Ejemplo n.º 1
0
void
Piro::LOCASolver<Scalar>::evalModelImpl(
    const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs,
    const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const
{
  const int l = 0; // TODO: Allow user to select parameter index
  const Teuchos::RCP<const Thyra::VectorBase<Scalar> > p_inargs = inArgs.get_p(l);

  // Forward parameter values to the LOCA stepper
  {
    const Teuchos::RCP<const Thyra::VectorBase<Scalar> > p_inargs_or_nominal =
      Teuchos::nonnull(p_inargs) ? p_inargs : this->getNominalValues().get_p(l);
    const Thyra::ConstDetachedVectorView<Scalar> p_init_values(p_inargs_or_nominal);
    const Teuchos_Ordinal p_entry_count = p_init_values.subDim();
    TEUCHOS_ASSERT(p_entry_count == Teuchos::as<Teuchos_Ordinal>(paramVector_.length()));

    for (Teuchos_Ordinal k = 0; k < p_entry_count; ++k) {
      paramVector_[k] = p_init_values[k];
    }

    group_->setParams(paramVector_);
  }

  stepper_->reset(globalData_, group_, locaStatusTests_, noxStatusTests_, piroParams_);
  const LOCA::Abstract::Iterator::IteratorStatus status = stepper_->run();

  if (status == LOCA::Abstract::Iterator::Finished) {
    std::cerr << "Continuation Stepper Finished.\n";
  } else if (status == LOCA::Abstract::Iterator::NotFinished) {
    std::cerr << "Continuation Stepper did not reach final value.\n";
  } else {
    std::cerr << "Nonlinear solver failed to converge.\n";
    outArgs.setFailed();
  }

  const Teuchos::RCP<Thyra::VectorBase<Scalar> > x_outargs = outArgs.get_g(this->num_g());
  const Teuchos::RCP<Thyra::VectorBase<Scalar> > x_final =
    Teuchos::nonnull(x_outargs) ? x_outargs : Thyra::createMember(this->get_g_space(this->num_g()));

  {
    // Deep copy final solution from LOCA group
    NOX::Thyra::Vector finalSolution(x_final);
    finalSolution = group_->getX();
  }

  // Compute responses for the final solution
  {
    Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs =
      this->getModel().createInArgs();
    {
      modelInArgs.set_x(x_final);
      modelInArgs.set_p(l, p_inargs);
    }

    this->evalConvergedModel(modelInArgs, outArgs);
  }
}
Thyra::ModelEvaluatorBase::InArgs<Scalar>
Piro::VelocityVerletSolver<Scalar>::getNominalValues() const
{
  Thyra::ModelEvaluatorBase::InArgs<Scalar> result = this->createInArgs();
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> modelNominalValues = model->getNominalValues();
  for (int l = 0; l < num_p; ++l) {
    result.set_p(l, modelNominalValues.get_p(l));
  }
  return result;
}
Thyra::ModelEvaluatorBase::InArgs<Scalar>
Piro::SteadyStateSolver<Scalar>::getNominalValues() const
{
  Thyra::ModelEvaluatorBase::InArgs<Scalar> result = this->createInArgsImpl();
  result.setArgs(
      model_->getNominalValues(),
      /* ignoreUnsupported = */ true,
      /* cloneObjects = */ false);
  return result;
}
Ejemplo n.º 4
0
Thyra::ModelEvaluatorBase::InArgs<Scalar>
DiagonalROME<Scalar>::getNominalValues() const
{
    Thyra::ModelEvaluatorBase::InArgs<Scalar> initialGuess =
        this->createInArgs();
    RCP<Thyra::VectorBase<Scalar> > p_init =
        Thyra::createMember<Scalar>(p_space_);
    Thyra::V_S( p_init.ptr(), 1.5 );
    initialGuess.set_p(0, p_init);
    return initialGuess;
}
Ejemplo n.º 5
0
void ImplicitRKStepper<Scalar>::setInitialCondition(
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &initialCondition
  )
{

  typedef ScalarTraits<Scalar> ST;
  typedef Thyra::ModelEvaluatorBase MEB;

  basePoint_ = initialCondition;

  // x

  RCP<const Thyra::VectorBase<Scalar> >
    x_init = initialCondition.get_x();

#ifdef HAVE_RYTHMOS_DEBUG
  TEUCHOS_TEST_FOR_EXCEPTION(
    is_null(x_init), std::logic_error,
    "Error, if the client passes in an intial condition to setInitialCondition(...),\n"
    "then x can not be null!" );
#endif

  x_ = x_init->clone_v();

  // x_dot

  x_dot_ = createMember(x_->space());

  RCP<const Thyra::VectorBase<Scalar> >
    x_dot_init = initialCondition.get_x_dot();

  if (!is_null(x_dot_init))
    assign(x_dot_.ptr(),*x_dot_init);
  else
    assign(x_dot_.ptr(),ST::zero());
  
  // t

  const Scalar t =
    (
      initialCondition.supports(MEB::IN_ARG_t)
      ? initialCondition.get_t()
      : ST::zero()
      );

  timeRange_ = timeRange(t,t);

  // x_old
  x_old_ = x_->clone_v();

  haveInitialCondition_ = true;

}
Ejemplo n.º 6
0
TEUCHOS_UNIT_TEST( Rythmos_ExplicitRKStepper, basePoint ) {
  RCP<SinCosModel> model = sinCosModel(false);
  {
    RCP<ParameterList> pl = Teuchos::parameterList();
    pl->set("Accept model parameters",true);
    model->setParameterList(pl);
  }
  Thyra::ModelEvaluatorBase::InArgs<double> ic = model->getNominalValues();
  // t_ic
  double t_ic = 1.0; // not used
  // x_ic
  RCP<VectorBase<double> > x_ic = Thyra::createMember(*model->get_x_space());
  {
    Thyra::DetachedVectorView<double> x_ic_view( *x_ic );
    x_ic_view[0] = 5.0;
    x_ic_view[1] = 6.0;
  }
  // parameter 0 ic
  RCP<VectorBase<double> > p_ic = Thyra::createMember(*model->get_p_space(0));
  {
    Thyra::DetachedVectorView<double> p_ic_view( *p_ic );
    p_ic_view[0] = 2.0; // a
    p_ic_view[1] = 3.0; // f 
    p_ic_view[2] = 4.0; // L
  }
  ic.set_p(0,p_ic); 
  ic.set_x(x_ic);
  ic.set_t(t_ic);
  RCP<ExplicitRKStepper<double> > stepper = explicitRKStepper<double>();
  stepper->setModel(model);
  stepper->setInitialCondition(ic);
  stepper->setRKButcherTableau(createRKBT<double>("Forward Euler"));
  double dt = 0.2;
  double dt_taken;
  dt_taken = stepper->takeStep(dt,STEP_TYPE_FIXED);
  TEST_EQUALITY_CONST( dt_taken, 0.2 );
  const StepStatus<double> status = stepper->getStepStatus();
  TEST_ASSERT( !is_null(status.solution) );
  double tol = 1.0e-10;
  {
    Thyra::ConstDetachedVectorView<double> x_new_view( *(status.solution) );
    TEST_FLOATING_EQUALITY( x_new_view[0], 5.0 + 0.2*(6.0), tol );
    TEST_FLOATING_EQUALITY( x_new_view[1], 6.0 + 0.2*( (3.0/4.0)*(3.0/4.0)*(2.0-5.0) ), tol );
  }
}
Ejemplo n.º 7
0
void DiagonalROME<Scalar>::evalModelImpl(
    const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs,
    const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs
) const
{

    using Teuchos::as;
    using Teuchos::outArg;
    typedef Teuchos::ScalarTraits<Scalar> ST;
    using Thyra::get_mv;
    using Thyra::ConstDetachedSpmdVectorView;
    using Thyra::DetachedSpmdVectorView;
    typedef Thyra::Ordinal Ordinal;
    typedef Thyra::ModelEvaluatorBase MEB;
    typedef MEB::DerivativeMultiVector<Scalar> DMV;

    const ConstDetachedSpmdVectorView<Scalar> p(inArgs.get_p(0));
    const ConstDetachedSpmdVectorView<Scalar> ps(ps_);
    const ConstDetachedSpmdVectorView<Scalar> diag(diag_);
    const ConstDetachedSpmdVectorView<Scalar> s_bar(s_bar_);

    // g(p)
    if (!is_null(outArgs.get_g(0))) {
        Scalar g_val = ST::zero();
        for (Ordinal i = 0; i < p.subDim(); ++i) {
            const Scalar p_ps = p[i] - ps[i];
            g_val += diag[i] * p_ps*p_ps;
            if (nonlinearTermFactor_ != ST::zero()) {
                g_val += nonlinearTermFactor_ * p_ps * p_ps * p_ps;
            }
        }
        Scalar global_g_val;
        Teuchos::reduceAll<Ordinal, Scalar>(*comm_, Teuchos::REDUCE_SUM,
                                            g_val, outArg(global_g_val) );
        DetachedSpmdVectorView<Scalar>(outArgs.get_g(0))[0] =
            as<Scalar>(0.5) * global_g_val + g_offset_;
    }

    // DgDp[i]
    if (!outArgs.get_DgDp(0,0).isEmpty()) {
        const RCP<Thyra::MultiVectorBase<Scalar> > DgDp_trans_mv =
            get_mv<Scalar>(outArgs.get_DgDp(0,0), "DgDp^T", MEB::DERIV_TRANS_MV_BY_ROW);
        const DetachedSpmdVectorView<Scalar> DgDp_grad(DgDp_trans_mv->col(0));
        for (Thyra::Ordinal i = 0; i < p.subDim(); ++i) {
            const Scalar p_ps = p[i] - ps[i];
            Scalar DgDp_grad_i = diag[i] * p_ps;
            if (nonlinearTermFactor_ != ST::zero()) {
                DgDp_grad_i += as<Scalar>(1.5) * nonlinearTermFactor_ * p_ps * p_ps;
            }
            DgDp_grad[i] = DgDp_grad_i / s_bar[i];

        }
    }

}
void TimeDiscretizedBackwardEulerModelEvaluator<Scalar>::initialize(
  const RCP<const Thyra::ModelEvaluator<Scalar> > &daeModel,
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &initCond,
  const Scalar finalTime,
  const int numTimeSteps,
  const RCP<Thyra::LinearOpWithSolveFactoryBase<Scalar> > &W_bar_factory
  )
{

  TEST_FOR_EXCEPT(is_null(daeModel));
  TEST_FOR_EXCEPT(is_null(initCond.get_x()));
  TEST_FOR_EXCEPT(is_null(initCond.get_x_dot()));
  TEST_FOR_EXCEPT(finalTime <= initCond.get_t());
  TEST_FOR_EXCEPT(numTimeSteps <= 0);
  // ToDo: Validate that daeModel is of the right form!

  daeModel_ = daeModel;
  initCond_ = initCond;
  finalTime_ = finalTime;
  numTimeSteps_ = numTimeSteps;

  initTime_ = initCond.get_t();
  delta_t_ = (finalTime_ - initTime_) / numTimeSteps_;

  x_bar_space_ = productVectorSpace(daeModel_->get_x_space(),numTimeSteps_);
  f_bar_space_ = productVectorSpace(daeModel_->get_f_space(),numTimeSteps_);

  if (!is_null(W_bar_factory)) {
    W_bar_factory_ = W_bar_factory;
  }
  else {
    W_bar_factory_ =
      Thyra::defaultBlockedTriangularLinearOpWithSolveFactory<Scalar>(
        daeModel_->get_W_factory()
        );
  }
  
}
void Simple2DModelEvaluator<Scalar>::evalModelImpl(
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &inArgs,
  const Thyra::ModelEvaluatorBase::OutArgs<Scalar> &outArgs
  ) const
{
  using Teuchos::rcp_dynamic_cast;
  const Scalar one = 1.0, two = 2.0, zero = 0.0;

  const ConstDetachedVectorView<Scalar> x(inArgs.get_x());

  const RCP<Thyra::VectorBase<Scalar> > f_out = outArgs.get_f();
  const RCP<Thyra::LinearOpBase< Scalar > > W_op_out = outArgs.get_W_op();
  const RCP<Thyra::PreconditionerBase< Scalar > > W_prec_out = outArgs.get_W_prec();

  if (nonnull(f_out)) {
    const DetachedVectorView<Scalar> f(f_out);
    f[0] = x[0] + x[1] * x[1] - p_[0];
    f[1] = d_ * (x[0] * x[0] - x[1] - p_[1]);
  }

  if (nonnull(W_op_out)) {
    const RCP<SimpleDenseLinearOp<Scalar> > W =
      rcp_dynamic_cast<SimpleDenseLinearOp<Scalar> >(W_op_out, true);
    const RCP<MultiVectorBase<Scalar> > W_mv = W->getNonconstMultiVector();
    Thyra::DetachedMultiVectorView<Scalar> W_dmvv(W_mv);
    W_dmvv(0, 0) = one;
    W_dmvv(0, 1) = two * x[1];
    W_dmvv(1, 0) = d_ * two * x[0];
    W_dmvv(1, 1) = -d_;
  }

  if (nonnull(W_prec_out)) {
    const RCP<SimpleDenseLinearOp<Scalar> > W_prec_op =
      rcp_dynamic_cast<SimpleDenseLinearOp<Scalar> >(
        W_prec_out->getNonconstUnspecifiedPrecOp(), true);
    const RCP<MultiVectorBase<Scalar> > W_prec_mv = W_prec_op->getNonconstMultiVector();
    Thyra::DetachedMultiVectorView<Scalar> W_prec_dmvv(W_prec_mv);
    // Diagonal inverse of W (see W above)
    W_prec_dmvv(0, 0) = one;
    W_prec_dmvv(0, 1) = zero;
    W_prec_dmvv(1, 0) = zero;
    W_prec_dmvv(1, 1) = -one/d_;
  }
  
}
Ejemplo n.º 10
0
void
Albany::ModelEvaluatorT::evalModelImpl(
    const Thyra::ModelEvaluatorBase::InArgs<ST>& inArgsT,
    const Thyra::ModelEvaluatorBase::OutArgs<ST>& outArgsT) const
{

  Teuchos::TimeMonitor Timer(*timer); //start timer
  //
  // Get the input arguments
  //
  const Teuchos::RCP<const Tpetra_Vector> xT =
    ConverterT::getConstTpetraVector(inArgsT.get_x());

  const Teuchos::RCP<const Tpetra_Vector> x_dotT =
    Teuchos::nonnull(inArgsT.get_x_dot()) ?
    ConverterT::getConstTpetraVector(inArgsT.get_x_dot()) :
    Teuchos::null;

  // AGS: x_dotdot time integrators not imlemented in Thyra ME yet
  //const Teuchos::RCP<const Tpetra_Vector> x_dotdotT =
  //  Teuchos::nonnull(inArgsT.get_x_dotdot()) ?
  //  ConverterT::getConstTpetraVector(inArgsT.get_x_dotdot()) :
  //  Teuchos::null;
  const Teuchos::RCP<const Tpetra_Vector> x_dotdotT = Teuchos::null;


  const double alpha = (Teuchos::nonnull(x_dotT) || Teuchos::nonnull(x_dotdotT)) ? inArgsT.get_alpha() : 0.0;
  // AGS: x_dotdot time integrators not imlemented in Thyra ME yet
  // const double omega = (Teuchos::nonnull(x_dotT) || Teuchos::nonnull(x_dotdotT)) ? inArgsT.get_omega() : 0.0;
  const double omega = 0.0;
  const double beta = (Teuchos::nonnull(x_dotT) || Teuchos::nonnull(x_dotdotT)) ? inArgsT.get_beta() : 1.0;
  const double curr_time = (Teuchos::nonnull(x_dotT) || Teuchos::nonnull(x_dotdotT)) ? inArgsT.get_t() : 0.0;

  for (int l = 0; l < inArgsT.Np(); ++l) {
    const Teuchos::RCP<const Thyra::VectorBase<ST> > p = inArgsT.get_p(l);
    if (Teuchos::nonnull(p)) {
      const Teuchos::RCP<const Tpetra_Vector> pT = ConverterT::getConstTpetraVector(p);
      const Teuchos::ArrayRCP<const ST> pT_constView = pT->get1dView();

      ParamVec &sacado_param_vector = sacado_param_vec[l];
      for (unsigned int k = 0; k < sacado_param_vector.size(); ++k) {
        sacado_param_vector[k].baseValue = pT_constView[k];
      }
    }
  }

  //
  // Get the output arguments
  //
  const Teuchos::RCP<Tpetra_Vector> fT_out =
    Teuchos::nonnull(outArgsT.get_f()) ?
    ConverterT::getTpetraVector(outArgsT.get_f()) :
    Teuchos::null;

  const Teuchos::RCP<Tpetra_Operator> W_op_outT =
    Teuchos::nonnull(outArgsT.get_W_op()) ?
    ConverterT::getTpetraOperator(outArgsT.get_W_op()) :
    Teuchos::null;

  // Cast W to a CrsMatrix, throw an exception if this fails
  const Teuchos::RCP<Tpetra_CrsMatrix> W_op_out_crsT =
    Teuchos::nonnull(W_op_outT) ?
    Teuchos::rcp_dynamic_cast<Tpetra_CrsMatrix>(W_op_outT, true) :
    Teuchos::null;

  //
  // Compute the functions
  //
  bool f_already_computed = false;

  // W matrix
  if (Teuchos::nonnull(W_op_out_crsT)) {
    app->computeGlobalJacobianT(
        alpha, beta, omega, curr_time, x_dotT.get(), x_dotdotT.get(),  *xT,
        sacado_param_vec, fT_out.get(), *W_op_out_crsT);
    f_already_computed = true;
  }

  // df/dp
  for (int l = 0; l < outArgsT.Np(); ++l) {
    const Teuchos::RCP<Thyra::MultiVectorBase<ST> > dfdp_out =
      outArgsT.get_DfDp(l).getMultiVector();

    const Teuchos::RCP<Tpetra_MultiVector> dfdp_outT =
      Teuchos::nonnull(dfdp_out) ?
      ConverterT::getTpetraMultiVector(dfdp_out) :
      Teuchos::null;

    if (Teuchos::nonnull(dfdp_outT)) {
      const Teuchos::RCP<ParamVec> p_vec = Teuchos::rcpFromRef(sacado_param_vec[l]);

      app->computeGlobalTangentT(
          0.0, 0.0, 0.0, curr_time, false, x_dotT.get(), x_dotdotT.get(), *xT,
          sacado_param_vec, p_vec.get(),
          NULL, NULL, NULL, NULL, fT_out.get(), NULL,
          dfdp_outT.get());

      f_already_computed = true;
    }
  }

  // f
  if (app->is_adjoint) {
    const Thyra::ModelEvaluatorBase::Derivative<ST> f_derivT(
        outArgsT.get_f(),
        Thyra::ModelEvaluatorBase::DERIV_TRANS_MV_BY_ROW);

    const Thyra::ModelEvaluatorBase::Derivative<ST> dummy_derivT;

    const int response_index = 0; // need to add capability for sending this in
    app->evaluateResponseDerivativeT(
        response_index, curr_time, x_dotT.get(), x_dotdotT.get(), *xT,
        sacado_param_vec, NULL,
        NULL, f_derivT, dummy_derivT, dummy_derivT, dummy_derivT);
  } else {
    if (Teuchos::nonnull(fT_out) && !f_already_computed) {
      app->computeGlobalResidualT(
          curr_time, x_dotT.get(), x_dotdotT.get(), *xT,
          sacado_param_vec, *fT_out);
    }
  }

  // Response functions
  for (int j = 0; j < outArgsT.Ng(); ++j) {
    const Teuchos::RCP<Thyra::VectorBase<ST> > g_out = outArgsT.get_g(j);
    Teuchos::RCP<Tpetra_Vector> gT_out =
      Teuchos::nonnull(g_out) ?
      ConverterT::getTpetraVector(g_out) :
      Teuchos::null;

    const Thyra::ModelEvaluatorBase::Derivative<ST> dgdxT_out = outArgsT.get_DgDx(j);
    const Thyra::ModelEvaluatorBase::Derivative<ST> dgdxdotT_out = outArgsT.get_DgDx_dot(j);
    // AGS: x_dotdot time integrators not imlemented in Thyra ME yet
    const Thyra::ModelEvaluatorBase::Derivative<ST> dgdxdotdotT_out;

    // dg/dx, dg/dxdot
    if (!dgdxT_out.isEmpty() || !dgdxdotT_out.isEmpty()) {
      const Thyra::ModelEvaluatorBase::Derivative<ST> dummy_derivT;
      app->evaluateResponseDerivativeT(
          j, curr_time, x_dotT.get(), x_dotdotT.get(), *xT,
          sacado_param_vec, NULL,
          gT_out.get(), dgdxT_out,
          dgdxdotT_out, dgdxdotdotT_out, dummy_derivT);
      // Set gT_out to null to indicate that g_out was evaluated.
      gT_out = Teuchos::null;
    }

    // dg/dp
    for (int l = 0; l < outArgsT.Np(); ++l) {
      const Teuchos::RCP<Thyra::MultiVectorBase<ST> > dgdp_out =
        outArgsT.get_DgDp(j, l).getMultiVector();
      const Teuchos::RCP<Tpetra_MultiVector> dgdpT_out =
        Teuchos::nonnull(dgdp_out) ?
        ConverterT::getTpetraMultiVector(dgdp_out) :
        Teuchos::null;

      if (Teuchos::nonnull(dgdpT_out)) {
        const Teuchos::RCP<ParamVec> p_vec = Teuchos::rcpFromRef(sacado_param_vec[l]);
        app->evaluateResponseTangentT(
            j, alpha, beta, omega, curr_time, false,
            x_dotT.get(), x_dotdotT.get(), *xT,
            sacado_param_vec, p_vec.get(),
            NULL, NULL, NULL, NULL, gT_out.get(), NULL,
            dgdpT_out.get());
        gT_out = Teuchos::null;
      }
    }

    if (Teuchos::nonnull(gT_out)) {
      app->evaluateResponseT(
          j, curr_time, x_dotT.get(), x_dotdotT.get(), *xT,
          sacado_param_vec, *gT_out);
    }
  }
}
Ejemplo n.º 11
0
void
Albany::ModelEvaluatorT::evalModelImpl(
    const Thyra::ModelEvaluatorBase::InArgs<ST>& inArgsT,
    const Thyra::ModelEvaluatorBase::OutArgs<ST>& outArgsT) const
{

  #ifdef OUTPUT_TO_SCREEN
    std::cout << "DEBUG: " << __PRETTY_FUNCTION__ << "\n";
  #endif

  Teuchos::TimeMonitor Timer(*timer); //start timer
  //
  // Get the input arguments
  //
  const Teuchos::RCP<const Tpetra_Vector> xT =
    ConverterT::getConstTpetraVector(inArgsT.get_x());

  const Teuchos::RCP<const Tpetra_Vector> x_dotT =
    (supports_xdot && Teuchos::nonnull(inArgsT.get_x_dot())) ?
    ConverterT::getConstTpetraVector(inArgsT.get_x_dot()) :
    Teuchos::null;


  const Teuchos::RCP<const Tpetra_Vector> x_dotdotT =
    (supports_xdotdot && Teuchos::nonnull(this->get_x_dotdot())) ?
    ConverterT::getConstTpetraVector(this->get_x_dotdot()) :
    Teuchos::null;

  const double alpha = (Teuchos::nonnull(x_dotT) || Teuchos::nonnull(x_dotdotT)) ? inArgsT.get_alpha() : 0.0;
  const double omega = Teuchos::nonnull(x_dotdotT) ? this->get_omega() : 0.0;
  const double beta = (Teuchos::nonnull(x_dotT) || Teuchos::nonnull(x_dotdotT)) ? inArgsT.get_beta() : 1.0;
  const double curr_time = (Teuchos::nonnull(x_dotT) || Teuchos::nonnull(x_dotdotT)) ? inArgsT.get_t() : 0.0;

  for (int l = 0; l < inArgsT.Np(); ++l) {
    const Teuchos::RCP<const Thyra::VectorBase<ST> > p = inArgsT.get_p(l);
    if (Teuchos::nonnull(p)) {
      const Teuchos::RCP<const Tpetra_Vector> pT = ConverterT::getConstTpetraVector(p);
      const Teuchos::ArrayRCP<const ST> pT_constView = pT->get1dView();

      ParamVec &sacado_param_vector = sacado_param_vec[l];
      for (unsigned int k = 0; k < sacado_param_vector.size(); ++k) {
        sacado_param_vector[k].baseValue = pT_constView[k];
      }
    }
  }

  //
  // Get the output arguments
  //
  const Teuchos::RCP<Tpetra_Vector> fT_out =
    Teuchos::nonnull(outArgsT.get_f()) ?
    ConverterT::getTpetraVector(outArgsT.get_f()) :
    Teuchos::null;

  const Teuchos::RCP<Tpetra_Operator> W_op_outT =
    Teuchos::nonnull(outArgsT.get_W_op()) ?
    ConverterT::getTpetraOperator(outArgsT.get_W_op()) :
    Teuchos::null;

#ifdef WRITE_MASS_MATRIX_TO_MM_FILE
  //IK, 4/24/15: adding object to hold mass matrix to be written to matrix market file
  const Teuchos::RCP<Tpetra_Operator> Mass =
    Teuchos::nonnull(outArgsT.get_W_op()) ?
    ConverterT::getTpetraOperator(outArgsT.get_W_op()) :
    Teuchos::null;
  //IK, 4/24/15: needed for writing mass matrix out to matrix market file
  const Teuchos::RCP<Tpetra_Vector> ftmp =
    Teuchos::nonnull(outArgsT.get_f()) ?
    ConverterT::getTpetraVector(outArgsT.get_f()) :
    Teuchos::null;
#endif

  // Cast W to a CrsMatrix, throw an exception if this fails
  const Teuchos::RCP<Tpetra_CrsMatrix> W_op_out_crsT =
    Teuchos::nonnull(W_op_outT) ?
    Teuchos::rcp_dynamic_cast<Tpetra_CrsMatrix>(W_op_outT, true) :
    Teuchos::null;

#ifdef WRITE_MASS_MATRIX_TO_MM_FILE
  //IK, 4/24/15: adding object to hold mass matrix to be written to matrix market file
  const Teuchos::RCP<Tpetra_CrsMatrix> Mass_crs =
    Teuchos::nonnull(Mass) ?
    Teuchos::rcp_dynamic_cast<Tpetra_CrsMatrix>(Mass, true) :
    Teuchos::null;
#endif

  //
  // Compute the functions
  //
  bool f_already_computed = false;

  // W matrix
  if (Teuchos::nonnull(W_op_out_crsT)) {
    app->computeGlobalJacobianT(
        alpha, beta, omega, curr_time, x_dotT.get(), x_dotdotT.get(),  *xT,
        sacado_param_vec, fT_out.get(), *W_op_out_crsT);
    f_already_computed = true;
#ifdef WRITE_MASS_MATRIX_TO_MM_FILE
    //IK, 4/24/15: write mass matrix to matrix market file
    //Warning: to read this in to MATLAB correctly, code must be run in serial.
    //Otherwise Mass will have a distributed Map which would also need to be read in to MATLAB for proper
    //reading in of Mass.
    app->computeGlobalJacobianT(1.0, 0.0, 0.0, curr_time, x_dotT.get(), x_dotdotT.get(), *xT,
                               sacado_param_vec, ftmp.get(), *Mass_crs);
    Tpetra_MatrixMarket_Writer::writeSparseFile("mass.mm", Mass_crs);
    Tpetra_MatrixMarket_Writer::writeMapFile("rowmap.mm", *Mass_crs->getRowMap());
    Tpetra_MatrixMarket_Writer::writeMapFile("colmap.mm", *Mass_crs->getColMap());
#endif
  }

  // df/dp
  for (int l = 0; l < outArgsT.Np(); ++l) {
    const Teuchos::RCP<Thyra::MultiVectorBase<ST> > dfdp_out =
      outArgsT.get_DfDp(l).getMultiVector();

    const Teuchos::RCP<Tpetra_MultiVector> dfdp_outT =
      Teuchos::nonnull(dfdp_out) ?
      ConverterT::getTpetraMultiVector(dfdp_out) :
      Teuchos::null;

    if (Teuchos::nonnull(dfdp_outT)) {
      const Teuchos::RCP<ParamVec> p_vec = Teuchos::rcpFromRef(sacado_param_vec[l]);

      app->computeGlobalTangentT(
          0.0, 0.0, 0.0, curr_time, false, x_dotT.get(), x_dotdotT.get(), *xT,
          sacado_param_vec, p_vec.get(),
          NULL, NULL, NULL, NULL, fT_out.get(), NULL,
          dfdp_outT.get());

      f_already_computed = true;
    }
  }

  // f
  if (app->is_adjoint) {
    const Thyra::ModelEvaluatorBase::Derivative<ST> f_derivT(
        outArgsT.get_f(),
        Thyra::ModelEvaluatorBase::DERIV_TRANS_MV_BY_ROW);

    const Thyra::ModelEvaluatorBase::Derivative<ST> dummy_derivT;

    const int response_index = 0; // need to add capability for sending this in
    app->evaluateResponseDerivativeT(
        response_index, curr_time, x_dotT.get(), x_dotdotT.get(), *xT,
        sacado_param_vec, NULL,
        NULL, f_derivT, dummy_derivT, dummy_derivT, dummy_derivT);
  } else {
    if (Teuchos::nonnull(fT_out) && !f_already_computed) {
      app->computeGlobalResidualT(
          curr_time, x_dotT.get(), x_dotdotT.get(), *xT,
          sacado_param_vec, *fT_out);
    }
  }

  // Response functions
  for (int j = 0; j < outArgsT.Ng(); ++j) {
    const Teuchos::RCP<Thyra::VectorBase<ST> > g_out = outArgsT.get_g(j);
    Teuchos::RCP<Tpetra_Vector> gT_out =
      Teuchos::nonnull(g_out) ?
      ConverterT::getTpetraVector(g_out) :
      Teuchos::null;

    const Thyra::ModelEvaluatorBase::Derivative<ST> dgdxT_out = outArgsT.get_DgDx(j);
    Thyra::ModelEvaluatorBase::Derivative<ST> dgdxdotT_out;

    if(supports_xdot)
      dgdxdotT_out = outArgsT.get_DgDx_dot(j);

//    const Thyra::ModelEvaluatorBase::Derivative<ST> dgdxdotdotT_out = this->get_DgDx_dotdot(j);
    const Thyra::ModelEvaluatorBase::Derivative<ST> dgdxdotdotT_out;

    sanitize_nans(dgdxT_out);
    sanitize_nans(dgdxdotT_out);
    sanitize_nans(dgdxdotdotT_out);

    // dg/dx, dg/dxdot
    if (!dgdxT_out.isEmpty() || !dgdxdotT_out.isEmpty()) {
      const Thyra::ModelEvaluatorBase::Derivative<ST> dummy_derivT;
      app->evaluateResponseDerivativeT(
          j, curr_time, x_dotT.get(), x_dotdotT.get(), *xT,
          sacado_param_vec, NULL,
          gT_out.get(), dgdxT_out,
          dgdxdotT_out, dgdxdotdotT_out, dummy_derivT);
      // Set gT_out to null to indicate that g_out was evaluated.
      gT_out = Teuchos::null;
    }

    // dg/dp
    for (int l = 0; l < outArgsT.Np(); ++l) {
      const Teuchos::RCP<Thyra::MultiVectorBase<ST> > dgdp_out =
        outArgsT.get_DgDp(j, l).getMultiVector();
      const Teuchos::RCP<Tpetra_MultiVector> dgdpT_out =
        Teuchos::nonnull(dgdp_out) ?
        ConverterT::getTpetraMultiVector(dgdp_out) :
        Teuchos::null;

      if (Teuchos::nonnull(dgdpT_out)) {
        const Teuchos::RCP<ParamVec> p_vec = Teuchos::rcpFromRef(sacado_param_vec[l]);
        app->evaluateResponseTangentT(
            j, alpha, beta, omega, curr_time, false,
            x_dotT.get(), x_dotdotT.get(), *xT,
            sacado_param_vec, p_vec.get(),
            NULL, NULL, NULL, NULL, gT_out.get(), NULL,
            dgdpT_out.get());
        gT_out = Teuchos::null;
      }
    }

    if (Teuchos::nonnull(gT_out)) {
      app->evaluateResponseT(
          j, curr_time, x_dotT.get(), x_dotdotT.get(), *xT,
          sacado_param_vec, *gT_out);
    }
  }

}
Ejemplo n.º 12
0
// The solve is done in the felix_driver_run function, and the solution is passed back to Glimmer-CISM 
// IK, 12/3/13: time_inc_yr and cur_time_yr are not used here... 
void felix_driver_run(FelixToGlimmer * ftg_ptr, double& cur_time_yr, double time_inc_yr)
{
    //IK, 12/9/13: how come FancyOStream prints an all processors??    
    Teuchos::RCP<Teuchos::FancyOStream> out(Teuchos::VerboseObjectBase::getDefaultOStream());

    if (debug_output_verbosity != 0 & mpiCommT->getRank() == 0) {
      std::cout << "In felix_driver_run, cur_time, time_inc = " << cur_time_yr 
                << "   " << time_inc_yr << std::endl;
    }
    
    // ---------------------------------------------
    // get u and v velocity solution from Glimmer-CISM 
    // IK, 11/26/13: need to concatenate these into a single solve for initial condition for Albany/FELIX solve 
    // IK, 3/14/14: moved this step to felix_driver_run from felix_driver init, since we still want to grab and u and v velocities for CISM if the mesh hasn't changed, 
    // in which case only felix_driver_run will be called, not felix_driver_init.   
    // ---------------------------------------------
    if (debug_output_verbosity != 0 & mpiCommT->getRank() == 0) 
      std::cout << "In felix_driver_run: grabbing pointers to u and v velocities in CISM..." << std::endl; 
    uVel_ptr = ftg_ptr ->getDoubleVar("uvel", "velocity"); 
    vVel_ptr = ftg_ptr ->getDoubleVar("vvel", "velocity"); 

    // ---------------------------------------------
    // Set restart solution to the one passed from CISM
    // IK, 3/14/14: moved this from felix_driver_init to felix_driver_run.  
    // ---------------------------------------------
    
    if (debug_output_verbosity != 0 & mpiCommT->getRank() == 0) 
      std::cout << "In felix_driver_run: setting initial condition from CISM..." << std::endl;
    //Check what kind of ordering you have in the solution & create solutionField object.
    interleavedOrdering = meshStruct->getInterleavedOrdering();
    Albany::AbstractSTKFieldContainer::VectorFieldType* solutionField;
    if(interleavedOrdering)
      solutionField = Teuchos::rcp_dynamic_cast<Albany::OrdinarySTKFieldContainer<true> >(meshStruct->getFieldContainer())->getSolutionField();
    else
      solutionField = Teuchos::rcp_dynamic_cast<Albany::OrdinarySTKFieldContainer<false> >(meshStruct->getFieldContainer())->getSolutionField();

     //Create vector used to renumber nodes on each processor from the Albany convention (horizontal levels first) to the CISM convention (vertical layers first)
     nNodes2D = (global_ewn + 1)*(global_nsn+1); //number global nodes in the domain in 2D 
     nNodesProc2D = (nsn-2*nhalo+1)*(ewn-2*nhalo+1); //number of nodes on each processor in 2D  
     cismToAlbanyNodeNumberMap.resize(upn*nNodesProc2D);
     for (int j=0; j<nsn-2*nhalo+1;j++) { 
       for (int i=0; i<ewn-2*nhalo+1; i++) {
         for (int k=0; k<upn; k++) { 
           int index = k+upn*i + j*(ewn-2*nhalo+1)*upn; 
           cismToAlbanyNodeNumberMap[index] = k*nNodes2D + global_node_id_owned_map_Ptr[i+j*(ewn-2*nhalo+1)]; 
           //if (mpiComm->MyPID() == 0) 
           //  std::cout << "index: " << index << ", cismToAlbanyNodeNumberMap: " << cismToAlbanyNodeNumberMap[index] << std::endl; 
          }
        }
      }

     //The way it worked out, uVel_ptr and vVel_ptr have more nodes than the nodes in the mesh passed to Albany/CISM for the solve.  In particular, 
     //there is 1 row of halo elements in uVel_ptr and vVel_ptr.  To account for this, we copy uVel_ptr and vVel_ptr into std::vectors, which do not have the halo elements. 
     std::vector<double> uvel_vec(upn*nNodesProc2D); 
     std::vector<double> vvel_vec(upn*nNodesProc2D); 
     int counter1 = 0; 
     int counter2 = 0; 
     int local_nodeID; 
     for (int j=0; j<nsn-1; j++) {
       for (int i=0; i<ewn-1; i++) { 
         for (int k=0; k<upn; k++) {
           if (j >= nhalo-1 & j < nsn-nhalo) {
             if (i >= nhalo-1 & i < ewn-nhalo) {
#ifdef CISM_USE_EPETRA 
               local_nodeID = node_map->LID(cismToAlbanyNodeNumberMap[counter1]); 
#else
               local_nodeID = node_map->getLocalElement(cismToAlbanyNodeNumberMap[counter1]);
#endif
               uvel_vec[counter1] = uVel_ptr[counter2]; 
               vvel_vec[counter1] = vVel_ptr[counter2]; 
               counter1++;
            }
            }
            counter2++; 
         }
        }
     }
     //Loop over all the elements to find which nodes are active.  For the active nodes, copy uvel and vvel from CISM into Albany solution array to 
     //use as initial condition.
     //NOTE: there is some inefficiency here by looping over all the elements.  TO DO? pass only active nodes from Albany-CISM to improve this? 
     double velScale = seconds_per_year*vel_scaling_param;  
     for (int i=0; i<nElementsActive; i++) {
       for (int j=0; j<8; j++) {
        int node_GID =  global_element_conn_active_Ptr[i + nElementsActive*j]; //node_GID is 1-based
#ifdef CISM_USE_EPETRA      
        int node_LID =  node_map->LID(node_GID); //node_LID is 0-based
#else
        int node_LID =  node_map->getLocalElement(node_GID); //node_LID is 0-based
#endif
        stk::mesh::Entity node = meshStruct->bulkData->get_entity(stk::topology::NODE_RANK, node_GID);
        double* sol = stk::mesh::field_data(*solutionField, node);
        //IK, 3/18/14: added division by velScale to convert uvel and vvel from dimensionless to having units of m/year (the Albany units)  
        sol[0] = uvel_vec[node_LID]/velScale;
        sol[1] = vvel_vec[node_LID]/velScale;
      }
    }
    // ---------------------------------------------------------------------------------------------------
    // Solve 
    // ---------------------------------------------------------------------------------------------------

    if (debug_output_verbosity != 0 & mpiCommT->getRank() == 0) 
      std::cout << "In felix_driver_run: starting the solve... " << std::endl;
    //Need to set HasRestart solution such that uvel_Ptr and vvel_Ptr (u and v from Glimmer/CISM) are always set as initial condition?  
    meshStruct->setHasRestartSolution(!first_time_step);


    //Turn off homotopy if we're not in the first time-step. 
    //NOTE - IMPORTANT: Glen's Law Homotopy parameter should be set to 1.0 in the parameter list for this logic to work!!! 
    if (!first_time_step)
    {
       meshStruct->setRestartDataTime(parameterList->sublist("Problem").get("Homotopy Restart Step", 1.));
       double homotopy = parameterList->sublist("Problem").sublist("FELIX Viscosity").get("Glen's Law Homotopy Parameter", 1.0);
       if(meshStruct->restartDataTime()== homotopy) {
         parameterList->sublist("Problem").set("Solution Method", "Steady");
         parameterList->sublist("Piro").set("Solver Type", "NOX");
       }
    }

    albanyApp->createDiscretization();

    //IK, 10/30/14: Check that # of elements from previous time step hasn't changed. 
    //If it has not, use previous solution as initial guess for current time step.
    //Otherwise do not set initial solution.  It's possible this can be improved so some part of the previous solution is used
    //defined on the current mesh (if it receded, which likely it will in dynamic ice sheet simulations...). 
    if (nElementsActivePrevious != nElementsActive) previousSolution = Teuchos::null; 
    albanyApp->finalSetUp(parameterList, previousSolution);

    //if (!first_time_step) 
    //  std::cout << "previousSolution: " << *previousSolution << std::endl;
#ifdef CISM_USE_EPETRA 
    solver = slvrfctry->createThyraSolverAndGetAlbanyApp(albanyApp, mpiComm, mpiComm, Teuchos::null, false);
#else
   solver = slvrfctry->createAndGetAlbanyAppT(albanyApp, mpiCommT, mpiCommT, Teuchos::null, false);
#endif

    Teuchos::ParameterList solveParams;
    solveParams.set("Compute Sensitivities", true);
    Teuchos::Array<Teuchos::RCP<const Thyra::VectorBase<double> > > thyraResponses;
    Teuchos::Array<Teuchos::Array<Teuchos::RCP<const Thyra::MultiVectorBase<double> > > > thyraSensitivities;
    Piro::PerformSolveBase(*solver, solveParams, thyraResponses, thyraSensitivities);

#ifdef CISM_USE_EPETRA
    const Epetra_Map& ownedMap(*albanyApp->getDiscretization()->getMap()); //owned map
    const Epetra_Map& overlapMap(*albanyApp->getDiscretization()->getOverlapMap()); //overlap map
    Epetra_Import import(overlapMap, ownedMap); //importer from ownedMap to overlapMap
    Epetra_Vector solutionOverlap(overlapMap); //overlapped solution
    solutionOverlap.Import(*albanyApp->getDiscretization()->getSolutionField(), import, Insert);
#else 
    Teuchos::RCP<const Tpetra_Map> ownedMap = albanyApp->getDiscretization()->getMapT(); //owned map
    Teuchos::RCP<const Tpetra_Map> overlapMap = albanyApp->getDiscretization()->getOverlapMapT(); //overlap map
    Teuchos::RCP<Tpetra_Import> import = Teuchos::rcp(new Tpetra_Import(ownedMap, overlapMap));
    Teuchos::RCP<Tpetra_Vector> solutionOverlap = Teuchos::rcp(new Tpetra_Vector(overlapMap));
    solutionOverlap->doImport(*albanyApp->getDiscretization()->getSolutionFieldT(), *import, Tpetra::INSERT);
    Teuchos::ArrayRCP<const ST> solutionOverlap_constView = solutionOverlap->get1dView();
#endif

#ifdef WRITE_TO_MATRIX_MARKET
#ifdef CISM_USE_EPETRA
    //For debug: write solution and maps to matrix market file
    EpetraExt::BlockMapToMatrixMarketFile("node_map.mm", *node_map);
    EpetraExt::BlockMapToMatrixMarketFile("map.mm", ownedMap);
    EpetraExt::BlockMapToMatrixMarketFile("overlap_map.mm", overlapMap);
    EpetraExt::MultiVectorToMatrixMarketFile("solution.mm", *albanyApp->getDiscretization()->getSolutionField());
#else 
    Tpetra_MatrixMarket_Writer::writeMapFile("node_map.mm", *node_map);
    Tpetra_MatrixMarket_Writer::writeMapFile("map.mm", *ownedMap);
    Tpetra_MatrixMarket_Writer::writeMapFile("overlap_map.mm", *overlapMap);
    Tpetra_MatrixMarket_Writer::writeDenseFile("solution.mm", app->getDiscretization()->getSolutionFieldT());
#endif
#endif
   
   //set previousSolution (used as initial guess for next time step) to final Albany solution. 
   previousSolution = Teuchos::rcp(new Tpetra_Vector(*albanyApp->getDiscretization()->getSolutionFieldT())); 
   nElementsActivePrevious = nElementsActive;   
 
   //std::cout << "Final solution: " << *albanyApp->getDiscretization()->getSolutionField() << std::endl;  
    // ---------------------------------------------------------------------------------------------------
    // Compute sensitivies / responses and perform regression tests
    // IK, 12/9/13: how come this is turned off in mpas branch? 
    // ---------------------------------------------------------------------------------------------------
 
    if (debug_output_verbosity != 0 & mpiCommT->getRank() == 0) 
      std::cout << "Computing responses and sensitivities..." << std::endl;
    int status=0; // 0 = pass, failures are incremented
#ifdef CISM_USE_EPETRA
    Teuchos::Array<Teuchos::RCP<const Epetra_Vector> > responses;
    Teuchos::Array<Teuchos::Array<Teuchos::RCP<const Epetra_MultiVector> > > sensitivities;
    epetraFromThyra(mpiComm, thyraResponses, thyraSensitivities, responses, sensitivities);
#else
    Teuchos::Array<Teuchos::RCP<const Tpetra_Vector> > responses;
    Teuchos::Array<Teuchos::Array<Teuchos::RCP<const Tpetra_MultiVector> > > sensitivities;
    tpetraFromThyra(thyraResponses, thyraSensitivities, responses, sensitivities);
#endif

    const int num_p = solver->Np(); // Number of *vectors* of parameters
    const int num_g = solver->Ng(); // Number of *vectors* of responses

   if (debug_output_verbosity != 0) {
    *out << "Finished eval of first model: Params, Responses "
      << std::setprecision(12) << std::endl;
   }
   const Thyra::ModelEvaluatorBase::InArgs<double> nominal = solver->getNominalValues();

   if (debug_output_verbosity != 0) {
    for (int i=0; i<num_p; i++) {
#ifdef CISM_USE_EPETRA
      const Teuchos::RCP<const Epetra_Vector> p_init = epetraVectorFromThyra(mpiComm, nominal.get_p(i));
      p_init->Print(*out << "\nParameter vector " << i << ":\n");
#else
      Albany::printTpetraVector(*out << "\nParameter vector " << i << ":\n",
           ConverterT::getConstTpetraVector(nominal.get_p(i)));
#endif
    }
   }

    for (int i=0; i<num_g-1; i++) {
#ifdef CISM_USE_EPETRA
      const Teuchos::RCP<const Epetra_Vector> g = responses[i];
#else
      const Teuchos::RCP<const Tpetra_Vector> g = responses[i];
#endif
      bool is_scalar = true;

      if (albanyApp != Teuchos::null)
        is_scalar = albanyApp->getResponse(i)->isScalarResponse();

      if (is_scalar) {
        if (debug_output_verbosity != 0) {
#ifdef CISM_USE_EPETRA
         g->Print(*out << "\nResponse vector " << i << ":\n");
#else
         Albany::printTpetraVector(*out << "\nResponse vector " << i << ":\n", g);
#endif
        }

        if (num_p == 0 && cur_time_yr == final_time) {
          // Just calculate regression data -- only if in final time step
#ifdef CISM_USE_EPETRA
          status += slvrfctry->checkSolveTestResults(i, 0, g.get(), NULL);
#else
          status += slvrfctry->checkSolveTestResultsT(i, 0, g.get(), NULL);
#endif
        } else {
          for (int j=0; j<num_p; j++) {
#ifdef CISM_USE_EPETRA
            const Teuchos::RCP<const Epetra_MultiVector> dgdp = sensitivities[i][j];
#else
            const Teuchos::RCP<const Tpetra_MultiVector> dgdp = sensitivities[i][j];
#endif
            if (debug_output_verbosity != 0) {
              if (Teuchos::nonnull(dgdp)) {
#ifdef CISM_USE_EPETRA
                dgdp->Print(*out << "\nSensitivities (" << i << "," << j << "):!\n");
#else
                Albany::printTpetraVector(*out << "\nSensitivities (" << i << "," << j << "):!\n", dgdp);
#endif
              }
            }
            if (cur_time_yr == final_time) {
#ifdef CISM_USE_EPETRA
              status += slvrfctry->checkSolveTestResults(i, j, g.get(), dgdp.get());
#else
              status += slvrfctry->checkSolveTestResultsT(i, j, g.get(), dgdp.get());
#endif
            }
          }
        }
      }
    }
    if (debug_output_verbosity != 0 && cur_time_yr == final_time) //only print regression test result if you're in the final time step 
      *out << "\nNumber of Failed Comparisons: " << status << std::endl;
    //IK, 10/30/14: added the following line so that when you run ctest from CISM the test fails if there are some failed comparisons.
    if (status > 0)     
      TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "All regression comparisons did not pass!" << std::endl);

    // ---------------------------------------------------------------------------------------------------
    // Copy solution back to glimmer uvel and vvel arrays to be passed back
    // ---------------------------------------------------------------------------------------------------

    //std::cout << "overlapMap # global elements: " << overlapMap.NumGlobalElements() << std::endl; 
    //std::cout << "overlapMap # my elements: " << overlapMap.NumMyElements() << std::endl; 
    //std::cout << "overlapMap: " << overlapMap << std::endl; 
    //std::cout << "map # global elements: " << ownedMap.NumGlobalElements() << std::endl; 
    //std::cout << "map # my elements: " << ownedMap.NumMyElements() << std::endl; 
    //std::cout << "node_map # global elements: " << node_map->NumGlobalElements() << std::endl; 
    //std::cout << "node_map # my elements: " << node_map->NumMyElements() << std::endl; 
    //std::cout << "node_map: " << *node_map << std::endl; 

    if (debug_output_verbosity != 0 & mpiCommT->getRank() == 0) 
      std::cout << "In felix_driver_run: copying Albany solution to uvel and vvel to send back to CISM... " << std::endl;
#ifdef CISM_USE_EPETRA 
    //Epetra_Vectors to hold uvel and vvel to be passed to Glimmer/CISM
    Epetra_Vector uvel(*node_map, true); 
    Epetra_Vector vvel(*node_map, true);
#else
    //Tpetra_Vectors to hold uvel and vvel to be passed to Glimmer/CISM
    Teuchos::RCP<Tpetra_Vector> uvel = Teuchos::rcp(new Tpetra_Vector(node_map, true));
    Teuchos::RCP<Tpetra_Vector> vvel = Teuchos::rcp(new Tpetra_Vector(node_map, true));
#endif

#ifdef CISM_USE_EPETRA 
    if (interleavedOrdering == true) { 
      for (int i=0; i<overlapMap.NumMyElements(); i++) { 
        int global_dof = overlapMap.GID(i);
        double sol_value = solutionOverlap[i];  
        int modulo = (global_dof % 2); //check if dof is for u or for v 
        int vel_global_dof, vel_local_dof; 
        if (modulo == 0) { //u dof 
          vel_global_dof = global_dof/2+1; //add 1 because node_map is 1-based 
          vel_local_dof = node_map->LID(vel_global_dof); //look up local id corresponding to global id in node_map
          //std::cout << "uvel: global_dof = " << global_dof << ", uvel_global_dof = " << vel_global_dof << ", uvel_local_dof = " << vel_local_dof << std::endl; 
          uvel.ReplaceMyValues(1, &sol_value, &vel_local_dof); 
        }
        else { // v dof 
          vel_global_dof = (global_dof-1)/2+1; //add 1 because node_map is 1-based 
          vel_local_dof = node_map->LID(vel_global_dof); //look up local id corresponding to global id in node_map
          vvel.ReplaceMyValues(1, &sol_value, & vel_local_dof); 
        }
      }
    }
    else { //note: the case with non-interleaved ordering has not been tested...
      int numDofs = overlapMap.NumGlobalElements(); 
      for (int i=0; i<overlapMap.NumMyElements(); i++) { 
        int global_dof = overlapMap.GID(i);
        double sol_value = solutionOverlap[i];  
        int vel_global_dof, vel_local_dof; 
        if (global_dof < numDofs/2) { //u dof
          vel_global_dof = global_dof+1; //add 1 because node_map is 1-based 
          vel_local_dof = node_map->LID(vel_global_dof); //look up local id corresponding to global id in node_map
          uvel.ReplaceMyValues(1, &sol_value, &vel_local_dof); 
        }
        else { //v dofs 
          vel_global_dof = global_dof-numDofs/2+1; //add 1 because node_map is 1-based
          vel_local_dof = node_map->LID(vel_global_dof); //look up local id corresponding to global id in node_map
          vvel.ReplaceMyValues(1, &sol_value, & vel_local_dof);
        } 
      }
    }
#else
    if (interleavedOrdering == true) {
      for (int i=0; i<overlapMap->getNodeNumElements(); i++) {
        int global_dof = overlapMap->getGlobalElement(i);
        double sol_value = solutionOverlap_constView[i];
        int modulo = (global_dof % 2); //check if dof is for u or for v 
        int vel_global_dof, vel_local_dof;
        if (modulo == 0) { //u dof 
          vel_global_dof = global_dof/2+1; //add 1 because node_map is 1-based 
          vel_local_dof = node_map->getLocalElement(vel_global_dof); //look up local id corresponding to global id in node_map
          //std::cout << "uvel: global_dof = " << global_dof << ", uvel_global_dof = " << vel_global_dof << ", uvel_local_dof = " << vel_local_dof << std::endl; 
          uvel->replaceLocalValue(vel_local_dof, sol_value);
        }
        else { // v dof 
          vel_global_dof = (global_dof-1)/2+1; //add 1 because node_map is 1-based 
          vel_local_dof = node_map->getLocalElement(vel_global_dof); //look up local id corresponding to global id in node_map
          vvel->replaceLocalValue(vel_local_dof, sol_value);
        }
      }
    }
    else { //note: the case with non-interleaved ordering has not been tested...
      int numDofs = overlapMap->getGlobalNumElements();
      for (int i=0; i<overlapMap->getNodeNumElements(); i++) {
        int global_dof = overlapMap->getGlobalElement(i);
        double sol_value = solutionOverlap_constView[i];
        int vel_global_dof, vel_local_dof;
        if (global_dof < numDofs/2) { //u dof
          vel_global_dof = global_dof+1; //add 1 because node_map is 1-based 
          vel_local_dof = node_map->getLocalElement(vel_global_dof); //look up local id corresponding to global id in node_map
          uvel->replaceLocalValue(vel_local_dof, sol_value);
        }
        else { //v dofs 
          vel_global_dof = global_dof-numDofs/2+1; //add 1 because node_map is 1-based
          vel_local_dof = node_map->getLocalElement(vel_global_dof); //look up local id corresponding to global id in node_map
          vvel->replaceLocalValue(vel_local_dof, sol_value);
        }
      }
    }
#endif
 

#ifdef WRITE_TO_MATRIX_MARKET
    //For debug: write solution to matrix market file 
#ifdef CISM_USE_EPETRA
     EpetraExt::MultiVectorToMatrixMarketFile("uvel.mm", uvel); 
     EpetraExt::MultiVectorToMatrixMarketFile("vvel.mm", vvel);
#else
     Tpetra_MatrixMarket_Writer::writeDenseFile("uvel.mm", uvel);
     Tpetra_MatrixMarket_Writer::writeDenseFile("vvel.mm", vvel);
#endif
#endif
 
     //Copy uvel and vvel into uVel_ptr and vVel_ptr respectively (the arrays passed back to CISM) according to the numbering consistent w/ CISM. 
     counter1 = 0; 
     counter2 = 0;
#ifdef CISM_USE_EPETRA
#else
     Teuchos::ArrayRCP<const ST> uvel_constView = uvel->get1dView();
     Teuchos::ArrayRCP<const ST> vvel_constView = vvel->get1dView();
#endif 
     local_nodeID = 0;  
     for (int j=0; j<nsn-1; j++) {
       for (int i=0; i<ewn-1; i++) { 
         for (int k=0; k<upn; k++) {
           if (j >= nhalo-1 & j < nsn-nhalo) {
             if (i >= nhalo-1 & i < ewn-nhalo) {
#ifdef CISM_USE_EPETRA 
               local_nodeID = node_map->LID(cismToAlbanyNodeNumberMap[counter1]); 
               //if (mpiComm->MyPID() == 0) 
               //std::cout << "counter1:" << counter1 << ", cismToAlbanyNodeNumberMap[counter1]: " << cismToAlbanyNodeNumberMap[counter1] << ", local_nodeID: " 
               //<< local_nodeID << ", uvel: " << uvel[local_nodeID] << std::endl; //uvel[local_nodeID] << std::endl;  
               uVel_ptr[counter2] = uvel[local_nodeID];
               vVel_ptr[counter2] = vvel[local_nodeID];  
#else
               local_nodeID = node_map->getLocalElement(cismToAlbanyNodeNumberMap[counter1]);
               uVel_ptr[counter2] = uvel_constView[local_nodeID];
               vVel_ptr[counter2] = vvel_constView[local_nodeID];
#endif
               counter1++;
            }
            }
            else {
             uVel_ptr[counter2] = 0.0; 
             vVel_ptr[counter2] = 0.0; 
            }
            counter2++; 
         }
        }
      }
    


    first_time_step = false;
}
Ejemplo n.º 13
0
// hide the original parental method AMET->evalModelImpl():
void
Aeras::HVDecorator::evalModelImpl(
    const Thyra::ModelEvaluatorBase::InArgs<ST>& inArgsT,
    const Thyra::ModelEvaluatorBase::OutArgs<ST>& outArgsT) const
{
#ifdef OUTPUT_TO_SCREEN
  std::cout << "DEBUG WHICH HVDecorator: " << __PRETTY_FUNCTION__ << "\n";
#endif
	
  Teuchos::TimeMonitor Timer(*timer); //start timer

  //
  // Get the input arguments
  //
  // Thyra vectors
  const Teuchos::RCP<const Thyra_Vector> x = inArgsT.get_x();
  const Teuchos::RCP<const Thyra_Vector> x_dot =
      (supports_xdot ? inArgsT.get_x_dot() : Teuchos::null);
  const Teuchos::RCP<const Thyra_Vector> x_dotdot =
      (supports_xdotdot ? inArgsT.get_x_dot_dot() : Teuchos::null);

  const double alpha = (Teuchos::nonnull(x_dot) || Teuchos::nonnull(x_dotdot)) ? inArgsT.get_alpha() : 0.0;
  // AGS: x_dotdot time integrators not imlemented in Thyra ME yet
  // const double omega = (Teuchos::nonnull(x_dot) || Teuchos::nonnull(x_dotdot)) ? inArgsT.get_omega() : 0.0;
  const double omega = 0.0;
  const double beta = (Teuchos::nonnull(x_dot) || Teuchos::nonnull(x_dotdot)) ? inArgsT.get_beta() : 1.0;
  const double curr_time = (Teuchos::nonnull(x_dot) || Teuchos::nonnull(x_dotdot)) ? inArgsT.get_t() : 0.0;

  for (int l = 0; l < inArgsT.Np(); ++l) {
    const Teuchos::RCP<const Thyra_Vector> p = inArgsT.get_p(l);
    if (Teuchos::nonnull(p)) {
      const Teuchos::RCP<const Tpetra_Vector> pT = Albany::getConstTpetraVector(p);
      const Teuchos::ArrayRCP<const ST> pT_constView = pT->get1dView();

      ParamVec &sacado_param_vector = sacado_param_vec[l];
      for (unsigned int k = 0; k < sacado_param_vector.size(); ++k) {
        sacado_param_vector[k].baseValue = pT_constView[k];
      }
    }
  }

  //
  // Get the output arguments
  //
  auto f    = outArgsT.get_f();
  auto W_op = outArgsT.get_W_op();

  //
  // Compute the functions
  //
  bool f_already_computed = false;

  // W matrix
  if (Teuchos::nonnull(W_op)) {
    app->computeGlobalJacobian(
        alpha, beta, omega, curr_time, x, x_dot, x_dotdot,
        sacado_param_vec, f, W_op);
    f_already_computed = true;
  }

  // df/dp
  for (int l = 0; l < outArgsT.Np(); ++l) {
    const Teuchos::RCP<Thyra_MultiVector> df_dp = outArgsT.get_DfDp(l).getMultiVector();

    if (Teuchos::nonnull(df_dp)) {
      const Teuchos::RCP<ParamVec> p_vec = Teuchos::rcpFromRef(sacado_param_vec[l]);

      app->computeGlobalTangent(
          0.0, 0.0, 0.0, curr_time, false, x, x_dot, x_dotdot,
          sacado_param_vec, p_vec.get(),
          Teuchos::null, Teuchos::null, Teuchos::null, Teuchos::null,
          f, Teuchos::null, df_dp);

      f_already_computed = true;
    }
  }

  // f
  if (app->is_adjoint) {
    const Thyra_Derivative f_deriv(f, Thyra::ModelEvaluatorBase::DERIV_TRANS_MV_BY_ROW);
    const Thyra_Derivative dummy_deriv;

    const int response_index = 0; // need to add capability for sending this in
    app->evaluateResponseDerivative(
        response_index, curr_time, x, x_dot, x_dotdot,
        sacado_param_vec, NULL,
        Teuchos::null, f_deriv, dummy_deriv, dummy_deriv, dummy_deriv);
  } else {
    if (Teuchos::nonnull(f) && !f_already_computed) {
      app->computeGlobalResidual(
          curr_time, x, x_dot, x_dotdot,
          sacado_param_vec, f);
    }
  }

  //compute xtilde 
  applyLinvML(x, xtilde); 

#ifdef WRITE_TO_MATRIX_MARKET_TO_MM_FILE
  //writing to MatrixMarket for debug
  char name[100];  //create string for file name
  sprintf(name, "xT_%i.mm", mm_counter);
  const Teuchos::RCP<const Tpetra_Vector> xT = Albany::getConstTpetraVector(x);
  Tpetra::MatrixMarket::Writer<Tpetra_CrsMatrix>::writeDenseFile(name, xT);
  sprintf(name, "xtildeT_%i.mm", mm_counter);
  const Teuchos::RCP<const Tpetra_Vector> xtildeT = Albany::getConstTpetraVector(xtilde);
  Tpetra::MatrixMarket::Writer<Tpetra_CrsMatrix>::writeDenseFile(name, xtildeT);
  mm_counter++; 
#endif  

  if (supports_xdot && Teuchos::nonnull(inArgsT.get_x_dot()) && Teuchos::nonnull(f)){
#ifdef OUTPUT_TO_SCREEN
    std::cout <<"in the if-statement for the update" <<std::endl;
#endif
    f->update(1.0,*xtilde);
  }

  // Response functions
  for (int j = 0; j < outArgsT.Ng(); ++j) {
    Teuchos::RCP<Thyra_Vector> g = outArgsT.get_g(j);

    const Thyra_Derivative dg_dx = outArgsT.get_DgDx(j);
    const Thyra_Derivative dg_dxdot = outArgsT.get_DgDx_dot(j);
    // AGS: x_dotdot time integrators not imlemented in Thyra ME yet
    const Thyra_Derivative dg_dxdotdot;
    sanitize_nans(dg_dx);
    sanitize_nans(dg_dxdot);
    sanitize_nans(dg_dxdotdot);

    // dg/dx, dg/dxdot
    if (!dg_dx.isEmpty() || !dg_dxdot.isEmpty()) {
      const Thyra_Derivative dummy_deriv;
      app->evaluateResponseDerivative(
          j, curr_time, x, x_dot, x_dotdot,
          sacado_param_vec, NULL,
          g, dg_dx, dg_dxdot, dg_dxdotdot, dummy_deriv);
      // Set g to null to indicate the response was evaluated.
      g= Teuchos::null;
    }

    // dg/dp
    for (int l = 0; l < outArgsT.Np(); ++l) {
      const Teuchos::RCP<Thyra_MultiVector> dg_dp =  outArgsT.get_DgDp(j, l).getMultiVector();

      if (Teuchos::nonnull(dg_dp)) {
        const Teuchos::RCP<ParamVec> p_vec = Teuchos::rcpFromRef(sacado_param_vec[l]);
        app->evaluateResponseTangent(
            j, alpha, beta, omega, curr_time, false,
            x, x_dot, x_dotdot, sacado_param_vec, p_vec.get(),
            Teuchos::null, Teuchos::null, Teuchos::null, Teuchos::null,
            g, Teuchos::null, dg_dp);
        g = Teuchos::null;
      }
    }

    // If response was not yet evaluated, do it now.
    if (Teuchos::nonnull(g)) {
      app->evaluateResponse(
          j, curr_time,
          x, x_dot, x_dotdot,
          sacado_param_vec, g);
    }
  }
}
Ejemplo n.º 14
0
int main(int argc, char *argv[]) {

  int status=0; // 0 = pass, failures are incremented
  bool success = true;

#ifdef ALBANY_DEBUG
  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
#else // bypass printing process startup info
  Teuchos::GlobalMPISession mpiSession(&argc, &argv, NULL);
#endif

  Kokkos::initialize(argc, argv);

#ifdef ALBANY_FLUSH_DENORMALS
  _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
  _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
#endif

#ifdef ALBANY_CHECK_FPE
   // Catch FPEs. Follow Main_SolveT.cpp's approach to checking for floating
   // point exceptions.
   //_mm_setcsr(_MM_MASK_MASK &~ (_MM_MASK_OVERFLOW | _MM_MASK_INVALID | _MM_MASK_DIV_ZERO) );
   _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~_MM_MASK_INVALID);
#endif

  using Teuchos::RCP;
  using Teuchos::rcp;

  RCP<Teuchos::FancyOStream> out(Teuchos::VerboseObjectBase::getDefaultOStream());

  // Command-line argument for input file
  Albany::CmdLineArgs cmd;
  cmd.parse_cmdline(argc, argv, *out);

  try {

    RCP<Teuchos::Time> totalTime =
      Teuchos::TimeMonitor::getNewTimer("Albany: ***Total Time***");

    RCP<Teuchos::Time> setupTime =
      Teuchos::TimeMonitor::getNewTimer("Albany: Setup Time");
    Teuchos::TimeMonitor totalTimer(*totalTime); //start timer
    Teuchos::TimeMonitor setupTimer(*setupTime); //start timer

    RCP<const Teuchos_Comm> comm =
      Tpetra::DefaultPlatform::getDefaultPlatform().getComm();

    // Connect vtune for performance profiling
    if (cmd.vtune) {
      Albany::connect_vtune(comm->getRank());
    }

    Albany::SolverFactory slvrfctry(cmd.xml_filename, comm);
    RCP<Epetra_Comm> appComm = Albany::createEpetraCommFromTeuchosComm(comm);
    RCP<Albany::Application> app;
    const RCP<Thyra::ModelEvaluator<double> > solver =
      slvrfctry.createThyraSolverAndGetAlbanyApp(app, appComm, appComm);

    setupTimer.~TimeMonitor();

//    PHX::InitializeKokkosDevice();
   
    Teuchos::ParameterList &solveParams =
      slvrfctry.getAnalysisParameters().sublist("Solve", /*mustAlreadyExist =*/ false);
    // By default, request the sensitivities if not explicitly disabled
    solveParams.get("Compute Sensitivities", true);

    Teuchos::Array<Teuchos::RCP<const Thyra::VectorBase<double> > > thyraResponses;
    Teuchos::Array<Teuchos::Array<Teuchos::RCP<const Thyra::MultiVectorBase<double> > > > thyraSensitivities;

       // The PoissonSchrodinger_SchroPo and PoissonSchroMosCap1D tests seg fault as albanyApp is null -
       // For now, do not resize the response vectors. FIXME sort out this issue.
    if(Teuchos::nonnull(app))
      Piro::PerformSolveBase(*solver, solveParams, thyraResponses, thyraSensitivities, app->getAdaptSolMgr()->getSolObserver());
    else
      Piro::PerformSolveBase(*solver, solveParams, thyraResponses, thyraSensitivities);

    Teuchos::Array<Teuchos::RCP<const Epetra_Vector> > responses;
    Teuchos::Array<Teuchos::Array<Teuchos::RCP<const Epetra_MultiVector> > > sensitivities;
    epetraFromThyra(appComm, thyraResponses, thyraSensitivities, responses, sensitivities);

    const int num_p = solver->Np(); // Number of *vectors* of parameters
    const int num_g = solver->Ng(); // Number of *vectors* of responses

    *out << "Finished eval of first model: Params, Responses "
      << std::setprecision(12) << std::endl;

    Teuchos::ParameterList& parameterParams = slvrfctry.getParameters().sublist("Problem").sublist("Parameters");
    int num_param_vecs = (parameterParams.isType<int>("Number")) ?
        int(parameterParams.get("Number", 0) > 0) :
        parameterParams.get("Number of Parameter Vectors", 0);

    const Thyra::ModelEvaluatorBase::InArgs<double> nominal = solver->getNominalValues();
    double norm2;
    for (int i=0; i<num_p; i++) {
      const Teuchos::RCP<const Epetra_Vector> p_init = epetraVectorFromThyra(appComm, nominal.get_p(i));
      if(i < num_param_vecs)
        p_init->Print(*out << "\nParameter vector " << i << ":\n");
      else { //distributed parameters, we print only 2-norm
        p_init->Norm2(&norm2);
        *out << "\nDistributed Parameter " << i << ":  " << norm2 << " (two-norm)\n" << std::endl;
      }
    }

    for (int i=0; i<num_g-1; i++) {
      const RCP<const Epetra_Vector> g = responses[i];
      bool is_scalar = true;

      if (app != Teuchos::null)
        is_scalar = app->getResponse(i)->isScalarResponse();

      if (is_scalar) {
        g->Print(*out << "\nResponse vector " << i << ":\n");

        if (num_p == 0) {
          // Just calculate regression data
          status += slvrfctry.checkSolveTestResults(i, 0, g.get(), NULL);
        } else {
          for (int j=0; j<num_p; j++) {
            const RCP<const Epetra_MultiVector> dgdp = sensitivities[i][j];
            if (Teuchos::nonnull(dgdp)) {
              if(j < num_param_vecs) {
                dgdp->Print(*out << "\nSensitivities (" << i << "," << j << "): \n");
                status += slvrfctry.checkSolveTestResults(i, j, g.get(), dgdp.get());
              }
              else {
                const Epetra_Map serial_map(-1, 1, 0, dgdp.get()->Comm());
                Epetra_MultiVector norms(serial_map,dgdp->NumVectors());
              //  RCP<Albany::ScalarResponseFunction> response = rcp_dynamic_cast<Albany::ScalarResponseFunction>(app->getResponse(i));
               // int numResponses = response->numResponses();
                *out << "\nSensitivities (" << i << "," << j  << ") for Distributed Parameters:  (two-norm)\n";
                *out << "    ";
                for(int ir=0; ir<dgdp->NumVectors(); ++ir) {
                  (*dgdp)(ir)->Norm2(&norm2);
                  (*norms(ir))[0] = norm2;
                  *out << "    " << norm2;
                }
                *out << "\n" << std::endl;
                status += slvrfctry.checkSolveTestResults(i, j, g.get(), &norms);
              }
            }
          }
        }
      }
    }

    // Create debug output object
    Teuchos::ParameterList &debugParams =
      slvrfctry.getParameters().sublist("Debug Output", true);
    bool writeToMatrixMarketSoln = debugParams.get("Write Solution to MatrixMarket", false);
    bool writeToMatrixMarketDistrSolnMap = debugParams.get("Write Distributed Solution and Map to MatrixMarket", false);
    bool writeToCoutSoln = debugParams.get("Write Solution to Standard Output", false);


    const RCP<const Epetra_Vector> xfinal = responses.back();
    double mnv; xfinal->MeanValue(&mnv);
    *out << "Main_Solve: MeanValue of final solution " << mnv << std::endl;
    *out << "\nNumber of Failed Comparisons: " << status << std::endl;
    if (writeToCoutSoln == true) 
       std::cout << "xfinal: " << *xfinal << std::endl;

#ifdef ALBANY_PERIDIGM
#if defined(ALBANY_EPETRA)
    if (Teuchos::nonnull(LCM::PeridigmManager::self())) {
      *out << setprecision(12) << "\nPERIDIGM-ALBANY OPTIMIZATION-BASED COUPLING FINAL FUNCTIONAL VALUE = "
           << LCM::PeridigmManager::self()->obcEvaluateFunctional()  << "\n" << std::endl;
    }
#endif
#endif

    if (debugParams.get<bool>("Analyze Memory", false))
      Albany::printMemoryAnalysis(std::cout, comm);

    if (writeToMatrixMarketSoln == true) { 

      //create serial map that puts the whole solution on processor 0
      int numMyElements = (xfinal->Comm().MyPID() == 0) ? app->getDiscretization()->getMap()->NumGlobalElements() : 0;
      const Epetra_Map serial_map(-1, numMyElements, 0, xfinal->Comm());

      //create importer from parallel map to serial map and populate serial solution xfinal_serial
      Epetra_Import importOperator(serial_map, *app->getDiscretization()->getMap());
      Epetra_Vector xfinal_serial(serial_map);
      xfinal_serial.Import(*app->getDiscretization()->getSolutionField(), importOperator, Insert);

      //writing to MatrixMarket file
      EpetraExt::MultiVectorToMatrixMarketFile("xfinal.mm", xfinal_serial);
    }
    if (writeToMatrixMarketDistrSolnMap == true) {
      //writing to MatrixMarket file
      EpetraExt::MultiVectorToMatrixMarketFile("xfinal_distributed.mm", *xfinal);
      EpetraExt::BlockMapToMatrixMarketFile("xfinal_distributed_map.mm", *app->getDiscretization()->getMap());
    }
  }
  TEUCHOS_STANDARD_CATCH_STATEMENTS(true, std::cerr, success);
  if (!success) status+=10000;
  

  Teuchos::TimeMonitor::summarize(*out,false,true,false/*zero timers*/);

  Kokkos::finalize_all();
 
  return status;
}
TEUCHOS_UNIT_TEST( Rythmos_GlobalErrorEstimator, SinCos ) {
  typedef Teuchos::ScalarTraits<double> ST;
  // Forward Solve, storing data in linear interpolation buffer
  int storageLimit = 100;
  double finalTime = 0.1;
  double dt = 0.1;
  RCP<IntegratorBuilder<double> > ib = integratorBuilder<double>();
  {
    RCP<ParameterList> ibPL = Teuchos::parameterList();
    ibPL->sublist("Integrator Settings").sublist("Integrator Selection").set("Integrator Type","Default Integrator");
    ibPL->sublist("Integrator Settings").set("Final Time",finalTime);
    ibPL->sublist("Integration Control Strategy Selection").set("Integration Control Strategy Type","Simple Integration Control Strategy");
    ibPL->sublist("Integration Control Strategy Selection").sublist("Simple Integration Control Strategy").set("Take Variable Steps",false);
    ibPL->sublist("Integration Control Strategy Selection").sublist("Simple Integration Control Strategy").set("Fixed dt",dt);

    ibPL->sublist("Stepper Settings").sublist("Stepper Selection").set("Stepper Type","Backward Euler");
    //ibPL->sublist("Stepper Settings").sublist("Stepper Selection").set("Stepper Type","Implicit RK");
    //ibPL->sublist("Stepper Settings").sublist("Runge Kutta Butcher Tableau Selection").set("Runge Kutta Butcher Tableau Type","Backward Euler");
    ibPL->sublist("Interpolation Buffer Settings").sublist("Trailing Interpolation Buffer Selection").set("Interpolation Buffer Type","Interpolation Buffer");
    ibPL->sublist("Interpolation Buffer Settings").sublist("Trailing Interpolation Buffer Selection").sublist("Interpolation Buffer").set("StorageLimit",storageLimit);
    ibPL->sublist("Interpolation Buffer Settings").sublist("Interpolator Selection").set("Interpolator Type","Linear Interpolator");
    ib->setParameterList(ibPL);
  }
  RCP<SinCosModel> fwdModel = sinCosModel(true); // implicit formulation
  Thyra::ModelEvaluatorBase::InArgs<double> fwdIC = fwdModel->getNominalValues();
  RCP<Thyra::NonlinearSolverBase<double> > fwdNLSolver = timeStepNonlinearSolver<double>();
  RCP<IntegratorBase<double> > fwdIntegrator = ib->create(fwdModel,fwdIC,fwdNLSolver);
  RCP<const VectorBase<double> > x_final;
  {
    Array<double> time_vec;
    time_vec.push_back(finalTime);
    Array<RCP<const Thyra::VectorBase<double> > > x_final_array;
    fwdIntegrator->getFwdPoints(time_vec,&x_final_array,NULL,NULL);
    x_final = x_final_array[0];
  }
  // Verify x_final is correct
  {
    // Defaults from SinCos Model:
    double f = 1.0;
    double L = 1.0;
    double a = 0.0;
    double x_ic_0 = 0.0;
    double x_ic_1 = 1.0;
    double x_0 = dt/(1.0+std::pow(dt*f/L,2))*(x_ic_0/dt+x_ic_1+dt*std::pow(f/L,2)*a);
    double x_1 = dt/(1.0+std::pow(dt*f/L,2))*(-std::pow(f/L,2)*x_ic_0+x_ic_1/dt+std::pow(f/L,2)*a);
    double tol = 1.0e-10;
    Thyra::ConstDetachedVectorView<double> x_final_view( *x_final );
    TEST_FLOATING_EQUALITY( x_final_view[0], x_0, tol );
    TEST_FLOATING_EQUALITY( x_final_view[1], x_1, tol );
  }
  // Copy InterpolationBuffer data into Cubic Spline interpolation buffer for use in Adjoint Solve
  TimeRange<double> fwdTimeRange; 
  RCP<InterpolationBufferBase<double> > fwdCubicSplineInterpBuffer;
  {
    RCP<PointwiseInterpolationBufferAppender<double> > piba = pointwiseInterpolationBufferAppender<double>();
    RCP<InterpolationBuffer<double> > sinkInterpBuffer = interpolationBuffer<double>();
    sinkInterpBuffer->setStorage(storageLimit);
    RCP<CubicSplineInterpolator<double> > csi = cubicSplineInterpolator<double>();
    sinkInterpBuffer->setInterpolator(csi);
    RCP<const InterpolationBufferBase<double> > sourceInterpBuffer;
    {
      RCP<TrailingInterpolationBufferAcceptingIntegratorBase<double> > tibaib = 
        Teuchos::rcp_dynamic_cast<TrailingInterpolationBufferAcceptingIntegratorBase<double> >(fwdIntegrator,true);
      sourceInterpBuffer = tibaib->getTrailingInterpolationBuffer();
    }
    fwdTimeRange = sourceInterpBuffer->getTimeRange();
    piba->append(*sourceInterpBuffer, fwdTimeRange, Teuchos::outArg(*sinkInterpBuffer));
    fwdCubicSplineInterpBuffer = sinkInterpBuffer;

    TimeRange<double> sourceRange = sourceInterpBuffer->getTimeRange();
    TimeRange<double> sinkRange = sinkInterpBuffer->getTimeRange();
    TEST_EQUALITY( sourceRange.lower(), sinkRange.lower() );
    TEST_EQUALITY( sourceRange.upper(), sinkRange.upper() );
  }
  // Adjoint Solve, reading forward solve data from Cubic Spline interpolation buffer
  {
    RCP<ParameterList> ibPL = Teuchos::parameterList();
    ibPL->sublist("Integrator Settings").sublist("Integrator Selection").set("Integrator Type","Default Integrator");
    ibPL->sublist("Integrator Settings").set("Final Time",finalTime);
    ibPL->sublist("Integration Control Strategy Selection").set("Integration Control Strategy Type","Simple Integration Control Strategy");
    ibPL->sublist("Integration Control Strategy Selection").sublist("Simple Integration Control Strategy").set("Take Variable Steps",false);
    ibPL->sublist("Integration Control Strategy Selection").sublist("Simple Integration Control Strategy").set("Fixed dt",dt);

    ibPL->sublist("Stepper Settings").sublist("Stepper Selection").set("Stepper Type","Backward Euler");
    //ibPL->sublist("Stepper Settings").sublist("Stepper Selection").set("Stepper Type","Implicit RK");
    //ibPL->sublist("Stepper Settings").sublist("Runge Kutta Butcher Tableau Selection").set("Runge Kutta Butcher Tableau Type","Implicit 1 Stage 2nd order Gauss");
    ibPL->sublist("Interpolation Buffer Settings").sublist("Trailing Interpolation Buffer Selection").set("Interpolation Buffer Type","Interpolation Buffer");
    ibPL->sublist("Interpolation Buffer Settings").sublist("Trailing Interpolation Buffer Selection").sublist("Interpolation Buffer").set("StorageLimit",storageLimit);
    ibPL->sublist("Interpolation Buffer Settings").sublist("Interpolator Selection").set("Interpolator Type","Linear Interpolator");
    ib->setParameterList(ibPL);
  }
  RCP<Thyra::ModelEvaluator<double> > adjModel;
  {
    RCP<Rythmos::AdjointModelEvaluator<double> > model = 
      Rythmos::adjointModelEvaluator<double>(
          fwdModel, fwdTimeRange
          );
    //model->setFwdStateSolutionBuffer(fwdCubicSplineInterpBuffer);
    adjModel = model;
  }
  Thyra::ModelEvaluatorBase::InArgs<double> adjIC = adjModel->getNominalValues();
  double phi_ic_0 = 2.0;
  double phi_ic_1 = 3.0;
  {
    // Initial conditions for adjoint:
    const RCP<const Thyra::VectorSpaceBase<double> >
      f_space = fwdModel->get_f_space();
    const RCP<Thyra::VectorBase<double> > x_ic = createMember(f_space);
    {
      Thyra::DetachedVectorView<double> x_ic_view( *x_ic );
      x_ic_view[0] = phi_ic_0;
      x_ic_view[1] = phi_ic_1;
    }
    const RCP<Thyra::VectorBase<double> > xdot_ic = createMember(f_space);
    V_S( Teuchos::outArg(*xdot_ic), ST::zero() );
    adjIC.set_x(x_ic);
    adjIC.set_x_dot(xdot_ic);
  }
  RCP<Thyra::LinearNonlinearSolver<double> > adjNLSolver = Thyra::linearNonlinearSolver<double>();
  RCP<IntegratorBase<double> > adjIntegrator = ib->create(adjModel,adjIC,adjNLSolver);
  RCP<const VectorBase<double> > phi_final;
  {
    Array<double> time_vec;
    time_vec.push_back(finalTime);
    Array<RCP<const Thyra::VectorBase<double> > > phi_final_array;
    adjIntegrator->getFwdPoints(time_vec,&phi_final_array,NULL,NULL);
    phi_final = phi_final_array[0];
  }
  // Verify phi_final is correct
  {
    // Defaults from SinCos Model:
    double f = 1.0;
    double L = 1.0;
    double h = -dt;
    double phi_0 = 1.0/(1.0+std::pow(f*h/L,2.0))*(phi_ic_0+std::pow(f/L,2.0)*h*phi_ic_1);
    double phi_1 = 1.0/(1.0+std::pow(f*h/L,2.0))*(-h*phi_ic_0+phi_ic_1);
    double tol = 1.0e-10;
    Thyra::ConstDetachedVectorView<double> phi_final_view( *phi_final );
    TEST_FLOATING_EQUALITY( phi_final_view[0], phi_0, tol );
    TEST_FLOATING_EQUALITY( phi_final_view[1], phi_1, tol );
  }
  // Compute error estimate
  //TEST_ASSERT( false );
}
Ejemplo n.º 16
0
int main(int argc, char *argv[])
{
  // Create output stream. (Handy for multicore output.)
  auto out = Teuchos::VerboseObjectBase::getDefaultOStream();

  Teuchos::GlobalMPISession session(&argc, &argv, NULL);

  auto comm = Teuchos::DefaultComm<int>::getComm();

  // Wrap the whole code in a big try-catch-statement.
  bool success = true;
  try {
    // =========================================================================
    // Handle command line arguments.
    // Boost::program_options is somewhat more complete here (e.g. you can
    // specify options without the "--" syntax), but it isn't less complicated
    // to use. Stick with Teuchos for now.
    Teuchos::CommandLineProcessor myClp;

    myClp.setDocString(
      "Numerical parameter continuation for nonlinear Schr\"odinger equations.\n"
    );

    std::string xmlInputPath = "";
    myClp.setOption("xml-input-file", &xmlInputPath,
                    "XML file containing the parameter list", true );

    // Print warning for unrecognized arguments and make sure to throw an
    // exception if something went wrong.
    //myClp.throwExceptions(false);
    //myClp.recogniseAllOptions ( true );

    // Finally, parse the command line.
    myClp.parse(argc, argv);

    // Retrieve Piro parameter list from given file.
    std::shared_ptr<Teuchos::ParameterList> piroParams(
        new Teuchos::ParameterList()
        );
    Teuchos::updateParametersFromXmlFile(
        xmlInputPath,
        Teuchos::rcp(piroParams).ptr()
        );
    // =======================================================================
    // Extract the location of input and output files.
    const Teuchos::ParameterList outputList =
      piroParams->sublist("Output", true);

    // Set default directory to be the directory of the XML file itself
    const std::string xmlDirectory =
      xmlInputPath.substr(0, xmlInputPath.find_last_of( "/" ) + 1);

    // By default, take the current directory.
    std::string prefix = "./";
    if (!xmlDirectory.empty())
      prefix = xmlDirectory + "/";

    const std::string outputDirectory = prefix;

    const std::string contFilePath =
      prefix + outputList.get<std::string>("Continuation data file name");

    Teuchos::ParameterList & inputDataList = piroParams->sublist("Input", true);

    const std::string inputExodusFile =
      prefix + inputDataList.get<std::string>("File");
    const int step = inputDataList.get<int>("Initial Psi Step");

    //const bool useBordering = piroParams->get<bool>("Bordering");
    // =======================================================================
    // Read the data from the file.
    auto mesh = std::make_shared<Nosh::StkMesh>(
        Teuchos::get_shared_ptr(comm),
        inputExodusFile,
        step
        );

    // Cast the data into something more accessible.
    auto psi = mesh->getComplexVector("psi");
    //psi->Random();

    // Set the output directory for later plotting with this.
    std::stringstream outputFile;
    outputFile << outputDirectory << "/solution.e";
    mesh->openOutputChannel(outputFile.str());

    // Create a parameter map from the initial parameter values.
    Teuchos::ParameterList initialParameterValues =
      piroParams->sublist("Initial parameter values", true);

    // Check if we need to interpret the time value stored in the file
    // as a parameter.
    const std::string & timeName =
      piroParams->get<std::string>("Interpret time as", "");
    if (!timeName.empty()) {
      initialParameterValues.set(timeName, mesh->getTime());
    }

    // Explicitly set the initial parameter value for this list.
    const std::string & paramName =
      piroParams->sublist( "LOCA" )
      .sublist( "Stepper" )
      .get<std::string>("Continuation Parameter");
    *out << "Setting the initial parameter value of \""
         << paramName << "\" to " << initialParameterValues.get<double>(paramName) << "." << std::endl;
    piroParams->sublist( "LOCA" )
    .sublist( "Stepper" )
    .set("Initial Value", initialParameterValues.get<double>(paramName));

    // Set the thickness field.
    auto thickness = std::make_shared<Nosh::ScalarField::Constant>(*mesh, 1.0);

    // Some alternatives for the positive-definite operator.
    // (a) -\Delta (Laplace operator with Neumann boundary)
    //const std::shared_ptr<Nosh::ParameterMatrix::Virtual> matrixBuilder =
    //  rcp(new Nosh::ParameterMatrix::Laplace(mesh, thickness));

    // (b) (-i\nabla-A)^2 (Kinetic energy of a particle in magnetic field)
    // (b1) 'A' explicitly given in file.
    const double mu = initialParameterValues.get<double>("mu");
    auto mvp = std::make_shared<Nosh::VectorField::ExplicitValues>(*mesh, "A", mu);

    //const std::shared_ptr<Nosh::ParameterMatrix::Virtual> keoBuilder(
    //    new Nosh::ParameterMatrix::Keo(mesh, thickness, mvp)
    //    );
    //const std::shared_ptr<Nosh::ParameterMatrix::Virtual> DKeoDPBuilder(
    //    new Nosh::ParameterMatrix::DKeoDP(mesh, thickness, mvp, "mu")
    //    );

    // (b2) 'A' analytically given (here with constant curl).
    //      Optionally add a rotation axis u. This is important
    //      if continuation happens as a rotation of the vector
    //      field around an axis.
    //const std::shared_ptr<DoubleVector> b = rcp(new DoubleVector(3));
    //std::shared_ptr<Teuchos::SerialDenseVector<int,double> > u = Teuchos::null;
    //if ( piroParams->isSublist("Rotation vector") )
    //{
    //    u = rcp(new Teuchos::SerialDenseVector<int,double>(3));
    //    Teuchos::ParameterList & rotationVectorList =
    //        piroParams->sublist( "Rotation vector", false );
    //    (*u)[0] = rotationVectorList.get<double>("x");
    //    (*u)[1] = rotationVectorList.get<double>("y");
    //    (*u)[2] = rotationVectorList.get<double>("z");
    //}
    //std::shared_ptr<Nosh::VectorField::Virtual> mvp =
    //  rcp(new Nosh::VectorField::ConstantCurl(mesh, b, u));
    //const std::shared_ptr<Nosh::ParameterMatrix::Virtual> matrixBuilder =
    //  rcp(new Nosh::ParameterMatrix::Keo(mesh, thickness, mvp));
    // (b3) 'A' analytically given in a class you write yourself, derived
    //      from Nosh::ParameterMatrix::Virtual.
    // [...]
    //
    // Setup the scalar potential V.
    // (a) A constant potential.
    //std::shared_ptr<Nosh::ScalarField::Virtual> sp =
    //rcp(new Nosh::ScalarField::Constant(*mesh, -1.0));
    //const double T = initialParameterValues.get<double>("T");
    // (b) With explicit values.
    //std::shared_ptr<Nosh::ScalarField::Virtual> sp =
    //rcp(new Nosh::ScalarField::ExplicitValues(*mesh, "V"));
    // (c) One you built yourself by deriving from Nosh::ScalarField::Virtual.
    auto sp = std::make_shared<MyScalarField>(mesh);


    const double g = initialParameterValues.get<double>("g");
    // Finally, create the model evaluator.
    // This is the most important object in the whole stack.
    auto modelEvaluator = std::make_shared<Nosh::ModelEvaluator::Nls>(
        mesh,
        mvp,
        sp,
        g,
        thickness,
        psi,
        "mu"
        );

    // Build the Piro model evaluator. It's used to hook up with
    // several different backends (NOX, LOCA, Rhythmos,...).
    std::shared_ptr<Thyra::ModelEvaluator<double>> piro;

    // Declare the eigensaver; it will be used only for LOCA solvers, though.
    std::shared_ptr<Nosh::SaveEigenData> glEigenSaver;

    // Switch by solver type.
    std::string & solver = piroParams->get<std::string>("Piro Solver");

    if (solver == "NOX") {
      auto observer = std::make_shared<Nosh::Observer>(modelEvaluator);

      piro = std::make_shared<Piro::NOXSolver<double>>(
            Teuchos::rcp(piroParams),
            Teuchos::rcp(modelEvaluator),
            Teuchos::rcp(observer)
            );
    } else if (solver == "LOCA") {
      auto observer = std::make_shared<Nosh::Observer>(
          modelEvaluator,
          contFilePath,
          piroParams->sublist("LOCA")
          .sublist("Stepper")
          .get<std::string>("Continuation Parameter")
          );

      // Setup eigen saver.
#ifdef HAVE_LOCA_ANASAZI
      bool computeEigenvalues = piroParams->sublist( "LOCA" )
                                .sublist( "Stepper" )
                                .get<bool>("Compute Eigenvalues");
      if (computeEigenvalues) {
        Teuchos::ParameterList & eigenList = piroParams->sublist("LOCA")
                                             .sublist("Stepper")
                                             .sublist("Eigensolver");
        std::string eigenvaluesFilePath =
          xmlDirectory + "/" + outputList.get<std::string> ( "Eigenvalues file name" );

        glEigenSaver = std::make_shared<Nosh::SaveEigenData>(
            eigenList,
            modelEvaluator,
            eigenvaluesFilePath
            );

        std::shared_ptr<LOCA::SaveEigenData::AbstractStrategy>
          glSaveEigenDataStrategy = glEigenSaver;
        eigenList.set("Save Eigen Data Method",
                      "User-Defined");
        eigenList.set("User-Defined Save Eigen Data Name",
                      "glSaveEigenDataStrategy");
        eigenList.set("glSaveEigenDataStrategy",
                      glSaveEigenDataStrategy);
      }
#endif
      // Get the solver.
      std::shared_ptr<Piro::LOCASolver<double>> piroLOCASolver(
          new Piro::LOCASolver<double>(
            Teuchos::rcp(piroParams),
            Teuchos::rcp(modelEvaluator),
            Teuchos::null
            //Teuchos::rcp(observer)
            )
          );

//      // Get stepper and inject it into the eigensaver.
//      std::shared_ptr<LOCA::Stepper> stepper = Teuchos::get_shared_ptr(
//          piroLOCASolver->getLOCAStepperNonConst()
//          );
//#ifdef HAVE_LOCA_ANASAZI
//      if (computeEigenvalues)
//        glEigenSaver->setLocaStepper(stepper);
//#endif
      piro = piroLOCASolver;
    }
#if 0
    else if ( solver == "Turning Point" ) {
      std::shared_ptr<Nosh::Observer> observer;

      Teuchos::ParameterList & bifList =
        piroParams->sublist("LOCA").sublist("Bifurcation");

      // Fetch the (approximate) null state.
      auto nullstateZ = mesh->getVector("null");

      // Set the length normalization vector to be the initial null vector.
      TEUCHOS_ASSERT(nullstateZ);
      auto lengthNormVec = Teuchos::rcp(new NOX::Thyra::Vector(*nullstateZ));
      //lengthNormVec->init(1.0);
      bifList.set("Length Normalization Vector", lengthNormVec);

      // Set the initial null vector.
      auto initialNullAbstractVec =
        Teuchos::rcp(new NOX::Thyra::Vector(*nullstateZ));
      // initialNullAbstractVec->init(1.0);
      bifList.set("Initial Null Vector", initialNullAbstractVec);

      piro = std::make_shared<Piro::LOCASolver<double>>(
            Teuchos::rcp(piroParams),
            Teuchos::rcp(modelEvaluator),
            Teuchos::null
            //Teuchos::rcp(observer)
            );
    }
#endif
    else {
      TEUCHOS_TEST_FOR_EXCEPT_MSG(
          true,
          "Unknown solver type \"" << solver << "\"."
          );
    }
    // ----------------------------------------------------------------------

    // Now the setting of inputs and outputs.
    Thyra::ModelEvaluatorBase::InArgs<double> inArgs = piro->createInArgs();
    inArgs.set_p(
        0,
        piro->getNominalValues().get_p(0)
        );

    // Set output arguments to evalModel call.
    Thyra::ModelEvaluatorBase::OutArgs<double> outArgs = piro->createOutArgs();

    // Now solve the problem and return the responses.
    const Teuchos::RCP<Teuchos::Time> piroSolveTime =
      Teuchos::TimeMonitor::getNewTimer("Piro total solve time");;
    {
      Teuchos::TimeMonitor tm(*piroSolveTime);
      piro->evalModel(inArgs, outArgs);
    }

    // Manually release LOCA stepper.
#ifdef HAVE_LOCA_ANASAZI
    if (glEigenSaver)
      glEigenSaver->releaseLocaStepper();
#endif

    // Print timing data.
    Teuchos::TimeMonitor::summarize();
  } catch (Teuchos::CommandLineProcessor::HelpPrinted) {
  } catch (Teuchos::CommandLineProcessor::ParseError) {
  }
  TEUCHOS_STANDARD_CATCH_STATEMENTS(true, *out, success);

  return success ? EXIT_SUCCESS : EXIT_FAILURE;
}
Ejemplo n.º 17
0
int main(int argc, char *argv[]) {

  int status=0; // 0 = pass, failures are incremented
  bool success = true;
  Teuchos::GlobalMPISession mpiSession(&argc,&argv);

#ifdef ENABLE_CHECK_FPE
   // Catch FPEs
   _mm_setcsr(_MM_MASK_MASK &~
		(_MM_MASK_OVERFLOW | _MM_MASK_INVALID | _MM_MASK_DIV_ZERO) );
#endif

  using Teuchos::RCP;
  using Teuchos::rcp;

  RCP<Teuchos::FancyOStream> out(Teuchos::VerboseObjectBase::getDefaultOStream());

  // Command-line argument for input file
  std::string xmlfilename;
  if(argc > 1){

    if(!strcmp(argv[1],"--help")){
      printf("albany [inputfile.xml]\n");
      exit(1);
    }
    else
      xmlfilename = argv[1];

  }
  else
    xmlfilename = "input.xml";

  try {
    RCP<Teuchos::Time> totalTime =
      Teuchos::TimeMonitor::getNewTimer("Albany: ***Total Time***");

    RCP<Teuchos::Time> setupTime =
      Teuchos::TimeMonitor::getNewTimer("Albany: Setup Time");
    Teuchos::TimeMonitor totalTimer(*totalTime); //start timer
    Teuchos::TimeMonitor setupTimer(*setupTime); //start timer

    Albany::SolverFactory slvrfctry(xmlfilename, Albany_MPI_COMM_WORLD);
    RCP<Epetra_Comm> appComm = Albany::createEpetraCommFromMpiComm(Albany_MPI_COMM_WORLD);
    RCP<Albany::Application> app;
    const RCP<Thyra::ModelEvaluator<double> > solver =
      slvrfctry.createThyraSolverAndGetAlbanyApp(app, appComm, appComm);

    setupTimer.~TimeMonitor();

    Teuchos::ParameterList &solveParams =
      slvrfctry.getAnalysisParameters().sublist("Solve", /*mustAlreadyExist =*/ false);
    // By default, request the sensitivities if not explicitly disabled
    solveParams.get("Compute Sensitivities", true);

    Teuchos::Array<Teuchos::RCP<const Thyra::VectorBase<double> > > thyraResponses;
    Teuchos::Array<Teuchos::Array<Teuchos::RCP<const Thyra::MultiVectorBase<double> > > > thyraSensitivities;

       // The PoissonSchrodinger_SchroPo and PoissonSchroMosCap1D tests seg fault as albanyApp is null -
       // For now, do not resize the response vectors. FIXME sort out this issue.
    if(Teuchos::nonnull(app))
      Piro::PerformSolveBase(*solver, solveParams, thyraResponses, thyraSensitivities, app->getAdaptSolMgr()->getSolObserver());
    else
      Piro::PerformSolveBase(*solver, solveParams, thyraResponses, thyraSensitivities);

    *out << "After main solve" << std::endl;

    Teuchos::Array<Teuchos::RCP<const Epetra_Vector> > responses;
    Teuchos::Array<Teuchos::Array<Teuchos::RCP<const Epetra_MultiVector> > > sensitivities;
    epetraFromThyra(appComm, thyraResponses, thyraSensitivities, responses, sensitivities);

    const int num_p = solver->Np(); // Number of *vectors* of parameters
    const int num_g = solver->Ng(); // Number of *vectors* of responses

    *out << "Finished eval of first model: Params, Responses "
      << std::setprecision(12) << std::endl;

    const Thyra::ModelEvaluatorBase::InArgs<double> nominal = solver->getNominalValues();
    for (int i=0; i<num_p; i++) {
      const Teuchos::RCP<const Epetra_Vector> p_init = epetraVectorFromThyra(appComm, nominal.get_p(i));
      p_init->Print(*out << "\nParameter vector " << i << ":\n");
    }

    for (int i=0; i<num_g-1; i++) {
      const RCP<const Epetra_Vector> g = responses[i];
      bool is_scalar = true;

      if (app != Teuchos::null)
        is_scalar = app->getResponse(i)->isScalarResponse();

      if (is_scalar) {
        g->Print(*out << "\nResponse vector " << i << ":\n");

        if (num_p == 0) {
          // Just calculate regression data
          status += slvrfctry.checkSolveTestResults(i, 0, g.get(), NULL);
        } else {
          for (int j=0; j<num_p; j++) {
            const RCP<const Epetra_MultiVector> dgdp = sensitivities[i][j];
            if (Teuchos::nonnull(dgdp)) {
              dgdp->Print(*out << "\nSensitivities (" << i << "," << j << "):!\n");
            }
            status += slvrfctry.checkSolveTestResults(i, j, g.get(), dgdp.get());
          }
        }
      }
    }

    const RCP<const Epetra_Vector> xfinal = responses.back();
    double mnv; xfinal->MeanValue(&mnv);
    *out << "Main_Solve: MeanValue of final solution " << mnv << std::endl;
    *out << "\nNumber of Failed Comparisons: " << status << std::endl;
  }
  TEUCHOS_STANDARD_CATCH_STATEMENTS(true, std::cerr, success);
  if (!success) status+=10000;

  Teuchos::TimeMonitor::summarize(*out,false,true,false/*zero timers*/);
  return status;
}
void
Piro::LOCAAdaptiveSolver<Scalar>::evalModelImpl(
    const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs,
    const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const
{
  const int l = 0; // TODO: Allow user to select parameter index
  const Teuchos::RCP<const Thyra::VectorBase<Scalar> > p_inargs = inArgs.get_p(l);

  // Forward parameter values to the LOCAAdaptive stepper
  {
    const Teuchos::RCP<const Thyra::VectorBase<Scalar> > p_inargs_or_nominal =
      Teuchos::nonnull(p_inargs) ? p_inargs : this->getNominalValues().get_p(l);
    const Thyra::ConstDetachedVectorView<Scalar> p_init_values(p_inargs_or_nominal);
    const Teuchos_Ordinal p_entry_count = p_init_values.subDim();
    TEUCHOS_ASSERT(p_entry_count == Teuchos::as<Teuchos_Ordinal>(paramVector_.length()));

    for (Teuchos_Ordinal k = 0; k < p_entry_count; ++k) {
      paramVector_[k] = p_init_values[k];
    }

//    solMgr_->getSolutionGroup()->setParams(paramVector_);
    Teuchos::rcp_dynamic_cast< ::Thyra::LOCAAdaptiveState >(solMgr_->getState())
                 ->getSolutionGroup()->setParams(paramVector_);
  }

  LOCA::Abstract::Iterator::IteratorStatus status;

  status = stepper_->run();

  if (status == LOCA::Abstract::Iterator::Finished) {
    utils_.out() << "Continuation Stepper Finished.\n";
  } else if (status == LOCA::Abstract::Iterator::NotFinished) {
    utils_.out() << "Continuation Stepper did not reach final value.\n";
  } else {
    utils_.out() << "Nonlinear solver failed to converge.\n";
    outArgs.setFailed();
  }

  // The time spent
  globalData_->locaUtils->out() << std::endl <<
    "#### Statistics ########" << std::endl;

  // Check number of steps
  int numSteps = stepper_->getStepNumber();
  globalData_->locaUtils->out() << std::endl <<
    " Number of continuation Steps = " << numSteps << std::endl;

  // Check number of failed steps
  int numFailedSteps = stepper_->getNumFailedSteps();
  globalData_->locaUtils->out() << std::endl <<
    " Number of failed continuation Steps = " << numFailedSteps << std::endl;

  globalData_->locaUtils->out() << std::endl;


  // Note: the last g is used to store the final solution. It can be null - if it is just
  // skip the store. If adaptation has occurred, g is not the correct size.

  const Teuchos::RCP<Thyra::VectorBase<Scalar> > x_outargs = outArgs.get_g(this->num_g());
  Teuchos::RCP<Thyra::VectorBase<Scalar> > x_final;

  int x_args_dim = 0;
  int f_sol_dim = 0;

  // Pardon the nasty cast to resize the last g in outArgs - need to fit the solution
  Thyra::ModelEvaluatorBase::OutArgs<Scalar>* mutable_outArgsPtr =
    const_cast<Thyra::ModelEvaluatorBase::OutArgs<Scalar>* >(&outArgs);

  if(Teuchos::nonnull(x_outargs)){ // g has been allocated, calculate the sizes of g and the solution

    x_args_dim = x_outargs->space()->dim();
//    f_sol_dim = solMgr_->getSolutionGroup()->getX().length();
    f_sol_dim = Teuchos::rcp_dynamic_cast< ::Thyra::LOCAAdaptiveState >(solMgr_->getState())
          ->getSolutionGroup()->getX().length();


  }

  if(Teuchos::is_null(x_outargs) || (x_args_dim != f_sol_dim)){ // g is not the right size

      x_final = Thyra::createMember(this->get_g_space(this->num_g()));

      mutable_outArgsPtr->set_g(this->num_g(), x_final);

  }
  else { // g is OK, use it
    x_final = x_outargs;
  }

  {
    // Deep copy final solution from LOCA group
    NOX::Thyra::Vector finalSolution(x_final);
//    finalSolution = solMgr_->getSolutionGroup()->getX();
    finalSolution = Teuchos::rcp_dynamic_cast< ::Thyra::LOCAAdaptiveState >(solMgr_->getState())
                      ->getSolutionGroup()->getX();

  }

  // If the arrays need resizing
  if(x_args_dim != f_sol_dim){

    const int parameterCount = this->Np();

    for (int pc = 0; pc < parameterCount; ++pc) {
      const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
        outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, this->num_g(), pc);
      const Thyra::ModelEvaluatorBase::EDerivativeMultiVectorOrientation dgdp_orient =
        Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM;
      if (dgdp_support.supports(dgdp_orient)) {
        const Thyra::ModelEvaluatorBase::DerivativeMultiVector<Scalar> dgdp =
          Thyra::create_DgDp_mv(*this, this->num_g(), pc, dgdp_orient);
        mutable_outArgsPtr->set_DgDp(this->num_g(), pc, dgdp);
      }
    }
  }

  // Compute responses for the final solution
  {
    Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs =
      this->getModel().createInArgs();
    {
      modelInArgs.set_x(x_final);
      modelInArgs.set_p(l, p_inargs);
    }

    this->evalConvergedModel(modelInArgs, outArgs);

    // Save the final solution TODO: this needs to be redone

    Teuchos::RCP<Thyra::ModelEvaluatorBase::InArgs<Scalar> > fp
         = Teuchos::rcp_const_cast<Thyra::ModelEvaluatorBase::InArgs<Scalar> >(finalPoint_);
    Thyra::ModelEvaluatorBase::InArgsSetup<Scalar> ia;
    ia.setSupports(Thyra::ModelEvaluatorBase::IN_ARG_x, true);
    *fp = ia;
    fp->set_x(x_final);

  }
}
void Piro::RythmosSolver<Scalar>::evalModelImpl(
#endif
    const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs,
    const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const
{
    using Teuchos::RCP;
    using Teuchos::rcp;

    // TODO: Support more than 1 parameter and 1 response
    const int j = 0;
    const int l = 0;

    // Parse InArgs
    RCP<const Thyra::VectorBase<Scalar> > p_in;
    if (num_p > 0) {
        p_in = inArgs.get_p(l);
    }
    RCP<const Thyra::VectorBase<Scalar> > p_in2;  //JF add for multipoint
    if (num_p > 1) {
        p_in2 = inArgs.get_p(l+1);
    }

    // Parse OutArgs
    RCP<Thyra::VectorBase<Scalar> > g_out;
    if (num_g > 0) {
        g_out = outArgs.get_g(j);
    }
    const RCP<Thyra::VectorBase<Scalar> > gx_out = outArgs.get_g(num_g);

    Thyra::ModelEvaluatorBase::InArgs<Scalar> state_ic = model->getNominalValues();

    // Set initial time in ME if needed

    if(t_initial > 0.0 && state_ic.supports(Thyra::ModelEvaluatorBase::IN_ARG_t))

        state_ic.set_t(t_initial);

    if (Teuchos::nonnull(initialConditionModel)) {
        // The initial condition depends on the parameter
        // It is found by querying the auxiliary model evaluator as the last response
        const RCP<Thyra::VectorBase<Scalar> > initialState =
            Thyra::createMember(model->get_x_space());

        {
            Thyra::ModelEvaluatorBase::InArgs<Scalar> initCondInArgs = initialConditionModel->createInArgs();
            if (num_p > 0) {
                initCondInArgs.set_p(l, inArgs.get_p(l));
            }

            Thyra::ModelEvaluatorBase::OutArgs<Scalar> initCondOutArgs = initialConditionModel->createOutArgs();
            initCondOutArgs.set_g(initCondOutArgs.Ng() - 1, initialState);

            initialConditionModel->evalModel(initCondInArgs, initCondOutArgs);
        }

        state_ic.set_x(initialState);
    }

    // Set paramters p_in as part of initial conditions
    if (num_p > 0) {
        if (Teuchos::nonnull(p_in)) {
            state_ic.set_p(l, p_in);
        }
    }
    if (num_p > 1) { //JF added for multipoint
        if (Teuchos::nonnull(p_in2)) {
            state_ic.set_p(l+1, p_in2);
        }
    }

    *out << "\nstate_ic:\n" << Teuchos::describe(state_ic, solnVerbLevel);

    //JF  may need a version of the following for multipoint, i.e. num_p>1, l+1, if we want sensitivities
    RCP<Thyra::MultiVectorBase<Scalar> > dgxdp_out;
    Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv_out;
    if (num_p > 0) {
        const Thyra::ModelEvaluatorBase::DerivativeSupport dgxdp_support =
            outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, num_g, l);
        if (dgxdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM)) {
            const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgxdp_deriv =
                outArgs.get_DgDp(num_g, l);
            dgxdp_out = dgxdp_deriv.getMultiVector();
        }

        if (num_g > 0) {
            const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
                outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
            if (!dgdp_support.none()) {
                dgdp_deriv_out = outArgs.get_DgDp(j, l);
            }
        }
    }

    const bool requestedSensitivities =
        Teuchos::nonnull(dgxdp_out) || !dgdp_deriv_out.isEmpty();

    RCP<const Thyra::VectorBase<Scalar> > finalSolution;
    if (!requestedSensitivities) {
        //
        *out << "\nE) Solve the forward problem ...\n";
        //

        fwdStateStepper->setInitialCondition(state_ic);

        fwdStateIntegrator->setStepper(fwdStateStepper, t_final, true);
        *out << "T final : " << t_final << " \n";

        Teuchos::Array<RCP<const Thyra::VectorBase<Scalar> > > x_final_array;
        fwdStateIntegrator->getFwdPoints(
            Teuchos::tuple<Scalar>(t_final), &x_final_array, NULL, NULL);
        finalSolution = x_final_array[0];

        if (Teuchos::VERB_MEDIUM <= solnVerbLevel) {
            std::cout << "Final Solution\n" << *finalSolution << std::endl;
        }

    } else { // Computing sensitivities
        //
        *out << "\nE) Solve the forward problem with Sensitivities...\n";
        //
        RCP<Rythmos::ForwardSensitivityStepper<Scalar> > stateAndSensStepper =
            Rythmos::forwardSensitivityStepper<Scalar>();
        stateAndSensStepper->initializeSyncedSteppers(
            model, l, model->getNominalValues(),
            fwdStateStepper, fwdTimeStepSolver);

        //
        // Set the initial condition for the state and forward sensitivities
        //

        const RCP<Thyra::VectorBase<Scalar> > s_bar_init =
            Thyra::createMember(stateAndSensStepper->getFwdSensModel()->get_x_space());
        const RCP<Thyra::VectorBase<Scalar> > s_bar_dot_init =
            Thyra::createMember(stateAndSensStepper->getFwdSensModel()->get_x_space());

        if (Teuchos::is_null(initialConditionModel)) {
            // The initial condition is assumed to be independent from the parameters
            // Therefore, the initial condition for the sensitivity is zero
            Thyra::assign(s_bar_init.ptr(), Teuchos::ScalarTraits<Scalar>::zero());
        } else {
            // Use initialConditionModel to compute initial condition for sensitivity
            Thyra::ModelEvaluatorBase::InArgs<Scalar> initCondInArgs = initialConditionModel->createInArgs();
            initCondInArgs.set_p(l, inArgs.get_p(l));

            Thyra::ModelEvaluatorBase::OutArgs<Scalar> initCondOutArgs = initialConditionModel->createOutArgs();
            typedef Thyra::DefaultMultiVectorProductVector<Scalar> DMVPV;
            const RCP<DMVPV> s_bar_init_downcasted = Teuchos::rcp_dynamic_cast<DMVPV>(s_bar_init);
            const Thyra::ModelEvaluatorBase::Derivative<Scalar> initCond_deriv(
                s_bar_init_downcasted->getNonconstMultiVector(),
                Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM);
            initCondOutArgs.set_DgDp(initCondOutArgs.Ng() - 1, l, initCond_deriv);

            initialConditionModel->evalModel(initCondInArgs, initCondOutArgs);
        }
        Thyra::assign(s_bar_dot_init.ptr(), Teuchos::ScalarTraits<Scalar>::zero());

        RCP<const Rythmos::StateAndForwardSensitivityModelEvaluator<Scalar> >
        stateAndSensModel = stateAndSensStepper->getStateAndFwdSensModel();

        Thyra::ModelEvaluatorBase::InArgs<Scalar>
        state_and_sens_ic = stateAndSensStepper->getModel()->createInArgs();

        // Copy time, parameters etc.
        state_and_sens_ic.setArgs(state_ic);
        // Set initial condition for x_bar = [ x; s_bar ]
        state_and_sens_ic.set_x(stateAndSensModel->create_x_bar_vec(state_ic.get_x(), s_bar_init));
        // Set initial condition for x_bar_dot = [ x_dot; s_bar_dot ]
        state_and_sens_ic.set_x_dot(stateAndSensModel->create_x_bar_vec(state_ic.get_x_dot(), s_bar_dot_init));

        stateAndSensStepper->setInitialCondition(state_and_sens_ic);

        //
        // Use a StepperAsModelEvaluator to integrate the state+sens
        //

        const RCP<Rythmos::StepperAsModelEvaluator<Scalar> >
        stateAndSensIntegratorAsModel = Rythmos::stepperAsModelEvaluator(
                                            Teuchos::rcp_implicit_cast<Rythmos::StepperBase<Scalar> >(stateAndSensStepper),
                                            Teuchos::rcp_implicit_cast<Rythmos::IntegratorBase<Scalar> >(fwdStateIntegrator),
                                            state_and_sens_ic);
        // StepperAsModelEvaluator outputs the solution as its last response
        const int stateAndSensModelStateResponseIndex = stateAndSensIntegratorAsModel->Ng() - 1;

        *out << "\nUse the StepperAsModelEvaluator to integrate state + sens x_bar(p,t_final) ... \n";
        Teuchos::OSTab tab(out);

        // Solution sensitivity in column-oriented (Jacobian) MultiVector form
        RCP<const Thyra::MultiVectorBase<Scalar> > dxdp;

        const RCP<Thyra::VectorBase<Scalar> > x_bar_final =
            Thyra::createMember(stateAndSensIntegratorAsModel->get_g_space(stateAndSensModelStateResponseIndex));
        // Extract pieces of x_bar_final to prepare output
        {
            const RCP<const Thyra::ProductVectorBase<Scalar> > x_bar_final_downcasted =
                Thyra::productVectorBase<Scalar>(x_bar_final);

            // Solution
            const int solutionBlockIndex = 0;
            finalSolution = x_bar_final_downcasted->getVectorBlock(solutionBlockIndex);

            // Sensitivity
            const int sensitivityBlockIndex = 1;
            const RCP<const Thyra::VectorBase<Scalar> > s_bar_final =
                x_bar_final_downcasted->getVectorBlock(sensitivityBlockIndex);
            {
                typedef Thyra::DefaultMultiVectorProductVector<Scalar> DMVPV;
                const RCP<const DMVPV> s_bar_final_downcasted = Teuchos::rcp_dynamic_cast<const DMVPV>(s_bar_final);

                dxdp = s_bar_final_downcasted->getMultiVector();
            }
        }

        Thyra::eval_g(
            *stateAndSensIntegratorAsModel,
            l, *state_ic.get_p(l),
            t_final,
            stateAndSensModelStateResponseIndex, x_bar_final.get()
        );

        *out
                << "\nx_bar_final = x_bar(p,t_final) evaluated using "
                << "stateAndSensIntegratorAsModel:\n"
                << Teuchos::describe(*x_bar_final,solnVerbLevel);

        if (Teuchos::nonnull(dgxdp_out)) {
            Thyra::assign(dgxdp_out.ptr(), *dxdp);
        }

        if (!dgdp_deriv_out.isEmpty()) {
            RCP<Thyra::DefaultAddedLinearOp<Scalar> > dgdp_op_out;
            {
                const RCP<Thyra::LinearOpBase<Scalar> > dgdp_op = dgdp_deriv_out.getLinearOp();
                if (Teuchos::nonnull(dgdp_op)) {
                    dgdp_op_out = Teuchos::rcp_dynamic_cast<Thyra::DefaultAddedLinearOp<Scalar> >(dgdp_op);
                    dgdp_op_out.assert_not_null();
                }
            }

            Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs = model->createInArgs();
            {
                modelInArgs.set_x(finalSolution);
                if (num_p > 0) {
                    modelInArgs.set_p(l, p_in);
                }
            }

            // require dgdx, dgdp from model
            Thyra::ModelEvaluatorBase::OutArgs<Scalar> modelOutArgs = model->createOutArgs();
            {
                const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdx_deriv(model->create_DgDx_op(j));
                modelOutArgs.set_DgDx(j, dgdx_deriv);

                Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv;
                if (Teuchos::nonnull(dgdp_op_out)) {
                    dgdp_deriv = model->create_DgDp_op(j, l);
                } else {
                    dgdp_deriv = dgdp_deriv_out;
                }
                modelOutArgs.set_DgDp(j, l, dgdp_deriv);
            }

            model->evalModel(modelInArgs, modelOutArgs);

            const RCP<const Thyra::LinearOpBase<Scalar> > dgdx =
                modelOutArgs.get_DgDx(j).getLinearOp();

            // dgdp_out = dgdp + <dgdx, dxdp>
            if (Teuchos::nonnull(dgdp_op_out)) {
                Teuchos::Array<RCP<const Thyra::LinearOpBase<Scalar> > > op_args(2);
                {
                    op_args[0] = modelOutArgs.get_DgDp(j, l).getLinearOp();
                    op_args[1] = Thyra::multiply<Scalar>(dgdx, dxdp);
                }
                dgdp_op_out->initialize(op_args);
            } else {
                const RCP<Thyra::MultiVectorBase<Scalar> > dgdp_mv_out = dgdp_deriv_out.getMultiVector();
                Thyra::apply(
                    *dgdx,
                    Thyra::NOTRANS,
                    *dxdp,
                    dgdp_mv_out.ptr(),
                    Teuchos::ScalarTraits<Scalar>::one(),
                    Teuchos::ScalarTraits<Scalar>::one());
            }
        }
    }

    *out << "\nF) Check the solution to the forward problem ...\n";

    // As post-processing step, calculate responses at final solution
    {
        Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs = model->createInArgs();
        {
            modelInArgs.set_x(finalSolution);
            if (num_p > 0) {
                modelInArgs.set_p(l, p_in);
            }
            if (num_p > 1) {  //JF added for multipoint
                modelInArgs.set_p(l+1, p_in2);
            }
            //Set time to be final time at which the solve occurs (< t_final in the case we don't make it to t_final).
            modelInArgs.set_t(fwdStateStepper->getTimeRange().lower());
        }

        Thyra::ModelEvaluatorBase::OutArgs<Scalar> modelOutArgs = model->createOutArgs();
        if (Teuchos::nonnull(g_out)) {
            Thyra::put_scalar(Teuchos::ScalarTraits<Scalar>::zero(), g_out.ptr());
            modelOutArgs.set_g(j, g_out);
        }

        model->evalModel(modelInArgs, modelOutArgs);
    }

    // Return the final solution as an additional g-vector, if requested
    if (Teuchos::nonnull(gx_out)) {
        Thyra::copy(*finalSolution, gx_out.ptr());
    }
}
void
Piro::VelocityVerletSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::evalModelImpl(
    const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs,
    const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const
{
  using Teuchos::RCP;
  using Teuchos::rcp;

  // TODO: Support more than 1 parameter and 1 response
  const int j = 0;
  const int l = 0;

  // Parse InArgs
  RCP<const Thyra::VectorBase<Scalar> > p_in;
  if (num_p > 0) {
    p_in = inArgs.get_p(l);
  }

  // Parse OutArgs
  RCP<Thyra::VectorBase<Scalar> > g_out;
  if (num_g > 0) {
    g_out = outArgs.get_g(j);
  }
  const RCP<Thyra::VectorBase<Scalar> > gx_out = outArgs.get_g(num_g);

// create a new vector and fill it with the contents of model->get_x()
  // Build a multivector holding x (0th vector), v (1st vector), and a (2nd vector)
//  Teuchos::RCP<Thyra::MultiVectorBase<Scalar> > soln = createMembers(model->get_x_space(), 3);

// create a new vector and fill it with the contents of model->get_x()
/*
  Teuchos::RCP<Thyra::VectorBase<Scalar> > x = soln->col(0);
  assign(x.ptr(), *model->getNominalValues().get_x());
  Teuchos::RCP<Thyra::VectorBase<Scalar> > v = soln->col(1);
  assign(v.ptr(), *model->getNominalValues().get_x_dot());
  Teuchos::RCP<Thyra::VectorBase<Scalar> > a = soln->col(2);
  assign(a.ptr(), *model->get_x_dotdot());
*/

  Teuchos::RCP<Thyra::VectorBase<Scalar> > x = model->getNominalValues().get_x()->clone_v();
  Teuchos::RCP<Thyra::VectorBase<Scalar> > v = model->getNominalValues().get_x_dot()->clone_v();

// Note that Thyra doesn't have x_dotdot - go get it from the transient decorator around the Albany model
//  Teuchos::RCP<Thyra::VectorBase<Scalar> > a = model->get_x_dotdot()->clone_v();

  Teuchos::RCP<Thyra::DefaultModelEvaluatorWithSolveFactory<Scalar> >
      DMEWSF(Teuchos::rcp_dynamic_cast<Thyra::DefaultModelEvaluatorWithSolveFactory<Scalar> >(model));

  Teuchos::RCP<const Piro::TransientDecorator<Scalar, LocalOrdinal, GlobalOrdinal, Node> > dec =
       Teuchos::rcp_dynamic_cast<const Piro::TransientDecorator<Scalar, LocalOrdinal, GlobalOrdinal, Node> >
           (DMEWSF->getUnderlyingModel());

  TEUCHOS_TEST_FOR_EXCEPTION(Teuchos::is_null(dec), std::logic_error,
      "Underlying model in VelovityVerletSolver does not cast to a Piro::TransientDecorator<Scalar, LocalOrdinal, GlobalOrdinal, Node>"
      << std::endl);

  Teuchos::RCP<Thyra::VectorBase<Scalar> > a = dec->get_x_dotdot()->clone_v();

  RCP<Thyra::VectorBase<Scalar> > finalSolution;

  // Zero out the acceleration vector
  put_scalar(0.0, a.ptr());

  TEUCHOS_TEST_FOR_EXCEPTION(v == Teuchos::null || x == Teuchos::null,
                     Teuchos::Exceptions::InvalidParameter,
                     std::endl << "Error in Piro::VelocityVerletSolver " <<
                     "Requires initial x and x_dot: " << std::endl);

  Scalar t = t_init;

  // Observe initial condition
//  if (observer != Teuchos::null) observer->observeSolution(*soln, t);

  Scalar vo = norm_2(*v);
  *out << "Initial Velocity = " << vo << std::endl;

   if (Teuchos::VERB_MEDIUM <= solnVerbLevel) *out << std::endl;

   Thyra::ModelEvaluatorBase::InArgs<Scalar> model_inargs = model->createInArgs();
   Thyra::ModelEvaluatorBase::OutArgs<Scalar> model_outargs = model->createOutArgs();
   model_inargs.set_x(x);
   if (num_p > 0)  model_inargs.set_p(0, p_in);

   model_outargs.set_f(a);
   if (g_out != Teuchos::null) model_outargs.set_g(0, g_out);

   Scalar ddt = 0.5 * delta_t * delta_t;

   // Calculate acceleration at time 0
   model->evalModel(model_inargs, model_outargs);

   for (int timeStep = 1; timeStep <= numTimeSteps; timeStep++) {

//     x->Update(delta_t, *v, ddt, *a, 1.0);
     Vp_StV(x.ptr(), delta_t, *v);
     Vp_StV(x.ptr(), ddt, *a);

     t += delta_t;
     model_inargs.set_t(t);

//     v->Update(0.5*delta_t, *a, 1.0);
     Vp_StV(v.ptr(), 0.5 * delta_t, *a);

     //calc a(x,t,p);
     model->evalModel(model_inargs, model_outargs);

//     v->Update(0.5*delta_t, *a, 1.0);
     Vp_StV(v.ptr(), 0.5 * delta_t, *a);

     // Observe completed time step
     if (observer != Teuchos::null) observer->observeSolution(*x, t);

   }

   // return the final solution as an additional g-vector, if requested
   if (finalSolution != Teuchos::null)  finalSolution = x->clone_v();


  // Return the final solution as an additional g-vector, if requested
  if (Teuchos::nonnull(gx_out)) {
    Thyra::copy(*finalSolution, gx_out.ptr());
  }
}
TEUCHOS_UNIT_TEST( Rythmos_ImplicitBDFStepper, exactNumericalAnswer_BE_nonlinear ) {
  double epsilon = 0.5;
  RCP<ParameterList> modelPL = Teuchos::parameterList();
  {
    modelPL->set("Implicit model formulation",true);
    modelPL->set("Coeff epsilon",epsilon);
  }
  RCP<VanderPolModel> model = vanderPolModel();
  model->setParameterList(modelPL);
  Thyra::ModelEvaluatorBase::InArgs<double> model_ic = model->getNominalValues();
  RCP<TimeStepNonlinearSolver<double> > nlSolver = timeStepNonlinearSolver<double>();
  {
    RCP<ParameterList> nlPL = Teuchos::parameterList();
    nlPL->set("Default Tol",1.0e-10);
    nlPL->set("Default Max Iters",20);
    nlSolver->setParameterList(nlPL);
  }
  RCP<ParameterList> stepperPL = Teuchos::parameterList();
  {
    ParameterList& pl = stepperPL->sublist("Step Control Settings");
    pl.set("minOrder",1);
    pl.set("maxOrder",1);
    ParameterList& vopl = pl.sublist("VerboseObject");
    vopl.set("Verbosity Level","none");
  }
  RCP<ImplicitBDFStepper<double> > stepper = implicitBDFStepper<double>(model,nlSolver,stepperPL);
  stepper->setInitialCondition(model_ic);
  double h = 0.1;
  std::vector<double> x_0_exact;
  std::vector<double> x_1_exact;
  std::vector<double> x_0_dot_exact;
  std::vector<double> x_1_dot_exact;
  {
    x_0_exact.push_back(2.0); // IC
    x_1_exact.push_back(0.0);

    x_0_exact.push_back(1.982896621392518e+00); // matlab 
    x_1_exact.push_back(-1.710337860748234e-01); 

    x_0_exact.push_back(1.951487185706842e+00); // matlab 
    x_1_exact.push_back(-3.140943568567556e-01); 
    
    x_0_exact.push_back(1.908249109758246e+00); // matlab 
    x_1_exact.push_back(-4.323807594859574e-01); 
    
    x_0_dot_exact.push_back(0.0);
    x_1_dot_exact.push_back(0.0);

    for ( int i=1 ; i< Teuchos::as<int>(x_0_exact.size()) ; ++i ) {
      x_0_dot_exact.push_back( (x_0_exact[i]-x_0_exact[i-1])/h );
      x_1_dot_exact.push_back( (x_1_exact[i]-x_1_exact[i-1])/h );
      //std::cout << "x_0_dot_exact["<<i<<"] = "<<x_0_dot_exact[i] << std::endl;
      //std::cout << "x_1_dot_exact["<<i<<"] = "<<x_1_dot_exact[i] << std::endl;
    }
  }
  double tol_discrete = 1.0e-12;
  double tol_continuous = 1.0e-2;
  {
    // Get IC out
    double t = 0.0;
    RCP<const VectorBase<double> > x;
    RCP<const VectorBase<double> > xdot;
    {
      // Get x out of stepper.
      Array<double> t_vec;
      Array<RCP<const VectorBase<double> > > x_vec;
      Array<RCP<const VectorBase<double> > > xdot_vec;
      t_vec.resize(1); t_vec[0] = t;
      stepper->getPoints(t_vec,&x_vec,&xdot_vec,NULL);
      x = x_vec[0];
      xdot = xdot_vec[0];
    }
    {
      Thyra::ConstDetachedVectorView<double> x_view( *x );
      TEST_FLOATING_EQUALITY( x_view[0], x_0_exact[0], tol_discrete );
      TEST_FLOATING_EQUALITY( x_view[1], x_1_exact[0], tol_discrete );

      Thyra::ConstDetachedVectorView<double> xdot_view( *xdot );
      TEST_FLOATING_EQUALITY( xdot_view[0], x_0_dot_exact[0], tol_discrete );
      TEST_FLOATING_EQUALITY( xdot_view[1], x_1_dot_exact[0], tol_discrete );
    }
  }
  for (int i=1 ; i < Teuchos::as<int>(x_0_exact.size()); ++i) {
    // Each time step
    double t = 0.0+i*h;
    double h_taken = stepper->takeStep(h,STEP_TYPE_FIXED);
    TEST_ASSERT( h_taken == h );
    RCP<const VectorBase<double> > x;
    RCP<const VectorBase<double> > xdot;
    {
      // Get x out of stepper.
      Array<double> t_vec;
      Array<RCP<const VectorBase<double> > > x_vec;
      Array<RCP<const VectorBase<double> > > xdot_vec;
      t_vec.resize(1); t_vec[0] = t;
      stepper->getPoints(t_vec,&x_vec,&xdot_vec,NULL);
      x = x_vec[0];
      xdot = xdot_vec[0];
    }
    {
      Thyra::ConstDetachedVectorView<double> x_view( *x );
      TEST_FLOATING_EQUALITY( x_view[0], x_0_exact[i], tol_discrete );
      TEST_FLOATING_EQUALITY( x_view[1], x_1_exact[i], tol_discrete );

      Thyra::ConstDetachedVectorView<double> xdot_view( *xdot );
      TEST_FLOATING_EQUALITY( xdot_view[0], x_0_dot_exact[i], tol_discrete );
      TEST_FLOATING_EQUALITY( xdot_view[1], x_1_dot_exact[i], tol_discrete );
    }
    // Now compare this to the continuous exact solution:
    {
      Thyra::ModelEvaluatorBase::InArgs<double> inArgs = model->getExactSolution(t);
      RCP<const VectorBase<double> > x_continuous_exact = inArgs.get_x();
      RCP<const VectorBase<double> > xdot_continuous_exact = inArgs.get_x_dot();
      {
        Thyra::ConstDetachedVectorView<double> x_view( *x );
        Thyra::ConstDetachedVectorView<double> xce_view( *x_continuous_exact );
        TEST_FLOATING_EQUALITY( x_view[0], xce_view[0], tol_continuous );
        TEST_FLOATING_EQUALITY( x_view[1], xce_view[1], tol_continuous*10 );

        Thyra::ConstDetachedVectorView<double> xdot_view( *xdot );
        Thyra::ConstDetachedVectorView<double> xdotce_view( *xdot_continuous_exact );
        TEST_FLOATING_EQUALITY( xdot_view[0], xdotce_view[0], tol_continuous*10 );
        TEST_FLOATING_EQUALITY( xdot_view[1], xdotce_view[1], tol_continuous*10 );
      }
    }
  }
}
void DiagonalImplicitRKModelEvaluator<Scalar>::evalModelImpl(
  const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs_stage,
  const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs_stage
  ) const
{

  typedef ScalarTraits<Scalar> ST;
  typedef Thyra::ModelEvaluatorBase MEB;

  TEUCHOS_TEST_FOR_EXCEPTION( !isInitialized_, std::logic_error,
      "Error!  initializeDIRKModel must be called before evalModel\n"
      );

  TEUCHOS_TEST_FOR_EXCEPTION( !setTimeStepPointCalled_, std::logic_error,
      "Error!  setTimeStepPoint must be called before evalModel"
      );

  TEUCHOS_TEST_FOR_EXCEPTION( currentStage_ == -1, std::logic_error,
      "Error!  setCurrentStage must be called before evalModel"
      );

  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_GEN_BEGIN(
    "Rythmos::DiagonalImplicitRKModelEvaluator",inArgs_stage,outArgs_stage,daeModel_
    );

  //
  // A) Unwrap the inArgs and outArgs 
  //

  const RCP<const Thyra::VectorBase<Scalar> > x_in = inArgs_stage.get_x();
  const RCP<Thyra::VectorBase<Scalar> > f_out = outArgs_stage.get_f();
  const RCP<Thyra::LinearOpBase<Scalar> > W_op_out = outArgs_stage.get_W_op();

  //
  // B) Assemble f_out and W_op_out for given stage
  //

  MEB::InArgs<Scalar> daeInArgs = daeModel_->createInArgs();
  MEB::OutArgs<Scalar> daeOutArgs = daeModel_->createOutArgs();
  const RCP<Thyra::VectorBase<Scalar> > x_i = createMember(daeModel_->get_x_space());
  daeInArgs.setArgs(basePoint_);
  
  // B.1) Setup the DAE's inArgs for stage f(currentStage_) ...
  V_V(stage_derivatives_->getNonconstVectorBlock(currentStage_).ptr(),*x_in);
  assembleIRKState( currentStage_, dirkButcherTableau_->A(), delta_t_, *x_old_, *stage_derivatives_, outArg(*x_i) );
  daeInArgs.set_x( x_i );
  daeInArgs.set_x_dot( x_in );
  daeInArgs.set_t( t_old_ + dirkButcherTableau_->c()(currentStage_) * delta_t_ );
  daeInArgs.set_alpha(ST::one());
  daeInArgs.set_beta( delta_t_ * dirkButcherTableau_->A()(currentStage_,currentStage_) );

  // B.2) Setup the DAE's outArgs for stage f(i) ...
  if (!is_null(f_out))
    daeOutArgs.set_f( f_out );
  if (!is_null(W_op_out))
    daeOutArgs.set_W_op(W_op_out);

  // B.3) Compute f_out(i) and/or W_op_out ...
  daeModel_->evalModel( daeInArgs, daeOutArgs );
  daeOutArgs.set_f(Teuchos::null);
  daeOutArgs.set_W_op(Teuchos::null);
  
  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_END();
  
}
void TimeDiscretizedBackwardEulerModelEvaluator<Scalar>::evalModelImpl(
  const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs_bar,
  const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs_bar
  ) const
{


  using Teuchos::rcp_dynamic_cast;
  typedef ScalarTraits<Scalar> ST;
  typedef Thyra::ModelEvaluatorBase MEB;
  typedef Thyra::VectorBase<Scalar> VB;
  typedef Thyra::ProductVectorBase<Scalar> PVB;
  typedef Thyra::BlockedLinearOpBase<Scalar> BLWB;

/*
  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_GEN_BEGIN(
    "Rythmos::ImplicitRKModelEvaluator",inArgs_bar,outArgs_bar,daeModel_
    );
*/

  TEST_FOR_EXCEPTION( delta_t_ <= 0.0, std::logic_error,
    "Error, you have not initialized this object correctly!" );

  //
  // A) Unwrap the inArgs and outArgs to get at product vectors and block op
  //

  const RCP<const PVB> x_bar = rcp_dynamic_cast<const PVB>(inArgs_bar.get_x(), true);
  const RCP<PVB> f_bar = rcp_dynamic_cast<PVB>(outArgs_bar.get_f(), true);
  RCP<BLWB> W_op_bar = rcp_dynamic_cast<BLWB>(outArgs_bar.get_W_op(), true);

  //
  // B) Assemble f_bar and W_op_bar by looping over stages
  //

  MEB::InArgs<Scalar> daeInArgs = daeModel_->createInArgs();
  MEB::OutArgs<Scalar> daeOutArgs = daeModel_->createOutArgs();
  const RCP<VB> x_dot_i = createMember(daeModel_->get_x_space());
  daeInArgs.setArgs(initCond_);
  
  Scalar t_i = initTime_; // ToDo: Define t_init!

  const Scalar oneOverDeltaT = 1.0/delta_t_;

  for ( int i = 0; i < numTimeSteps_; ++i ) {

    // B.1) Setup the DAE's inArgs for time step eqn f(i) ...
    const RCP<const Thyra::VectorBase<Scalar> >
      x_i = x_bar->getVectorBlock(i),
      x_im1 = ( i==0 ? initCond_.get_x() : x_bar->getVectorBlock(i-1) );
    V_VmV( x_dot_i.ptr(), *x_i, *x_im1 ); // x_dot_i = 1/dt * ( x[i] - x[i-1] )
    Vt_S( x_dot_i.ptr(), oneOverDeltaT ); // ... 
    daeInArgs.set_x_dot( x_dot_i );
    daeInArgs.set_x( x_i );
    daeInArgs.set_t( t_i );
    daeInArgs.set_alpha( oneOverDeltaT );
    daeInArgs.set_beta( 1.0 );

    // B.2) Setup the DAE's outArgs for f(i) and/or W(i,i) ...
    if (!is_null(f_bar))
      daeOutArgs.set_f( f_bar->getNonconstVectorBlock(i) );
    if (!is_null(W_op_bar))
      daeOutArgs.set_W_op(W_op_bar->getNonconstBlock(i,i).assert_not_null());

    // B.3) Compute f_bar(i) and/or W_op_bar(i,i) ...
    daeModel_->evalModel( daeInArgs, daeOutArgs );
    daeOutArgs.set_f(Teuchos::null);
    daeOutArgs.set_W_op(Teuchos::null);
    
    // B.4) Evaluate W_op_bar(i,i-1)
    if ( !is_null(W_op_bar) && i > 0 ) {
      daeInArgs.set_alpha( -oneOverDeltaT );
      daeInArgs.set_beta( 0.0 );
      daeOutArgs.set_W_op(W_op_bar->getNonconstBlock(i,i-1).assert_not_null());
      daeModel_->evalModel( daeInArgs, daeOutArgs );
      daeOutArgs.set_W_op(Teuchos::null);
    }

    //
    t_i += delta_t_;

  }

/*  
  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_END();
*/

}
Ejemplo n.º 24
0
void Piro::NOXSolver<Scalar>::evalModelImpl(
    const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs,
    const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs ) const
{
    using Teuchos::RCP;
    using Teuchos::rcp;

    //*out << "In eval Modle " << endl;

    // Parse InArgs

    RCP<const Thyra::VectorBase<Scalar> > p_in;
    if (num_p > 0) p_in = inArgs.get_p(0);

    // Parse OutArgs: always 1 extra
    RCP< Thyra::VectorBase<Scalar> > g_out;
    if (num_g > 0) g_out = outArgs.get_g(0);
    RCP< Thyra::VectorBase<Scalar> > gx_out = outArgs.get_g(num_g);

    // Parse out-args for sensitivity calculation


    ::Thyra::SolveCriteria<double> solve_criteria;
    ::Thyra::SolveStatus<double> solve_status;

    RCP< ::Thyra::VectorBase<double> >
    initial_guess = model->getNominalValues().get_x()->clone_v();

    solve_status = solver->solve(initial_guess.get(), &solve_criteria, NULL);

//   if (solve_status.solveStatus == ::Thyra::SOLVE_STATUS_CONVERGED)
//     std::cout << "Test passed!" << std::endl;

    // return the final solution as an additional g-vector, if requested
    RCP<const Thyra::VectorBase<Scalar> > finalSolution = solver->get_current_x();

    if (gx_out != Teuchos::null)  Thyra::copy(*finalSolution, gx_out.ptr());

    if (g_out != Teuchos::null) {
        // As post-processing step, calc responses at final solution
        Thyra::ModelEvaluatorBase::InArgs<Scalar>  model_inargs = model->createInArgs();
        Thyra::ModelEvaluatorBase::OutArgs<Scalar> model_outargs = model->createOutArgs();
        model_inargs.set_x(finalSolution);
        if (num_p > 0)  model_inargs.set_p(0, p_in);
        if (g_out != Teuchos::null) {
            Thyra::put_scalar(0.0,g_out.ptr());
            model_outargs.set_g(0, g_out);
        }

        model->evalModel(model_inargs, model_outargs);
    }

    /*********************  NEED TO CONVERT TO THYRA *******************
      RCP< Thyra::MultiVectorBase<Scalar> > dgdp_out;
      if (num_p>0 && num_g>0)
        dgdp_out = outArgs.get_DgDp(0,0).getMultiVector();

      if (dgdp_out == Teuchos::null) {

         Teuchos::RCP<Epetra_MultiVector> dgdx
              = Teuchos::rcp(new Epetra_MultiVector(finalSolution->Map(),
                                                       dgdp_out->GlobalLength()));
         Teuchos::Array<int> p_indexes =
           outArgs.get_DgDp(0,0).getDerivativeMultiVector().getParamIndexes();

         EpetraExt::ModelEvaluator::DerivativeMultiVector dmv_dgdp(dgdp_out,
                                                                   DERIV_MV_BY_COL,
                                                                   p_indexes);

         EpetraExt::ModelEvaluator::InArgs model_inargs = model->createInArgs();
         EpetraExt::ModelEvaluator::OutArgs model_outargs = model->createOutArgs();
         model_inargs.set_x(finalSolution);
         model_inargs.set_p(0, p_in);

         if (g_out != Teuchos::null) {
           g_out->PutScalar(0.0);
           model_outargs.set_g(0, g_out);
         }
         model_outargs.set_DgDp(0,0,dmv_dgdp);
         model_outargs.set_DgDx(0,dgdx);

         model->evalModel(model_inargs, model_outargs);


         // (3) Calculate dg/dp = dg/dx*dx/dp + dg/dp
         // This may be the transpose of what we want since we specified
         // we want dg/dp by column in createOutArgs().
         // In this case just interchange the order of dgdx and dxdp
         // We should really probably check what the underlying ME does

         if (Teuchos::VERB_MEDIUM <= solnVerbLevel) cout << " dgdx \n" << *dgdx << endl;
         if (Teuchos::VERB_MEDIUM <= solnVerbLevel) cout << " dxdp \n" << *dxdp << endl;

         dgdp_out->Multiply('T', 'N', 1.0, *dgdx, *dxdp, 1.0);
       }
    *********************/
}
void DiagonalImplicitRKModelEvaluator<Scalar>::initializeDIRKModel(
  const RCP<const Thyra::ModelEvaluator<Scalar> >& daeModel,
  const Thyra::ModelEvaluatorBase::InArgs<Scalar>& basePoint,
  const RCP<Thyra::LinearOpWithSolveFactoryBase<Scalar> >& dirk_W_factory,
  const RCP<const RKButcherTableauBase<Scalar> >& irkButcherTableau
  )
{
  typedef ScalarTraits<Scalar> ST;
  // ToDo: Assert input arguments!
  // How do I verify the basePoint is an authentic InArgs from daeModel?
  TEUCHOS_TEST_FOR_EXCEPTION( 
      is_null(basePoint.get_x()), 
      std::logic_error,
      "Error!  The basepoint x vector is null!"
      );
  TEUCHOS_TEST_FOR_EXCEPTION( 
      is_null(daeModel), 
      std::logic_error,
      "Error!  The model evaluator pointer is null!"
      );
  TEUCHOS_TEST_FOR_EXCEPTION( 
      !daeModel->get_x_space()->isCompatible(*(basePoint.get_x()->space())), 
      std::logic_error,
      "Error!  The basepoint input arguments are incompatible with the model evaluator vector space!"
      );
  //TEUCHOS_TEST_FOR_EXCEPT(is_null(dirk_W_factory));

  daeModel_ = daeModel;
  basePoint_ = basePoint;
  dirk_W_factory_ = dirk_W_factory;
  dirkButcherTableau_ = irkButcherTableau;

  const int numStages = dirkButcherTableau_->numStages();

  using Teuchos::rcp_dynamic_cast;
  stage_space_ = productVectorSpace(daeModel_->get_x_space(),numStages);
  RCP<const Thyra::VectorSpaceBase<Scalar> > vs = rcp_dynamic_cast<const Thyra::VectorSpaceBase<Scalar> >(stage_space_,true);
  stage_derivatives_ = rcp_dynamic_cast<Thyra::ProductVectorBase<Scalar> >(createMember(vs),true);
  Thyra::V_S( rcp_dynamic_cast<Thyra::VectorBase<Scalar> >(stage_derivatives_).ptr(),ST::zero());

  // Set up prototypical InArgs
  {
    typedef Thyra::ModelEvaluatorBase MEB;
    MEB::InArgsSetup<Scalar> inArgs;
    inArgs.setModelEvalDescription(this->description());
    inArgs.setSupports(MEB::IN_ARG_x);
    inArgs_ = inArgs;
  }
  // Set up prototypical OutArgs
  {
    typedef Thyra::ModelEvaluatorBase MEB;
    MEB::OutArgsSetup<Scalar> outArgs;
    outArgs.setModelEvalDescription(this->description());
    outArgs.setSupports(MEB::OUT_ARG_f);
    outArgs.setSupports(MEB::OUT_ARG_W_op);
    outArgs_ = outArgs;
  }
  // Set up nominal values
  nominalValues_ = inArgs_;

  isInitialized_ = true;
}
Ejemplo n.º 26
0
  virtual
  void evalModelImpl(
      const Thyra::ModelEvaluatorBase::InArgs<double> &in_args,
      const Thyra::ModelEvaluatorBase::OutArgs<double> &out_args
      ) const
  {
    const auto & x_in = in_args.get_x();
#ifndef NDEBUG
    TEUCHOS_ASSERT(!x_in.is_null());
#endif
    // create corresponding tpetra vector
    auto x_in_tpetra =
      Thyra::TpetraOperatorVectorExtraction<double,int,int>::getConstTpetraVector(
          x_in
          );

    // compute F
    const auto & f_out = out_args.get_f();
    if (!f_out.is_null()) {
      // Dissect in_args.get_p(0) into parameter sublists.
      const auto & p_in = in_args.get_p(0);
#ifndef NDEBUG
      TEUCHOS_ASSERT(!p_in.is_null());
      // Make sure the parameters aren't NaNs.
      for (int k = 0; k < p_in->space()->dim(); k++) {
        TEUCHOS_ASSERT(!std::isnan(Thyra::get_ele(*p_in, k)));
      }
#endif
      // Fill the parameters into a std::map.
      const auto param_names = this->get_p_names(0);
      const double alph = Thyra::get_ele(*p_in, 0);

      auto f_out_tpetra =
        Thyra::TpetraOperatorVectorExtraction<double,int,int>::getTpetraVector(
            f_out
            );
      const auto x_data = x_in_tpetra->getData();
      auto f_data = f_out_tpetra->getDataNonConst();
      for (size_t i = 0; i < f_data.size(); i++) {
        f_data[i] = x_data[i] * x_data[i] - alph;
      }
    }

    // Compute df/dp.
    const auto & derivMv = out_args.get_DfDp(0).getDerivativeMultiVector();
    const auto & dfdp_out = derivMv.getMultiVector();
    if (!dfdp_out.is_null()) {
      auto dfdp_out_tpetra =
        Thyra::TpetraOperatorVectorExtraction<double,int,int>::getTpetraMultiVector(
            dfdp_out
            );

      TEUCHOS_ASSERT_EQUALITY(dfdp_out_tpetra->getNumVectors(), 1);
      auto out = dfdp_out_tpetra->getVectorNonConst(0);
      auto out_data = out->getDataNonConst();
      for (size_t k = 0; k < out_data.size(); k++) {
        out_data[k] = -1.0;
      }
    }

    // Fill Jacobian.
    const auto & W_out = out_args.get_W_op();
    if(!W_out.is_null()) {
      auto W_outT =
        Thyra::TpetraOperatorVectorExtraction<double,int,int>::getTpetraOperator(
            W_out
            );
      const auto & jac = Teuchos::rcp_dynamic_cast<jac_sqrt_alpha>(W_outT, true);
      jac->set_x0(*x_in_tpetra);
    }

    return;
  }
Ejemplo n.º 27
0
void Piro::RythmosSolver<Scalar>::evalModelImpl(
       const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs,
       const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs ) const
{
  using Teuchos::RCP;
  using Teuchos::rcp;

  // Parse InArgs

  RCP<const Thyra::VectorBase<Scalar> > p_in;
  if (num_p > 0) p_in = inArgs.get_p(0);

  // Parse OutArgs: always 1 extra
  RCP< Thyra::VectorBase<Scalar> > g_out; 
  if (num_g > 0) g_out = outArgs.get_g(0); 
  RCP< Thyra::VectorBase<Scalar> > gx_out = outArgs.get_g(num_g); 

  // Parse out-args for sensitivity calculation
  RCP< Thyra::MultiVectorBase<Scalar> > dgdp_out;
  if (num_p>0 && num_g>0)
    dgdp_out = outArgs.get_DgDp(0,0).getMultiVector();

  RCP<const Thyra::VectorBase<Scalar> > finalSolution;

  Thyra::ModelEvaluatorBase::InArgs<Scalar> state_ic = model->getNominalValues();

  // Set paramters p_in as part of initial conditions
  if (num_p > 0) state_ic.set_p(0,p_in);

  //*out << "\nstate_ic:\n" << Teuchos::describe(state_ic,Teuchos::VERB_NONE);
  *out << "\nstate_ic:\n" << Teuchos::describe(state_ic,solnVerbLevel);

  if (dgdp_out == Teuchos::null) {
      //
      *out << "\nE) Solve the forward problem ...\n";
      //
  
      fwdStateStepper->setInitialCondition(state_ic);
      fwdStateIntegrator->setStepper(fwdStateStepper, t_final, true);
  
      Teuchos::Array<RCP<const Thyra::VectorBase<Scalar> > > x_final_array;
      fwdStateIntegrator->getFwdPoints(
        Teuchos::tuple<Scalar>(t_final), &x_final_array, NULL, NULL
        );
      finalSolution = x_final_array[0];
  
      if (Teuchos::VERB_MEDIUM <= solnVerbLevel)
         std::cout << "Final Solution\n" << *finalSolution << std::endl;

     // As post-processing step, calc responses at final solution
     Thyra::ModelEvaluatorBase::InArgs<Scalar>  model_inargs = model->createInArgs();
     Thyra::ModelEvaluatorBase::OutArgs<Scalar> model_outargs = model->createOutArgs();
     model_inargs.set_x(finalSolution);
     if (num_p > 0)  model_inargs.set_p(0, p_in);
     if (g_out != Teuchos::null) {
       Thyra::put_scalar(0.0,g_out.ptr());
       model_outargs.set_g(0, g_out);
     }

     model->evalModel(model_inargs, model_outargs);

   }
   else {//Doing sensitivities
      //
      *out << "\nE) Solve the forward problem with Sensitivities...\n";
      //

      RCP<Rythmos::ForwardSensitivityStepper<Scalar> > stateAndSensStepper =
        Rythmos::forwardSensitivityStepper<Scalar>();
      stateAndSensStepper->initializeSyncedSteppers(
          model, 0, model->getNominalValues(),
          fwdStateStepper, fwdTimeStepSolver);

      //
      // Set the initial condition for the state and forward sensitivities
      //

      RCP< Thyra::VectorBase<Scalar> > s_bar_init
        = createMember(stateAndSensStepper->getFwdSensModel()->get_x_space());
      assign( s_bar_init.ptr(), 0.0 );
      RCP< Thyra::VectorBase<Scalar> > s_bar_dot_init
        = createMember(stateAndSensStepper->getFwdSensModel()->get_x_space());
      assign( s_bar_dot_init.ptr(), 0.0 );
      // Above, I believe that these are the correct initial conditions for
      // s_bar and s_bar_dot given how the EpetraExt::DiagonalTransientModel
      // is currently implemented!

      RCP<const Rythmos::StateAndForwardSensitivityModelEvaluator<Scalar> >
        stateAndSensModel = stateAndSensStepper->getStateAndFwdSensModel();

      Thyra::ModelEvaluatorBase::InArgs<Scalar>
        state_and_sens_ic = stateAndSensStepper->getModel()->createInArgs();

      // Copy time, parameters etc.
      state_and_sens_ic.setArgs(state_ic);
      // Set initial condition for x_bar = [ x; s_bar ]
      state_and_sens_ic.set_x(
        stateAndSensModel->create_x_bar_vec(state_ic.get_x(),s_bar_init)
        );
      // Set initial condition for x_bar_dot = [ x_dot; s_bar_dot ]
      state_and_sens_ic.set_x_dot(
        stateAndSensModel->create_x_bar_vec(state_ic.get_x_dot(),s_bar_dot_init)
        );

//      *out << "\nstate_and_sens_ic:\n" << Teuchos::describe(state_and_sens_ic,Teuchos::VERB_DEFAULT);

      stateAndSensStepper->setInitialCondition(state_and_sens_ic);

      //
      // Use a StepperAsModelEvaluator to integrate the state+sens
      //

      RCP<Rythmos::StepperAsModelEvaluator<Scalar> >
        stateAndSensIntegratorAsModel = Rythmos::stepperAsModelEvaluator(
          Teuchos::rcp_implicit_cast<Rythmos::StepperBase<Scalar> >(stateAndSensStepper),
          Teuchos::rcp_implicit_cast<Rythmos::IntegratorBase<Scalar> >(fwdStateIntegrator),
          state_and_sens_ic
          );

      *out << "\nUse the StepperAsModelEvaluator to integrate state + sens x_bar(p,t_final) ... \n";

      RCP< Thyra::VectorBase<Scalar> > x_bar_final;

      Teuchos::OSTab tab(out);

      x_bar_final = createMember(stateAndSensIntegratorAsModel->get_g_space(0));

      eval_g(
        *stateAndSensIntegratorAsModel,
        0, *state_ic.get_p(0),
        t_final,
        0, &*x_bar_final
        );

      *out
        << "\nx_bar_final = x_bar(p,t_final) evaluated using "
        << "stateAndSensIntegratorAsModel:\n"
        << Teuchos::describe(*x_bar_final,solnVerbLevel);

     // As post-processing step, calc responses and gradient at final solution
     finalSolution = Thyra::productVectorBase<Scalar>(x_bar_final)->getVectorBlock(0);

      *out << "\nF) Check the solution to the forward problem ...\n";

     // Extract sensitivity vectors into Epetra_MultiVector
     Teuchos::RCP<const Thyra::MultiVectorBase<Scalar> > dxdp =
         Teuchos::rcp_dynamic_cast<const Thyra::DefaultMultiVectorProductVector<Scalar> >
           (Thyra::productVectorBase<Scalar>(x_bar_final)->getVectorBlock(1))
             ->getMultiVector();;

     Thyra::assign(dgdp_out.ptr(), 0.0);

/*********************  NEED TO CONVERT TO THYRA *******************

     Teuchos::RCP<Epetra_MultiVector> dgdx
          = Teuchos::rcp(new Epetra_MultiVector(finalSolution->Map(),
                                                   dgdp_out->GlobalLength()));
     Teuchos::Array<int> p_indexes =
       outArgs.get_DgDp(0,0).getDerivativeMultiVector().getParamIndexes();
 
     EpetraExt::ModelEvaluator::DerivativeMultiVector dmv_dgdp(dgdp_out,
                                                               DERIV_MV_BY_COL,
                                                               p_indexes);
 
     EpetraExt::ModelEvaluator::InArgs model_inargs = model->createInArgs();
     EpetraExt::ModelEvaluator::OutArgs model_outargs = model->createOutArgs();
     model_inargs.set_x(finalSolution);
     model_inargs.set_p(0, p_in);

     if (g_out != Teuchos::null) {
       g_out->PutScalar(0.0);
       model_outargs.set_g(0, g_out);
     }
     model_outargs.set_DgDp(0,0,dmv_dgdp);
     model_outargs.set_DgDx(0,dgdx);

     model->evalModel(model_inargs, model_outargs);

 
     // (3) Calculate dg/dp = dg/dx*dx/dp + dg/dp
     // This may be the transpose of what we want since we specified
     // we want dg/dp by column in createOutArgs().
     // In this case just interchange the order of dgdx and dxdp
     // We should really probably check what the underlying ME does

     if (Teuchos::VERB_MEDIUM <= solnVerbLevel) cout << " dgdx \n" << *dgdx << endl;
     if (Teuchos::VERB_MEDIUM <= solnVerbLevel) cout << " dxdp \n" << *dxdp << endl;

     dgdp_out->Multiply('T', 'N', 1.0, *dgdx, *dxdp, 1.0);
*********************/

   }

   // return the final solution as an additional g-vector, if requested
   if (gx_out != Teuchos::null)  Thyra::copy(*finalSolution, gx_out.ptr());
}
void
Piro::VelocityVerletSolver<Scalar>::evalModelImpl(
    const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs,
    const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const
{
  using Teuchos::RCP;
  using Teuchos::rcp;

  // TODO: Support more than 1 parameter and 1 response
  const int j = 0;
  const int l = 0;

  // Parse InArgs
  RCP<const Thyra::VectorBase<Scalar> > p_in;
  if (num_p > 0) {
    p_in = inArgs.get_p(l);
  }

  // Parse OutArgs
  RCP<Thyra::VectorBase<Scalar> > g_out;
  if (num_g > 0) {
    g_out = outArgs.get_g(j);
  }
  const RCP<Thyra::VectorBase<Scalar> > gx_out = outArgs.get_g(num_g);

  Teuchos::RCP<Thyra::VectorBase<Scalar> > x = inArgs.get_x()->clone_v();
  Teuchos::RCP<Thyra::VectorBase<Scalar> > v = inArgs.get_x_dot()->clone_v();
  Teuchos::RCP<Thyra::VectorBase<Scalar> > a = Thyra::createMember<Scalar>(model->get_f_space());

  RCP<Thyra::VectorBase<Scalar> > finalSolution;

  // Zero out the acceleration vector
  put_scalar(0.0, a.ptr()); 

  TEUCHOS_TEST_FOR_EXCEPTION(v == Teuchos::null || x == Teuchos::null, 
                     Teuchos::Exceptions::InvalidParameter,
                     std::endl << "Error in Piro::VelocityVerletSolver " <<
                     "Requires initial x and x_dot: " << std::endl);

  Scalar t = t_init;

  // Observe initial condition
  if (observer != Teuchos::null) observer->observeSolution(*x, t);

  Scalar vo = norm_2(*v); 
  *out << "Initial Velocity = " << vo << std::endl;

   if (Teuchos::VERB_MEDIUM <= solnVerbLevel) *out << std::endl;

   Thyra::ModelEvaluatorBase::InArgs<Scalar> model_inargs = model->createInArgs();
   Thyra::ModelEvaluatorBase::OutArgs<Scalar> model_outargs = model->createOutArgs();
   model_inargs.set_x(x);
   if (num_p > 0)  model_inargs.set_p(0, p_in);

   model_outargs.set_f(a);
   if (g_out != Teuchos::null) model_outargs.set_g(0, g_out);

   Scalar ddt = 0.5 * delta_t * delta_t;

   // Calculate acceleration at time 0
   model->evalModel(model_inargs, model_outargs);

   for (int timeStep = 1; timeStep <= numTimeSteps; timeStep++) {
 
//     x->Update(delta_t, *v, ddt, *a, 1.0);
     V_StVpStV(x.ptr(), delta_t, *v, ddt, *a);
     t += delta_t; model_inargs.set_t(t);

//     v->Update(0.5*delta_t, *a, 1.0);
     V_StV(v.ptr(), 0.5 * delta_t, *a);

     //calc a(x,t,p);
     model->evalModel(model_inargs, model_outargs);

//     v->Update(0.5*delta_t, *a, 1.0);
     V_StV(v.ptr(), 0.5 * delta_t, *a);

     // Observe completed time step
     if (observer != Teuchos::null) observer->observeSolution(*x, t);

   }

   // return the final solution as an additional g-vector, if requested
   if (finalSolution != Teuchos::null)  finalSolution = x->clone_v();


  // Return the final solution as an additional g-vector, if requested
  if (Teuchos::nonnull(gx_out)) {
    Thyra::copy(*finalSolution, gx_out.ptr());
  }
}
void Piro::SteadyStateSolver<Scalar>::evalConvergedModel(
    const Thyra::ModelEvaluatorBase::InArgs<Scalar>& modelInArgs,
    const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const
{
  using Teuchos::RCP;
  using Teuchos::rcp;

  // Solution at convergence is the response at index num_g_
  {
    const RCP<Thyra::VectorBase<Scalar> > gx_out = outArgs.get_g(num_g_);
    if (Teuchos::nonnull(gx_out)) {
      Thyra::copy(*modelInArgs.get_x(), gx_out.ptr());
    }
  }

  // Setup output for final evalution of underlying model
  Thyra::ModelEvaluatorBase::OutArgs<Scalar> modelOutArgs = model_->createOutArgs();
  {
    // Responses
    for (int j = 0; j < num_g_; ++j) {
      const RCP<Thyra::VectorBase<Scalar> > g_out = outArgs.get_g(j);
      // Forward to underlying model
      modelOutArgs.set_g(j, g_out);
    }

    // Jacobian
    {
      bool jacobianRequired = false;
      for (int j = 0; j <= num_g_; ++j) {
        for (int l = 0; l < num_p_; ++l) {
          const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
            outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
          if (!dgdp_support.none()) {
            const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv =
              outArgs.get_DgDp(j, l);
            if (!dgdp_deriv.isEmpty()) {
              jacobianRequired = true;
            }
          }
        }
      }
      if (jacobianRequired) {
        const RCP<Thyra::LinearOpWithSolveBase<Scalar> > jacobian =
          model_->create_W();
        modelOutArgs.set_W(jacobian);
      }
    }

    // DfDp derivatives
    for (int l = 0; l < num_p_; ++l) {
      Thyra::ModelEvaluatorBase::DerivativeSupport dfdp_request;
      for (int j = 0; j <= num_g_; ++j) {
        const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
          outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
        if (!dgdp_support.none()) {
          const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv =
            outArgs.get_DgDp(j, l);
          if (Teuchos::nonnull(dgdp_deriv.getLinearOp())) {
            dfdp_request.plus(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP);
          } else if (Teuchos::nonnull(dgdp_deriv.getMultiVector())) {
            dfdp_request.plus(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM);
          }
        }
      }

      if (!dfdp_request.none()) {
        Thyra::ModelEvaluatorBase::Derivative<Scalar> dfdp_deriv;
        if (dfdp_request.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM)) {
          dfdp_deriv = Thyra::create_DfDp_mv(*model_, l, Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM);
        } else if (dfdp_request.supports(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP)) {
          dfdp_deriv = model_->create_DfDp_op(l);
        }
        modelOutArgs.set_DfDp(l, dfdp_deriv);
      }
    }

    // DgDx derivatives
    for (int j = 0; j < num_g_; ++j) {
      Thyra::ModelEvaluatorBase::DerivativeSupport dgdx_request;
      for (int l = 0; l < num_p_; ++l) {
        const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
          outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
        if (!dgdp_support.none()) {
          const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv =
            outArgs.get_DgDp(j, l);
          if (!dgdp_deriv.isEmpty()) {
            const bool dgdp_mvGrad_required =
              Teuchos::nonnull(dgdp_deriv.getMultiVector()) &&
              dgdp_deriv.getMultiVectorOrientation() == Thyra::ModelEvaluatorBase::DERIV_MV_GRADIENT_FORM;
            if (dgdp_mvGrad_required) {
              dgdx_request.plus(Thyra::ModelEvaluatorBase::DERIV_MV_GRADIENT_FORM);
            } else {
              dgdx_request.plus(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP);
            }
          }
        }
      }

      if (!dgdx_request.none()) {
        Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdx_deriv;
        if (dgdx_request.supports(Thyra::ModelEvaluatorBase::DERIV_MV_GRADIENT_FORM)) {
          dgdx_deriv = Thyra::create_DgDx_mv(*model_, j, Thyra::ModelEvaluatorBase::DERIV_MV_GRADIENT_FORM);
        } else if (dgdx_request.supports(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP)) {
          dgdx_deriv = model_->create_DgDx_op(j);
        }
        modelOutArgs.set_DgDx(j, dgdx_deriv);
      }
    }

    // DgDp derivatives
    for (int l = 0; l < num_p_; ++l) {
      for (int j = 0; j < num_g_; ++j) {
        const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
          outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
        if (!dgdp_support.none()) {
          const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv =
            outArgs.get_DgDp(j, l);
          Thyra::ModelEvaluatorBase::Derivative<Scalar> model_dgdp_deriv;
          const RCP<Thyra::LinearOpBase<Scalar> > dgdp_op = dgdp_deriv.getLinearOp();
          if (Teuchos::nonnull(dgdp_op)) {
            model_dgdp_deriv = model_->create_DgDp_op(j, l);
          } else {
            model_dgdp_deriv = dgdp_deriv;
          }
          if (!model_dgdp_deriv.isEmpty()) {
            modelOutArgs.set_DgDp(j, l, model_dgdp_deriv);
          }
        }
      }
    }
  }

  // Evaluate underlying model
  model_->evalModel(modelInArgs, modelOutArgs);

  // Assemble user-requested sensitivities
  if (modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_W)) {
    const RCP<Thyra::LinearOpWithSolveBase<Scalar> > jacobian =
      modelOutArgs.get_W();
    if (Teuchos::nonnull(jacobian)) {
      for (int l = 0; l < num_p_; ++l) {
        const Thyra::ModelEvaluatorBase::DerivativeSupport dfdp_support =
          modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DfDp, l);
        if (!dfdp_support.none()) {
          const Thyra::ModelEvaluatorBase::Derivative<Scalar> dfdp_deriv =
            modelOutArgs.get_DfDp(l);
          const RCP<Thyra::MultiVectorBase<Scalar> > dfdp_mv =
            dfdp_deriv.getMultiVector();
          RCP<Thyra::LinearOpBase<Scalar> > dfdp_op =
            dfdp_deriv.getLinearOp();
          if (Teuchos::is_null(dfdp_op)) {
            dfdp_op = dfdp_mv;
          }

          const Thyra::ModelEvaluatorBase::Derivative<Scalar> dxdp_deriv =
            outArgs.get_DgDp(num_g_, l);
          const RCP<Thyra::LinearOpBase<Scalar> > dxdp_op =
            dxdp_deriv.getLinearOp();
          const RCP<Thyra::MultiVectorBase<Scalar> > dxdp_mv =
            dxdp_deriv.getMultiVector();

          RCP<const Thyra::LinearOpBase<Scalar> > minus_dxdp_op;
          RCP<Thyra::MultiVectorBase<Scalar> > minus_dxdp_mv;
          if (Teuchos::nonnull(dfdp_mv)) {
            if (Teuchos::nonnull(dxdp_mv)) {
              minus_dxdp_mv = dxdp_mv; // Use user-provided object as temporary
            } else {
              minus_dxdp_mv =
                Thyra::createMembers(model_->get_x_space(), model_->get_p_space(l));
              minus_dxdp_op = minus_dxdp_mv;
            }
          }

          if (Teuchos::is_null(minus_dxdp_op)) {
            const RCP<const Thyra::LinearOpBase<Scalar> > dfdx_inv_op =
              Thyra::inverse<Scalar>(jacobian);
            minus_dxdp_op = Thyra::multiply<Scalar>(dfdx_inv_op, dfdp_op);
          }

          if (Teuchos::nonnull(minus_dxdp_mv)) {
            Thyra::assign(minus_dxdp_mv.ptr(), Teuchos::ScalarTraits<Scalar>::zero());

            const Thyra::SolveCriteria<Scalar> defaultSolveCriteria;
            const Thyra::SolveStatus<Scalar> solveStatus =
              Thyra::solve(
                  *jacobian,
                  Thyra::NOTRANS,
                  *dfdp_mv,
                  minus_dxdp_mv.ptr(),
                  Teuchos::ptr(&defaultSolveCriteria));
            TEUCHOS_TEST_FOR_EXCEPTION(
                solveStatus.solveStatus == Thyra::SOLVE_STATUS_UNCONVERGED,
                std::runtime_error,
                "Jacobian solver failed to converge");
          }

          // Solution sensitivities
          if (Teuchos::nonnull(dxdp_mv)) {
            minus_dxdp_mv = Teuchos::null; // Invalidates temporary
            Thyra::scale(-Teuchos::ScalarTraits<Scalar>::one(), dxdp_mv.ptr());
          } else if (Teuchos::nonnull(dxdp_op)) {
            const RCP<Thyra::DefaultMultipliedLinearOp<Scalar> > dxdp_op_downcasted =
              Teuchos::rcp_dynamic_cast<Thyra::DefaultMultipliedLinearOp<Scalar> >(dxdp_op);
            TEUCHOS_TEST_FOR_EXCEPTION(
                Teuchos::is_null(dxdp_op_downcasted),
                std::invalid_argument,
                "Illegal operator for DgDp(" <<
                "j = " << num_g_ << ", " <<
                "index l = " << l << ")\n");

            const RCP<const Thyra::LinearOpBase<Scalar> > minus_id_op =
              Thyra::scale<Scalar>(-Teuchos::ScalarTraits<Scalar>::one(), Thyra::identity(dfdp_op->domain()));

            dxdp_op_downcasted->initialize(Teuchos::tuple(minus_dxdp_op, minus_id_op));
          }

          // Response sensitivities
          for (int j = 0; j < num_g_; ++j) {
            const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
              outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
            if (!dgdp_support.none()) {
              const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv =
                outArgs.get_DgDp(j, l);
              if (!dgdp_deriv.isEmpty()) {
                const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdx_deriv =
                  modelOutArgs.get_DgDx(j);
                const RCP<const Thyra::MultiVectorBase<Scalar> > dgdx_mv =
                  dgdx_deriv.getMultiVector();
                RCP<const Thyra::LinearOpBase<Scalar> > dgdx_op =
                  dgdx_deriv.getLinearOp();
                if (Teuchos::is_null(dgdx_op)) {
                  dgdx_op = Thyra::adjoint<Scalar>(dgdx_mv);
                }

                const RCP<Thyra::LinearOpBase<Scalar> > dgdp_op =
                  dgdp_deriv.getLinearOp();
                if (Teuchos::nonnull(dgdp_op)) {
                  const RCP<Thyra::DefaultAddedLinearOp<Scalar> > dgdp_op_downcasted =
                    Teuchos::rcp_dynamic_cast<Thyra::DefaultAddedLinearOp<Scalar> >(dgdp_op);
                  TEUCHOS_TEST_FOR_EXCEPTION(
                      Teuchos::is_null(dgdp_op_downcasted),
                      std::invalid_argument,
                      "Illegal operator for DgDp(" <<
                      "j = " << j << ", " <<
                      "index l = " << l << ")\n");

                  dgdp_op_downcasted->uninitialize();

                  const RCP<const Thyra::LinearOpBase<Scalar> > implicit_dgdp_op =
                    Thyra::multiply<Scalar>(
                      Thyra::scale<Scalar>(-Teuchos::ScalarTraits<Scalar>::one(), dgdx_op),
                      minus_dxdp_op);

                  const RCP<const Thyra::LinearOpBase<Scalar> > model_dgdp_op =
                    modelOutArgs.get_DgDp(j, l).getLinearOp();

                  Teuchos::Array<RCP<const Thyra::LinearOpBase<Scalar> > > op_args(2);
                  op_args[0] = model_dgdp_op;
                  op_args[1] = implicit_dgdp_op;
                  dgdp_op_downcasted->initialize(op_args);
                }

                const RCP<Thyra::MultiVectorBase<Scalar> > dgdp_mv =
                  dgdp_deriv.getMultiVector();
                if (Teuchos::nonnull(dgdp_mv)) {
                  if (dgdp_deriv.getMultiVectorOrientation() == Thyra::ModelEvaluatorBase::DERIV_MV_GRADIENT_FORM) {
                    if (Teuchos::nonnull(dxdp_mv)) {
                      Thyra::apply(
                          *dxdp_mv,
                          Thyra::TRANS,
                          *dgdx_mv,
                          dgdp_mv.ptr(),
                          Teuchos::ScalarTraits<Scalar>::one(),
                          Teuchos::ScalarTraits<Scalar>::one());
                    } else {
                      Thyra::apply(
                          *minus_dxdp_mv,
                          Thyra::TRANS,
                          *dgdx_mv,
                          dgdp_mv.ptr(),
                          -Teuchos::ScalarTraits<Scalar>::one(),
                          Teuchos::ScalarTraits<Scalar>::one());
                    }
                  } else {
                    if (Teuchos::nonnull(dxdp_mv)) {
                      Thyra::apply(
                          *dgdx_op,
                          Thyra::NOTRANS,
                          *dxdp_mv,
                          dgdp_mv.ptr(),
                          Teuchos::ScalarTraits<Scalar>::one(),
                          Teuchos::ScalarTraits<Scalar>::one());
                    } else {
                      Thyra::apply(
                          *dgdx_op,
                          Thyra::NOTRANS,
                          *minus_dxdp_mv,
                          dgdp_mv.ptr(),
                          -Teuchos::ScalarTraits<Scalar>::one(),
                          Teuchos::ScalarTraits<Scalar>::one());
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}
void ForwardSensitivityExplicitModelEvaluator<Scalar>::evalModelImpl(
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &inArgs,
  const Thyra::ModelEvaluatorBase::OutArgs<Scalar> &outArgs
  ) const
{

  using Teuchos::rcp_dynamic_cast;
  typedef Teuchos::ScalarTraits<Scalar> ST;
  typedef Thyra::ModelEvaluatorBase MEB;
  typedef Teuchos::VerboseObjectTempState<Thyra::ModelEvaluatorBase> VOTSME;

  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_GEN_BEGIN(
    "ForwardSensitivityExplicitModelEvaluator", inArgs, outArgs, Teuchos::null );

  //
  // Update the derivative matrices if they are not already updated for the
  // given time!.
  //
  
  {
    RYTHMOS_FUNC_TIME_MONITOR_DIFF(
        "Rythmos:ForwardSensitivityExplicitModelEvaluator::evalModel: computeMatrices",
        Rythmos_FSEME
        );
    computeDerivativeMatrices(inArgs);
  }

  //
  // InArgs
  //

  RCP<const Thyra::DefaultMultiVectorProductVector<Scalar> >
    s_bar = rcp_dynamic_cast<const Thyra::DefaultMultiVectorProductVector<Scalar> >(
      inArgs.get_x().assert_not_null(), true
      );
  RCP<const Thyra::MultiVectorBase<Scalar> >
    S = s_bar->getMultiVector();
  
  //
  // OutArgs
  //

  RCP<Thyra::DefaultMultiVectorProductVector<Scalar> >
    f_sens = rcp_dynamic_cast<Thyra::DefaultMultiVectorProductVector<Scalar> >(
      outArgs.get_f(), true
      );

  RCP<Thyra::MultiVectorBase<Scalar> >
    F_sens = f_sens->getNonconstMultiVector().assert_not_null();

  //
  // Compute the requested functions
  //

  if(!is_null(F_sens)) {

    RYTHMOS_FUNC_TIME_MONITOR_DIFF(
        "Rythmos:ForwardSensitivityExplicitModelEvaluator::evalModel: computeSens",
        Rythmos_FSEME
        );
    
    // Form the residual:  df/dx * S + df/dp
    // F_sens = df/dx * S
    Thyra::apply(
      *DfDx_, Thyra::NOTRANS,
      *S, F_sens.ptr(),
      ST::one(), ST::zero()
      );
    // F_sens += d(f)/d(p)
    Vp_V( F_sens.ptr(), *DfDp_ );
  }
  
  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_END();

}