void callback(const PointCloud::ConstPtr& cloud) {
		sensor_msgs::LaserScanPtr output(new sensor_msgs::LaserScan());
		NODELET_DEBUG("Got cloud");
		//Copy Header
		output->header = cloud->header;
		output->header.frame_id = output_frame_id_;
		output->angle_min = -M_PI / 6;
		output->angle_max = M_PI / 6;
		output->angle_increment = M_PI / 180.0 / 2.0;
		output->time_increment = 0.0;
		output->scan_time = 1.0 / 30.0;
		output->range_min = 0.1;
		output->range_max = 10.0;

		uint32_t ranges_size = std::ceil(
				(output->angle_max - output->angle_min)
						/ output->angle_increment);
		output->ranges.assign(ranges_size, output->range_max + 1.0);

		//pcl::PointCloud<pcl::PointXYZ> cloud;
		//pcl::fromROSMsg(*input, cloud);

		visualization_msgs::Marker line_list;

		float min_z = 100;
		float max_z = -100;
		float min_y = 100;
		float max_y = -100;

		//    NODELET_INFO("New scan...");
		for (PointCloud::const_iterator it = cloud->begin(); it != cloud->end(); ++it) {
			const float &x = it->x;
			const float &y = it->y;
			const float &z = it->z;

			if (z < min_z)
				min_z = z;
			if (z > max_z)
				max_z = z;

			if (y < min_y)
				min_y = y;
			if (y > max_y)
				max_y = y;

			/*    for (uint32_t u = std::max((uint32_t)u_min_, 0U); u < std::min((uint32_t)u_max_, cloud.height - 1); u++)
			 for (uint32_t v = 0; v < cloud.width -1; v++)
			 {
			 //NODELET_ERROR("%d %d,  %d %d", u, v, cloud.height, cloud.width);
			 pcl::PointXYZ point = cloud.at(v,u); ///WTF Column major?
			 const float &x = point.x;
			 const float &y = point.y;
			 const float &z = point.z;
			 */

			if (std::isnan(x) || std::isnan(y) || std::isnan(z)) {
				NODELET_DEBUG("rejected for nan in point(%f, %f, %f)\n", x, y,
						z);
				continue;
			}

			if (z > max_height_ || z < min_height_) {
				NODELET_DEBUG("rejected for height %f not in range (%f, %f)\n",
						z, min_height_, max_height_);
				continue;
			}
			double angle = atan2(y, x);
			if (angle < output->angle_min || angle > output->angle_max) {
				NODELET_DEBUG("rejected for angle %f not in range (%f, %f)\n",
						angle, output->angle_min, output->angle_max);
				continue;
			}

			int index = (angle - output->angle_min) / output->angle_increment;
			//    NODELET_INFO("index xyz( %f %f %f) angle %f index %d", x, y, z, angle, index);
			double range_sq = y * y + x * x;
			if (output->ranges[index] * output->ranges[index] > range_sq)
				output->ranges[index] = sqrt(range_sq);

		}

		NODELET_INFO("Y: %f %f, Z: %f %f", min_y, max_y, min_z, max_z);

		line_list.header = cloud->header;
		line_list.header.frame_id = output_frame_id_;
		line_list.ns = "points_and_lines";
		line_list.action = visualization_msgs::Marker::ADD;
		line_list.pose.orientation.w = 1.0;

		line_list.id = 0;

		line_list.type = visualization_msgs::Marker::LINE_LIST;

		line_list.scale.x = 0.1;
		//    line_list.color.r = 1.0;
		line_list.color.a = 1.0;

		// Create the vertices for the points and lines
		for (uint32_t i = 0; i < ranges_size; ++i) {
			float rng = output->ranges[i];
			float a = output->angle_min + i * output->angle_increment;
			float x = rng * cos(a);
			float y = rng * sin(a);

			geometry_msgs::Point p;
			std_msgs::ColorRGBA col;
			p.x = x;
			p.y = y;
			p.z = min_height_;

			col.g = rng / (output->range_max);
			col.r = 1.0 - col.g;
			line_list.colors.push_back(col);
			line_list.colors.push_back(col);

			// The line list needs two points for each line
			line_list.points.push_back(p);
			p.z = max_height_;
			line_list.points.push_back(p);
		}

		marker_pub.publish(line_list);
		pub_.publish(output);
	}
Ejemplo n.º 2
0
    void callback(const PointCloud::ConstPtr& cloud)
    {
        sensor_msgs::LaserScanPtr output(new sensor_msgs::LaserScan());
        NODELET_DEBUG("Got cloud");
        //Copy Header
        output->header = cloud->header;
        output->header.frame_id = output_frame_id_;
        output->angle_min = -M_PI/2;
        output->angle_max = M_PI/2;
        output->angle_increment = M_PI/180.0/2.0;
        output->time_increment = 0.0;
        output->scan_time = 1.0/30.0;
        output->range_min = 0.45;
        output->range_max = 10.0;

        uint32_t ranges_size = std::ceil((output->angle_max - output->angle_min) / output->angle_increment);
        output->ranges.assign(ranges_size, output->range_max + 1.0);

        //pcl::PointCloud<pcl::PointXYZ> cloud;
        //pcl::fromROSMsg(*input, cloud);

        for (PointCloud::const_iterator it = cloud->begin(); it != cloud->end(); ++it)
        {
            const float &x = it->x;
            const float &y = it->y;
            const float &z = it->z;

            /*    for (uint32_t u = std::max((uint32_t)u_min_, 0U); u < std::min((uint32_t)u_max_, cloud.height - 1); u++)
              for (uint32_t v = 0; v < cloud.width -1; v++)
              {
                //NODELET_ERROR("%d %d,  %d %d", u, v, cloud.height, cloud.width);
                pcl::PointXYZ point = cloud.at(v,u); ///WTF Column major?
                const float &x = point.x;
                const float &y = point.y;
                const float &z = point.z;
            */

            if ( std::isnan(x) || std::isnan(y) || std::isnan(z) )
            {
                NODELET_DEBUG("rejected for nan in point(%f, %f, %f)\n", x, y, z);
                continue;
            }
            if (-y > max_height_ || -y < min_height_)
            {
                NODELET_DEBUG("rejected for height %f not in range (%f, %f)\n", x, min_height_, max_height_);
                continue;
            }
            double angle = -atan2(x, z);
            if (angle < output->angle_min || angle > output->angle_max)
            {
                NODELET_DEBUG("rejected for angle %f not in range (%f, %f)\n", angle, output->angle_min, output->angle_max);
                continue;
            }
            int index = (angle - output->angle_min) / output->angle_increment;
            //printf ("index xyz( %f %f %f) angle %f index %d\n", x, y, z, angle, index);
            double range_sq = z*z+x*x;
            if (output->ranges[index] * output->ranges[index] > range_sq)
                output->ranges[index] = sqrt(range_sq);


        }

        pub_.publish(output);
    }