit.m_values.numberOfLocals() + baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters()) * sizeof(Register) +
        maxFrameExtentForSlowPathCall;
    conservativeStackDelta = WTF::roundUpToMultipleOf(
        stackAlignmentBytes(), conservativeStackDelta);
    jit.addPtr(
        MacroAssembler::TrustedImm32(-conservativeStackDelta),
        MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister);
    jit.checkStackPointerAlignment();

    RegisterSet allFTLCalleeSaves = RegisterSet::ftlCalleeSaveRegisters();
    RegisterAtOffsetList* baselineCalleeSaves = baselineCodeBlock->calleeSaveRegisters();

    for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) {
        if (!allFTLCalleeSaves.get(reg))
            continue;
        unsigned unwindIndex = codeBlock->calleeSaveRegisters()->indexOf(reg);
        RegisterAtOffset* baselineRegisterOffset = baselineCalleeSaves->find(reg);

        if (reg.isGPR()) {
            GPRReg regToLoad = baselineRegisterOffset ? GPRInfo::regT0 : reg.gpr();

            if (unwindIndex == UINT_MAX) {
                // The FTL compilation didn't preserve this register. This means that it also
                // didn't use the register. So its value at the beginning of OSR exit should be
                // preserved by the thunk. Luckily, we saved all registers into the register
                // scratch buffer, so we can restore them from there.
                jit.load64(registerScratch + offsetOfReg(reg), regToLoad);
            } else {
                // The FTL compilation preserved the register. Its new value is therefore
                // irrelevant, but we can get the value that was preserved by using the unwind
                // data. We've already copied all unwind-able preserved registers into the unwind
                // scratch buffer, so we can get it from there.
                jit.load64(unwindScratch + unwindIndex, regToLoad);
            }

            if (baselineRegisterOffset)
                jit.store64(regToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset()));
        } else {
            FPRReg fpRegToLoad = baselineRegisterOffset ? FPRInfo::fpRegT0 : reg.fpr();

            if (unwindIndex == UINT_MAX)
                jit.loadDouble(MacroAssembler::TrustedImmPtr(registerScratch + offsetOfReg(reg)), fpRegToLoad);
            else
                jit.loadDouble(MacroAssembler::TrustedImmPtr(unwindScratch + unwindIndex), fpRegToLoad);

            if (baselineRegisterOffset)
                jit.storeDouble(fpRegToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset()));
        }
    }

    size_t baselineVirtualRegistersForCalleeSaves = baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters();

    // Now get state out of the scratch buffer and place it back into the stack. The values are
    // already reboxed so we just move them.
    for (unsigned index = exit.m_values.size(); index--;) {
        VirtualRegister reg = exit.m_values.virtualRegisterForIndex(index);

        if (reg.isLocal() && reg.toLocal() < static_cast<int>(baselineVirtualRegistersForCalleeSaves))
            continue;

        jit.load64(scratch + index, GPRInfo::regT0);
        jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(reg));
    }
    
    handleExitCounts(jit, exit);
    reifyInlinedCallFrames(jit, exit);
    adjustAndJumpToTarget(jit, exit, false);
    
    LinkBuffer patchBuffer(*vm, jit, codeBlock);
    exit.m_code = FINALIZE_CODE_IF(
        shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit(),
        patchBuffer,
        ("FTL OSR exit #%u (%s, %s) from %s, with operands = %s, and record = %s",
            exitID, toCString(exit.m_codeOrigin).data(),
            exitKindToString(exit.m_kind), toCString(*codeBlock).data(),
            toCString(ignoringContext<DumpContext>(exit.m_values)).data(),
            toCString(*record).data()));
}