Ejemplo n.º 1
0
// setup simulator callback
void post_step_callback(Simulator* sim)
{
  // output the sliding velocity at the contact 
  std::ofstream out("ke.dat", std::ostream::app);
  out << sim->current_time << " " << box->calc_kinetic_energy() << std::endl;
  out.close();
}
Ejemplo n.º 2
0
// setup simulator callback
void post_step_callback(Simulator* sim)
{
  const unsigned X = 0, Y = 1, Z = 2;

  // setup the box height 
  const double H = 1.0;

  // get the bottoms of the box 
  Transform3d wTs = Pose3d::calc_relative_pose(box->get_pose(), GLOBAL);
  Vector3d p1 = wTs.transform_point(Vector3d(-.5, -.5, -.5, box->get_pose()));
  Vector3d p2 = wTs.transform_point(Vector3d(-.5, -.5, .5, box->get_pose()));
  Vector3d p3 = wTs.transform_point(Vector3d(.5, -.5, -.5, box->get_pose()));
  Vector3d p4 = wTs.transform_point(Vector3d(.5, -.5, .5, box->get_pose()));

  // get the bottoms of the box in the global frame
  shared_ptr<Pose3d> P1(new Pose3d), P2(new Pose3d), P3(new Pose3d), P4(new Pose3d);  
  P1->x = Origin3d(p1);
  P2->x = Origin3d(p2);
  P3->x = Origin3d(p3);
  P4->x = Origin3d(p4);

  // get the velocity of the box at the contact points
  SVelocityd v = box->get_velocity();
  Vector3d xd1 = Pose3d::calc_relative_pose(v.pose, P1).transform(v).get_linear();
  Vector3d xd2 = Pose3d::calc_relative_pose(v.pose, P2).transform(v).get_linear();
  Vector3d xd3 = Pose3d::calc_relative_pose(v.pose, P3).transform(v).get_linear();
  Vector3d xd4 = Pose3d::calc_relative_pose(v.pose, P4).transform(v).get_linear();

/*
  SVelocityd v = box->get_velocity();
  Origin3d xd(v.get_linear());
  Origin3d omega(v.get_angular());
  Origin3d s(1.0, 0.0, 0.0);
  Origin3d t(0.0, 1.0, 0.0);
  Origin3d crosss = Origin3d::cross(-wTs.x, s);
  Origin3d crosst = Origin3d::cross(-wTs.x, t);
*/

  // output the sliding velocity at the contact 
  std::ofstream out("contactv.dat", std::ostream::app);
  out << sim->current_time << " " << xd1[X] << " " << xd1[Y] << " " << xd2[X] << " " << xd2[Y] << " " << xd3[X] << " " << xd3[Y] << " " << xd4[X] << " " << xd4[Y] << std::endl;
//  out << sim->current_time << " " << (s.dot(xd) + crosss.dot(omega)) << " " << (t.dot(xd) + crosst.dot(omega)) << std::endl; 
//  out << sim->current_time << " " << v[3] << " " << v[4] << " " << v[5] << " " << v[0] << " " << v[1] << " " << v[2] << std::endl;
  out.close();

  out.open("ke.dat", std::ostream::app);
  out << sim->current_time << " " << box->calc_kinetic_energy() << std::endl;
  out.close();
}
// simulator callback
void post_step_callback(Simulator* sim)
{
  // output the sliding velocity at the contact 
  std::ofstream out("rke.dat", std::ostream::app);
  out << sim->current_time << " " << box->calc_kinetic_energy() << std::endl;
  out.close();

  // save the generalized coordinates of the box
  out.open("telemetry.box", std::ostream::app);
  VectorNd q;
  box->get_generalized_coordinates_euler(q);
  out << sim->current_time;
  for (unsigned i=0; i< q.size(); i++)
    out << " " << q[i];
  out << std::endl;
  out.close();
}
Ejemplo n.º 4
0
// setup simulator callback
void post_step_callback(Simulator* s)
{
  const unsigned X = 0, Y = 1, Z = 2;

  // setup the sphere radius
  const double R = 1.0;

  // get the bottom of the sphere
  Transform3d wTs = Pose3d::calc_relative_pose(sphere->get_pose(), GLOBAL);

  shared_ptr<Pose3d> Pbot(new Pose3d);  
  Pbot->rpose = GLOBAL;
  Pbot->x = wTs.x;
  Pbot->x[Z] -= R;

  // get the velocity of the sphere at the contact point
  SVelocityd v = sphere->get_velocity();
  Transform3d botTv = Pose3d::calc_relative_pose(v.pose, Pbot);
  SVelocityd xd = botTv.transform(v);
  Vector3d linear = xd.get_linear();

/*
  SVelocityd v = sphere->get_velocity();
  Origin3d xd(v.get_linear());
  Origin3d omega(v.get_angular());
  Origin3d s(1.0, 0.0, 0.0);
  Origin3d t(0.0, 1.0, 0.0);
  Origin3d crosss = Origin3d::cross(-wTs.x, s);
  Origin3d crosst = Origin3d::cross(-wTs.x, t);
*/

  // output the sliding velocity at the contact 
  std::ofstream out("contactv.dat", std::ostream::app);
  out << sim->current_time << " " << linear[X] << " " << linear[Y] << " " << linear[Z] << std::endl;
//  out << sim->current_time << " " << (s.dot(xd) + crosss.dot(omega)) << " " << (t.dot(xd) + crosst.dot(omega)) << std::endl; 
//  out << sim->current_time << " " << v[3] << " " << v[4] << " " << v[5] << " " << v[0] << " " << v[1] << " " << v[2] << std::endl;
  out.close();

  out.open("velocity.dat", std::ostream::app);
  out << sim->current_time << " " << v[3] << " " << v[4] << " " << v[5] << " " << v[0] << " " << v[1] << " " << v[2] << std::endl; 
  out.close();

  out.open("ke.dat", std::ostream::app);
  out << sim->current_time << " " << sphere->calc_kinetic_energy() << std::endl;
  out.close();
}
Ejemplo n.º 5
0
// setup simulator callback
void post_step_callback(Simulator* sim)
{
  const unsigned Z = 2;
  std::ofstream out("energy.dat", std::ostream::app);
  double KE = wheel->calc_kinetic_energy();
  Transform3d gTw = Pose3d::calc_relative_pose(wheel->get_pose(), GLOBAL);
  double PE = wheel->get_inertia().m*gTw.x[Z]*-grav->gravity[Z];
  out << sim->current_time << " " << KE << " " << PE << " " << (KE+PE) << std::endl;
  out.close();

  // see whether there is significant undesired rotation
  AAngled aa = Pose3d::calc_relative_pose(wheel->get_pose(), GLOBAL).q;
  out.open("angular.dat", std::ostream::app);
  out << sim->current_time << " " << std::fabs(aa.x) << " " << std::fabs(aa.z) << " " << " " << std::fabs(aa.angle) << std::endl; 
  out.close(); 

  // see whether we are in a ballistic flight phase
  TimeSteppingSimulator* esim = (TimeSteppingSimulator*) sim;
  boost::shared_ptr<CollisionDetection> coldet = esim->get_collision_detection(); 
  CollisionGeometryPtr cgw = wheel->geometries.front();
  CollisionGeometryPtr cgg = ground->geometries.front();
  Point3d cpw, cpg;
  double dist = coldet->calc_signed_dist(cgw, cgg, cpw, cpg);
  if (dist > 1e-4)
    std::cerr << "-- in a ballistic flight phase at time " << sim->current_time << std::endl;

  // fast exit conditions
  if (FIND_MAP)
  {
    if (KE < NEAR_ZERO)
    {
      std::cerr << "kinetic energy too small!" << std::endl;
      out.open("system.state", std::ostream::app);
      out << "0.0" << std::endl;
      exit(0);
    }
    if (sim->current_time > 100.0)
    {
      std::cerr << "simulation ran too long!" << std::endl;
      out.open("system.state", std::ostream::app);
      out << "DnF" << std::endl;
      exit(0);
    }
  }

  // if we're finding the return map, see whether the next step has been
  // encountered 
  if (FIND_MAP)
  {
    // look to see whether the last processed contact was a new spoke
    std::ifstream in("IPC.token");
    if (in.fail())
      return;
    in.close();

    // it was, output the state of the system
    std::ofstream out("system.state", std::ostream::app);
    out << " " << wheel->get_velocity().get_angular()[1] << std::endl;
    out.close();
    exit(0);
  }
}