// ====================================================================== 
int CompareBlockSizes(string PrecType, const Teuchos::RefCountPtr<Epetra_RowMatrix>& A, int NumParts)
{
  Epetra_MultiVector RHS(A->RowMatrixRowMap(), NumVectors);
  Epetra_MultiVector LHS(A->RowMatrixRowMap(), NumVectors);
  LHS.PutScalar(0.0); RHS.Random();

  Epetra_LinearProblem Problem(&*A, &LHS, &RHS);

  Teuchos::ParameterList List;
  List.set("relaxation: damping factor", 1.0);
  List.set("relaxation: type", PrecType);
  List.set("relaxation: sweeps",1);
  List.set("partitioner: type", "linear");
  List.set("partitioner: local parts", NumParts);

  RHS.PutScalar(1.0);
  LHS.PutScalar(0.0);

  Ifpack_BlockRelaxation<Ifpack_SparseContainer<Ifpack_Amesos> > Prec(&*A);
  Prec.SetParameters(List);
  Prec.Compute();

  // set AztecOO solver object
  AztecOO AztecOOSolver(Problem);
  AztecOOSolver.SetAztecOption(AZ_solver,Solver);
  if (verbose)
    AztecOOSolver.SetAztecOption(AZ_output,32);
  else
    AztecOOSolver.SetAztecOption(AZ_output,AZ_none);
  AztecOOSolver.SetPrecOperator(&Prec);

  AztecOOSolver.Iterate(2550,1e-5);

  return(AztecOOSolver.NumIters());
}
// ====================================================================== 
bool BasicTest(string PrecType, const Teuchos::RefCountPtr<Epetra_RowMatrix>& A,bool backward, bool reorder=false)
{
  Epetra_MultiVector LHS(A->RowMatrixRowMap(), NumVectors);
  Epetra_MultiVector RHS(A->RowMatrixRowMap(), NumVectors);
  LHS.PutScalar(0.0); RHS.Random();

  double starting_residual = Galeri::ComputeNorm(&*A, &LHS, &RHS);
  Epetra_LinearProblem Problem(&*A, &LHS, &RHS);

  // Set up the list
  Teuchos::ParameterList List;
  List.set("relaxation: damping factor", 1.0);
  List.set("relaxation: sweeps",2550);
  List.set("relaxation: type", PrecType);
  if(backward) List.set("relaxation: backward mode",backward);

  // Reordering if needed
  int NumRows=A->NumMyRows();
  std::vector<int> RowList(NumRows);
  if(reorder) {
    for(int i=0; i<NumRows; i++)
      RowList[i]=i;
    List.set("relaxation: number of local smoothing indices",NumRows);
    List.set("relaxation: local smoothing indices",RowList.size()>0? &RowList[0] : (int*)0);
  }

  Ifpack_PointRelaxation Point(&*A);

  Point.SetParameters(List);
  Point.Compute();
  // use the preconditioner as solver, with 1550 iterations
  Point.ApplyInverse(RHS,LHS);

  // compute the real residual

  double residual = Galeri::ComputeNorm(&*A, &LHS, &RHS);
  
  if (A->Comm().MyPID() == 0 && verbose)
    cout << "||A * x - b||_2 (scaled) = " << residual / starting_residual << endl;
  
  // Jacobi is very slow to converge here
  if (residual / starting_residual < 1e-2) {
    if (verbose)
      cout << "BasicTest Test passed" << endl;
    return(true);
  }
  else {
    if (verbose)
      cout << "BasicTest Test failed!" << endl;
    return(false);
  }
}
// ====================================================================== 
int AllSingle(const Teuchos::RefCountPtr<Epetra_RowMatrix>& A, Teuchos::RCP<Epetra_MultiVector> coord)
{
  Epetra_MultiVector LHS(A->RowMatrixRowMap(), NumVectors);
  Epetra_MultiVector RHS(A->RowMatrixRowMap(), NumVectors);
  LHS.PutScalar(0.0); RHS.Random();

  Epetra_LinearProblem Problem(&*A, &LHS, &RHS);

  Teuchos::ParameterList List;
  List.set("relaxation: damping factor", 1.0);
  List.set("relaxation: type", "symmetric Gauss-Seidel");
  List.set("relaxation: sweeps",1);
  List.set("partitioner: overlap",0);
  List.set("partitioner: type", "line");
  List.set("partitioner: line detection threshold",1.0);
  List.set("partitioner: x-coordinates",&(*coord)[0][0]);
  List.set("partitioner: y-coordinates",&(*coord)[1][0]);
  List.set("partitioner: z-coordinates",(double*) 0);

  RHS.PutScalar(1.0);
  LHS.PutScalar(0.0);

  Ifpack_BlockRelaxation<Ifpack_SparseContainer<Ifpack_Amesos> > Prec(&*A);
  Prec.SetParameters(List);
  Prec.Compute();

  // set AztecOO solver object
  AztecOO AztecOOSolver(Problem);
  AztecOOSolver.SetAztecOption(AZ_solver,Solver);
  if (verbose)
    AztecOOSolver.SetAztecOption(AZ_output,32);
  else
    AztecOOSolver.SetAztecOption(AZ_output,AZ_none);
  AztecOOSolver.SetPrecOperator(&Prec);

  AztecOOSolver.Iterate(2550,1e-5);

  printf(" AllSingle  iters %d \n",AztecOOSolver.NumIters());
  return(AztecOOSolver.NumIters());
}
Ejemplo n.º 4
0
// ====================================================================== 
int CompareLineSmootherEntries(const Teuchos::RefCountPtr<Epetra_RowMatrix>& A)
{
  Epetra_MultiVector LHS(A->RowMatrixRowMap(), NumVectors);
  Epetra_MultiVector RHS(A->RowMatrixRowMap(), NumVectors);
  LHS.PutScalar(0.0); RHS.Random();

  Epetra_LinearProblem Problem(&*A, &LHS, &RHS);

  Teuchos::ParameterList List;
  List.set("relaxation: damping factor", 1.0);
  List.set("relaxation: type", "symmetric Gauss-Seidel");
  List.set("relaxation: sweeps",1);
  List.set("partitioner: overlap",0);
  List.set("partitioner: type", "line");
  List.set("partitioner: line mode","matrix entries");
  List.set("partitioner: line detection threshold",10.0);

  RHS.PutScalar(1.0);
  LHS.PutScalar(0.0);

  Ifpack_BlockRelaxation<Ifpack_SparseContainer<Ifpack_Amesos> > Prec(&*A);
  Prec.SetParameters(List);
  Prec.Compute();

  // set AztecOO solver object
  AztecOO AztecOOSolver(Problem);
  AztecOOSolver.SetAztecOption(AZ_solver,Solver);
  if (verbose)
    AztecOOSolver.SetAztecOption(AZ_output,32);
  else
    AztecOOSolver.SetAztecOption(AZ_output,AZ_none);
  AztecOOSolver.SetPrecOperator(&Prec);

  AztecOOSolver.Iterate(2550,1e-5);

  return(AztecOOSolver.NumIters());
}
// ====================================================================== 
bool KrylovTest(string PrecType, const Teuchos::RefCountPtr<Epetra_RowMatrix>& A, bool backward, bool reorder=false)
{
  Epetra_MultiVector LHS(A->RowMatrixRowMap(), NumVectors);
  Epetra_MultiVector RHS(A->RowMatrixRowMap(), NumVectors);
  LHS.PutScalar(0.0); RHS.Random();

  Epetra_LinearProblem Problem(&*A, &LHS, &RHS);

  // Set up the list
  Teuchos::ParameterList List;
  List.set("relaxation: damping factor", 1.0);
  List.set("relaxation: type", PrecType);
  if(backward) List.set("relaxation: backward mode",backward);  

  // Reordering if needed
  int NumRows=A->NumMyRows();
  std::vector<int> RowList(NumRows);
  if(reorder) {
    for(int i=0; i<NumRows; i++)
      RowList[i]=i;
    List.set("relaxation: number of local smoothing indices",NumRows);
    List.set("relaxation: local smoothing indices",RowList.size()>0? &RowList[0] : (int*)0);
  }


  int Iters1, Iters10;

  if (verbose) {
    cout << "Krylov test: Using " << PrecType 
         << " with AztecOO" << endl;
  }

  // ============================================== //
  // get the number of iterations with 1 sweep only //
  // ============================================== //
  {

    List.set("relaxation: sweeps",1);
    Ifpack_PointRelaxation Point(&*A);
    Point.SetParameters(List);
    Point.Compute();

    // set AztecOO solver object
    AztecOO AztecOOSolver(Problem);
    AztecOOSolver.SetAztecOption(AZ_solver,Solver);
    AztecOOSolver.SetAztecOption(AZ_output,AZ_none);
    AztecOOSolver.SetPrecOperator(&Point);

    AztecOOSolver.Iterate(2550,1e-5);

    double TrueResidual = AztecOOSolver.TrueResidual();
    // some output
    if (verbose && Problem.GetMatrix()->Comm().MyPID() == 0) {
      cout << "Norm of the true residual = " << TrueResidual << endl;
    }
    Iters1 = AztecOOSolver.NumIters();
  }
 
  // ======================================================== //
  // now re-run with 10 sweeps, solver should converge faster
  // ======================================================== //
  {
    List.set("relaxation: sweeps",10);
    Ifpack_PointRelaxation Point(&*A);
    Point.SetParameters(List);
    Point.Compute();
    LHS.PutScalar(0.0);

    // set AztecOO solver object
    AztecOO AztecOOSolver(Problem);
    AztecOOSolver.SetAztecOption(AZ_solver,Solver);
    AztecOOSolver.SetAztecOption(AZ_output,AZ_none);
    AztecOOSolver.SetPrecOperator(&Point);
    AztecOOSolver.Iterate(2550,1e-5);

    double TrueResidual = AztecOOSolver.TrueResidual();
    // some output
    if (verbose && Problem.GetMatrix()->Comm().MyPID() == 0) {
      cout << "Norm of the true residual = " << TrueResidual << endl;
    }
    Iters10 = AztecOOSolver.NumIters();
  }

  if (verbose) {
    cout << "Iters_1 = " << Iters1 << ", Iters_10 = " << Iters10 << endl;
    cout << "(second number should be smaller than first one)" << endl;
  }

  if (Iters10 > Iters1) {
    if (verbose)
      cout << "KrylovTest TEST FAILED!" << endl;
    return(false);
  }
  else {
    if (verbose)
      cout << "KrylovTest TEST PASSED" << endl;
    return(true);
  }
}
// ====================================================================== 
bool ComparePointAndBlock(string PrecType, const Teuchos::RefCountPtr<Epetra_RowMatrix>& A, int sweeps)
{
  Epetra_MultiVector RHS(A->RowMatrixRowMap(), NumVectors);
  Epetra_MultiVector LHS(A->RowMatrixRowMap(), NumVectors);
  LHS.PutScalar(0.0); RHS.Random();

  Epetra_LinearProblem Problem(&*A, &LHS, &RHS);

  // Set up the list
  Teuchos::ParameterList List;
  List.set("relaxation: damping factor", 1.0);
  List.set("relaxation: type", PrecType);
  List.set("relaxation: sweeps",sweeps);
  List.set("partitioner: type", "linear");
  List.set("partitioner: local parts", A->NumMyRows());

  int ItersPoint, ItersBlock;

  // ================================================== //
  // get the number of iterations with point relaxation //
  // ================================================== //
  {
    RHS.PutScalar(1.0);
    LHS.PutScalar(0.0);

    Ifpack_PointRelaxation Point(&*A);
    Point.SetParameters(List);
    Point.Compute();

    // set AztecOO solver object
    AztecOO AztecOOSolver(Problem);
    AztecOOSolver.SetAztecOption(AZ_solver,Solver);
    if (verbose)
      AztecOOSolver.SetAztecOption(AZ_output,32);
    else
      AztecOOSolver.SetAztecOption(AZ_output,AZ_none);
    AztecOOSolver.SetPrecOperator(&Point);

    AztecOOSolver.Iterate(2550,1e-2);

    double TrueResidual = AztecOOSolver.TrueResidual();
    ItersPoint = AztecOOSolver.NumIters();
    // some output
    if (verbose && Problem.GetMatrix()->Comm().MyPID() == 0) {
      cout << "Iterations  = " << ItersPoint << endl;
      cout << "Norm of the true residual = " << TrueResidual << endl;
    }
  }

  // ================================================== //
  // get the number of iterations with block relaxation //
  // ================================================== //
  {

    RHS.PutScalar(1.0);
    LHS.PutScalar(0.0);

    Ifpack_BlockRelaxation<Ifpack_SparseContainer<Ifpack_Amesos> > Block(&*A);
    Block.SetParameters(List);
    Block.Compute();

    // set AztecOO solver object
    AztecOO AztecOOSolver(Problem);
    AztecOOSolver.SetAztecOption(AZ_solver,Solver);
    if (verbose)
      AztecOOSolver.SetAztecOption(AZ_output,32);
    else
      AztecOOSolver.SetAztecOption(AZ_output,AZ_none);
    AztecOOSolver.SetPrecOperator(&Block);

    AztecOOSolver.Iterate(2550,1e-2);

    double TrueResidual = AztecOOSolver.TrueResidual();
    ItersBlock = AztecOOSolver.NumIters();
    // some output
    if (verbose && Problem.GetMatrix()->Comm().MyPID() == 0) {
      cout << "Iterations " << ItersBlock << endl;
      cout << "Norm of the true residual = " << TrueResidual << endl;
    }
  }

  int diff = ItersPoint - ItersBlock;
  if (diff < 0) diff = -diff;
    
  if (diff > 10)
  {
    if (verbose)
      cout << "ComparePointandBlock TEST FAILED!" << endl;
    return(false);
  }
  else {
    if (verbose)
      cout << "ComparePointandBlock TEST PASSED" << endl;
    return(true);
  }
}
Ejemplo n.º 7
0
// ======================================================================
bool TestContainer(std::string Type, const Teuchos::RefCountPtr<Epetra_RowMatrix>& A)
{
  using std::cout;
  using std::endl;

  int NumVectors = 3;
  int NumMyRows = A->NumMyRows();

  Epetra_MultiVector LHS_exact(A->RowMatrixRowMap(), NumVectors);
  Epetra_MultiVector LHS(A->RowMatrixRowMap(), NumVectors);
  Epetra_MultiVector RHS(A->RowMatrixRowMap(), NumVectors);
  LHS_exact.Random(); LHS.PutScalar(0.0);
  A->Multiply(false, LHS_exact, RHS);

  Epetra_LinearProblem Problem(&*A, &LHS, &RHS);

  if (verbose) {
    cout << "Container type = " << Type << endl;
    cout << "NumMyRows = " << NumMyRows << ", NumVectors = " << NumVectors << endl;
  }
  LHS.PutScalar(0.0);

  Teuchos::RefCountPtr<Ifpack_Container> Container;

  if (Type == "dense")
    Container = Teuchos::rcp( new Ifpack_DenseContainer(A->NumMyRows(), NumVectors) );
  else
    Container = Teuchos::rcp( new Ifpack_SparseContainer<Ifpack_Amesos>(A->NumMyRows(), NumVectors) );

  assert (Container != Teuchos::null);

  IFPACK_CHK_ERR(Container->Initialize());
  // set as ID all the local rows of A
  for (int i = 0 ; i < A->NumMyRows() ; ++i)
    Container->ID(i) = i;

  // extract submatrix (in this case, the entire matrix)
  // and complete setup
  IFPACK_CHK_ERR(Container->Compute(*A));

  // set the RHS and LHS
  for (int i = 0 ; i < A->NumMyRows() ; ++i)
    for (int j = 0 ; j < NumVectors ; ++j) {
      Container->RHS(i,j) = RHS[j][i];
      Container->LHS(i,j) = LHS[j][i];
    }

  // set parameters (empty for dense containers)
  Teuchos::ParameterList List;
  List.set("amesos: solver type", Type);
  IFPACK_CHK_ERR(Container->SetParameters(List));

  // solve the linear system
  IFPACK_CHK_ERR(Container->ApplyInverse());

  // get the computed solution, store it in LHS
  for (int i = 0 ; i < A->NumMyRows() ; ++i)
    for (int j = 0 ; j < NumVectors ; ++j) {
       LHS[j][i] = Container->LHS(i,j);
    }

  double residual = Galeri::ComputeNorm(&LHS, &LHS_exact);

  if (A->Comm().MyPID() == 0 && verbose) {
    cout << "||x_exact - x||_2 = " << residual << endl;
    cout << *Container;
  }

  bool passed = false;
  if (residual < 1e-5)
    passed = true;

  return(passed);
}
Ejemplo n.º 8
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm( MPI_COMM_WORLD );
#else
  Epetra_SerialComm Comm;
#endif

  if (Comm.NumProc() == 1)
  {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    cout << "Test `TestOverlappingRowMatrix.exe' passed!" << endl;
    exit(EXIT_SUCCESS);
  }

  Teuchos::ParameterList GaleriList;
  int nx = 100; 
  GaleriList.set("n", nx * nx);
  GaleriList.set("nx", nx);
  GaleriList.set("ny", nx);
  Teuchos::RefCountPtr<Epetra_Map> Map = Teuchos::rcp( Galeri::CreateMap64("Linear", Comm, GaleriList) );
  Teuchos::RefCountPtr<Epetra_CrsMatrix> A = Teuchos::rcp( Galeri::CreateCrsMatrix("Laplace2D", &*Map, GaleriList) );

  int OverlapLevel = 5;
  Epetra_Time Time(Comm);

  // ======================================== //
  // Build the overlapping matrix using class //
  // Ifpack_OverlappingRowMatrix.             //
  // ======================================== //
 
  Time.ResetStartTime();
  Ifpack_OverlappingRowMatrix B(A,OverlapLevel);
  if (Comm.MyPID() == 0)
    cout << "Time to create B = " << Time.ElapsedTime() << endl;

  long long NumGlobalRowsB = B.NumGlobalRows64();
  long long NumGlobalNonzerosB = B.NumGlobalNonzeros64();

  Epetra_Vector X(A->RowMatrixRowMap());
  Epetra_Vector Y(A->RowMatrixRowMap());
  for (int i = 0 ; i < A->NumMyRows() ; ++i) 
    X[i] = 1.0* A->RowMatrixRowMap().GID64(i);
  Y.PutScalar(0.0);

  Epetra_Vector ExtX_B(B.RowMatrixRowMap());
  Epetra_Vector ExtY_B(B.RowMatrixRowMap());
  ExtY_B.PutScalar(0.0);

  IFPACK_CHK_ERR(B.ImportMultiVector(X,ExtX_B));
  IFPACK_CHK_ERR(B.Multiply(false,ExtX_B,ExtY_B));
  IFPACK_CHK_ERR(B.ExportMultiVector(ExtY_B,Y,Add));

  double Norm_B;
  Y.Norm2(&Norm_B);
  if (Comm.MyPID() == 0)
    cout << "Norm of Y using B = " << Norm_B << endl;
  
  // ================================================== //
  //Build the overlapping matrix as an Epetra_CrsMatrix //
  // ================================================== //

  Time.ResetStartTime();
  Epetra_CrsMatrix& C = 
    *(Ifpack_CreateOverlappingCrsMatrix(&*A,OverlapLevel));
  if (Comm.MyPID() == 0)
    cout << "Time to create C = " << Time.ElapsedTime() << endl;

  // simple checks on global quantities
  long long NumGlobalRowsC = C.NumGlobalRows64();
  long long NumGlobalNonzerosC = C.NumGlobalNonzeros64();
  assert (NumGlobalRowsB == NumGlobalRowsC);
  assert (NumGlobalNonzerosB == NumGlobalNonzerosC);

  Epetra_Vector ExtX_C(C.RowMatrixRowMap());
  Epetra_Vector ExtY_C(C.RowMatrixRowMap());
  ExtY_C.PutScalar(0.0);
  Y.PutScalar(0.0);

  IFPACK_CHK_ERR(C.Multiply(false,X,Y));

  double Norm_C;
  Y.Norm2(&Norm_C);
  if (Comm.MyPID() == 0)
    cout << "Norm of Y using C = " << Norm_C << endl;

  if (IFPACK_ABS(Norm_B - Norm_C) > 1e-5)
    IFPACK_CHK_ERR(-1);

  // ======================= //
  // now localize the matrix //
  // ======================= //

  Ifpack_LocalFilter D(Teuchos::rcp(&B, false));

#ifdef HAVE_MPI
  MPI_Finalize() ; 
#endif

  if (Comm.MyPID() == 0)
    cout << "Test `TestOverlappingRowMatrix.exe' passed!" << endl;

  return(EXIT_SUCCESS);
}