Example #1
0
/*
   -----------------------------------------------
   purpose -- to write the matrix in matlab format

   created -- 98may01, cca
   -----------------------------------------------
*/
void
A2_writeForMatlab (
   A2    *mtx, 
   char   *mtxname,
   FILE   *fp 
) {
int      irow, jcol, ncol, nrow ;

if ( mtx == NULL || mtxname == NULL || fp == NULL ) {
   fprintf(stderr, "\n fatal error in A2_writeForMatlab(%p,%p,%p)"
           "\n bad input\n", mtx, mtxname, fp) ;
   spoolesFatal();
}
nrow = A2_nrow(mtx) ;
ncol = A2_ncol(mtx) ;
for ( irow = 0 ; irow < nrow ; irow++ ) {
   for ( jcol = 0 ; jcol < ncol ; jcol++ ) {
      if ( A2_IS_REAL(mtx) ) {
         double   value ;
         A2_realEntry(mtx, irow, jcol, &value) ;
         fprintf(fp, "\n %s(%d,%d) = %24.16e ;",
                 mtxname, irow+1, jcol+1, value) ;
      } else if ( A2_IS_COMPLEX(mtx) ) {
         double   imag, real ;
         A2_complexEntry(mtx, irow, jcol, &real, &imag) ;
         fprintf(fp, "\n %s(%d,%d) = %24.16e + %24.16e*i ;",
                 mtxname, irow+1, jcol+1, real, imag) ;
      }
   }
}
return ; }
Example #2
0
/*
   ----------------------------------------------------
   store the factor entries of the reduced front matrix

   created -- 98may25, cca
   ----------------------------------------------------
*/
void
FrontMtx_QR_storeFront (
   FrontMtx   *frontmtx,
   int        J,
   A2         *frontJ,
   int        msglvl,
   FILE       *msgFile
) {
A2       tempA2 ;
double   fac, ifac, imag, real, rfac ;
double   *entDJJ, *entUJJ, *entUJN, *row ;
int      inc1, inc2, irow, jcol, ncol, ncolJ, nD, nentD, nentUJJ, 
         nfront, nrow, nU ;
int      *colind, *colindJ, *firstlocs, *sizes ;
SubMtx   *mtx ;
/*
   ---------------
   check the input
   ---------------
*/
if (  frontmtx == NULL || frontJ == NULL
   || (msglvl > 0 && msgFile == NULL) ) {
   fprintf(stderr, "\n fatal error in FrontMtx_QR_storeFront()"
           "\n bad input\n") ;
   exit(-1) ;
}
nfront = FrontMtx_nfront(frontmtx) ;
FrontMtx_columnIndices(frontmtx, J, &ncolJ, &colindJ) ;
nrow   = A2_nrow(frontJ) ;
ncol   = A2_ncol(frontJ) ;
A2_setDefaultFields(&tempA2) ;
nD = FrontMtx_frontSize(frontmtx, J) ;
nU = ncol - nD ;
/*
   --------------------------------------
   scale the rows and square the diagonal
   --------------------------------------
*/
row = A2_entries(frontJ) ;
if ( A2_IS_REAL(frontJ) ) {
   for ( irow = 0 ; irow < nD ; irow++ ) {
      if ( row[irow] != 0.0 ) {
         fac = 1./row[irow] ;
         for ( jcol = irow + 1 ; jcol < ncol ; jcol++ ) {
            row[jcol] *= fac ;
         }
         row[irow] = row[irow] * row[irow] ;
      }
      row += ncol ;
   }
} else if ( A2_IS_COMPLEX(frontJ) ) {
   for ( irow = 0 ; irow < nD ; irow++ ) {
      real = row[2*irow] ; imag = row[2*irow+1] ;
      if (  real != 0.0 || imag != 0.0 ) {
         Zrecip(real, imag, &rfac, &ifac) ;
         ZVscale(ncol - irow - 1, & row[2*irow+2], rfac, ifac) ;
         row[2*irow]   = real*real + imag*imag ;
         row[2*irow+1] = 0.0 ;
      }
      row += 2*ncol ;
   }
}
if ( msglvl > 3 ) {
   fprintf(msgFile, "\n after scaling rows of A") ;
   A2_writeForHumanEye(frontJ, msgFile) ;
   fflush(msgFile) ;
}
/*
   -------------------------
   copy the diagonal entries
   -------------------------
*/
mtx = FrontMtx_diagMtx(frontmtx, J) ;
SubMtx_diagonalInfo(mtx, &nentD, &entDJJ) ;
A2_subA2(&tempA2, frontJ, 0, nD-1, 0, nD-1) ;
A2_copyEntriesToVector(&tempA2, nentD, entDJJ, 
                       A2_DIAGONAL, A2_BY_ROWS) ;
SubMtx_columnIndices(mtx, &ncol, &colind) ;
IVcopy(nD, colind, colindJ) ;
if ( msglvl > 3 ) {
   fprintf(msgFile, "\n diagonal factor matrix") ;
   SubMtx_writeForHumanEye(mtx, msgFile) ;
   fflush(msgFile) ;
}
if ( (mtx = FrontMtx_upperMtx(frontmtx, J, J)) != NULL ) {
/*
   ------------------------
   copy the U_{J,J} entries
   ------------------------
*/
   SubMtx_denseSubcolumnsInfo(mtx, &nD, &nentUJJ, 
                           &firstlocs, &sizes, &entUJJ) ;
   A2_copyEntriesToVector(&tempA2, nentUJJ, entUJJ, 
                          A2_STRICT_UPPER, A2_BY_COLUMNS) ;
   SubMtx_columnIndices(mtx, &ncol, &colind) ;
   IVcopy(nD, colind, colindJ) ;
   if ( msglvl > 3 ) {
      fprintf(msgFile, "\n UJJ factor matrix") ;
      SubMtx_writeForHumanEye(mtx, msgFile) ;
      fflush(msgFile) ;
   }
}
if ( ncolJ > nD ) {
/*
   -----------------------------
   copy the U_{J,bnd{J}} entries
   -----------------------------
*/
   mtx = FrontMtx_upperMtx(frontmtx, J, nfront) ;
   SubMtx_denseInfo(mtx, &nD, &nU, &inc1, &inc2, &entUJN) ;
   A2_subA2(&tempA2, frontJ, 0, nD-1, nD, ncolJ-1) ;
   A2_copyEntriesToVector(&tempA2, nD*nU, entUJN, 
                          A2_ALL_ENTRIES, A2_BY_COLUMNS) ;
   SubMtx_columnIndices(mtx, &ncol, &colind) ;
   IVcopy(nU, colind, colindJ + nD) ;
   if ( msglvl > 3 ) {
      fprintf(msgFile, "\n UJN factor matrix") ;
      SubMtx_writeForHumanEye(mtx, msgFile) ;
      fflush(msgFile) ;
   }
}
return ; }
Example #3
0
/*
   -----------------------------------------------------------
   A contains the following data from the A = QR factorization

   A(1:ncolA,1:ncolA) = R
   A(j+1:nrowA,j) is v_j, the j-th householder vector, 
       where v_j[j] = 1.0

   NOTE: A and Q must be column major

   created -- 98dec10, cca
   -----------------------------------------------------------
*/
void
A2_computeQ (
   A2     *Q,
   A2     *A,
   DV     *workDV,
   int    msglvl,
   FILE   *msgFile
) {
double   *betas ;
int      irowA, jcolA, ncolA, nrowA ;
/*
   ---------------
   check the input
   ---------------
*/
if ( Q == NULL ) {
   fprintf(stderr, "\n fatal error in A2_computeQ()"
           "\n Q is NULL\n") ;
   exit(-1) ;
}
if ( A == NULL ) {
   fprintf(stderr, "\n fatal error in A2_computeQ()"
           "\n A is NULL\n") ;
   exit(-1) ;
}
if ( workDV == NULL ) {
   fprintf(stderr, "\n fatal error in A2_computeQ()"
           "\n workDV is NULL\n") ;
   exit(-1) ;
}
if ( msglvl > 0 && msgFile == NULL ) {
   fprintf(stderr, "\n fatal error in A2_computeQ()"
           "\n msglvl > 0 and msgFile is NULL\n") ;
   exit(-1) ;
}
nrowA = A2_nrow(A) ;
ncolA = A2_ncol(A) ;
if ( nrowA <= 0 ) {
   fprintf(stderr, "\n fatal error in A2_computeQ()"
           "\n nrowA = %d\n", nrowA) ;
   exit(-1) ;
}
if ( ncolA <= 0 ) {
   fprintf(stderr, "\n fatal error in A2_computeQ()"
           "\n ncolA = %d\n", nrowA) ;
   exit(-1) ;
}
if ( nrowA != A2_nrow(Q) ) {
   fprintf(stderr, "\n fatal error in A2_computeQ()"
           "\n nrowA = %d, nrowQ = %d\n", nrowA, A2_nrow(Q)) ;
   exit(-1) ;
}
if ( ncolA != A2_ncol(Q) ) {
   fprintf(stderr, "\n fatal error in A2_computeQ()"
           "\n ncolA = %d, ncolQ = %d\n", ncolA, A2_ncol(Q)) ;
   exit(-1) ;
}
switch ( A->type ) {
case SPOOLES_REAL :
case SPOOLES_COMPLEX :
   break ;
default :
   fprintf(stderr, "\n fatal error in A2_computeQ()"
           "\n invalid type for A\n") ;
   exit(-1) ;
}
if ( A->type != Q->type ) {
   fprintf(stderr, "\n fatal error in A2_computeQ()"
           "\n A->type = %d, Q->type = %d\n", A->type, Q->type) ;
   exit(-1) ;
}
if ( A2_inc1(A) != 1 ) {
   fprintf(stderr, "\n fatal error in A2_computeQ()"
           "\n A->inc1 = %d \n", A2_inc1(A)) ; 
   exit(-1) ;
}
if ( A2_inc1(Q) != 1 ) {
   fprintf(stderr, "\n fatal error in A2_computeQ()"
           "\n Q->inc1 = %d, \n", A2_inc1(Q)) ;
   exit(-1) ;
}
/*
   --------------------------------------------------
   compute the beta values, beta_j = 2./(V_j^H * V_j)
   --------------------------------------------------
*/
DV_setSize(workDV, ncolA) ;
betas = DV_entries(workDV) ;
if ( A2_IS_REAL(A) ) {
   int   irowA, jcolA ;
   double   sum ;
   double   *colA ;

   for ( jcolA = 0 ; jcolA < ncolA ; jcolA++ ) {
      sum = 1.0 ;
      colA = A2_column(A, jcolA) ;
      for ( irowA = jcolA + 1 ; irowA < nrowA ; irowA++ ) {
         sum += colA[irowA] * colA[irowA] ;
      }
      betas[jcolA] = 2./sum ;
   }
} else {
   double   ival, rval, sum ;
   double   *colA ;

   for ( jcolA = 0 ; jcolA < ncolA ; jcolA++ ) {
      sum = 1.0 ;
      colA = A2_column(A, jcolA) ;
      for ( irowA = jcolA + 1 ; irowA < nrowA ; irowA++ ) {
         rval = colA[2*irowA] ; ival = colA[2*irowA+1] ;
         sum += rval*rval + ival*ival ;
      }
      betas[jcolA] = 2./sum ;
   }
}
/*
   -------------------------------------------
   loop over the number of householder vectors
   -------------------------------------------
*/
for ( jcolA = 0 ; jcolA < ncolA ; jcolA++ ) {
   double   *V, *X ;
   int      jcolV ;
   if ( msglvl > 2 ) {
      fprintf(msgFile, "\n\n %% jcolA = %d", jcolA) ;
      fflush(msgFile) ;
   }
/*
   ------------------
   set X[] to e_jcolA
   ------------------
*/
   X = A2_column(Q, jcolA) ;
   if ( A2_IS_REAL(Q) ) {
      DVzero(nrowA, X) ;
      X[jcolA] = 1.0 ;
   } else {
      DVzero(2*nrowA, X) ;
      X[2*jcolA] = 1.0 ;
   }
   for ( jcolV = jcolA ; jcolV >= 0 ; jcolV-- ) {
      double   beta ;
      if ( msglvl > 2 ) {
         fprintf(msgFile, "\n   %% jcolV = %d", jcolV) ;
         fflush(msgFile) ;
      }
/*
      -----------------------------------------------------
      update X = (I - beta_jcolV * V_jcolV * V_jcolV^T)X
               = X - beta_jcolV * V_jcolV * V_jcolV^T * X
               = X - (beta_jcolV * V_jcolV^T * X) * V_jcolV 
      -----------------------------------------------------
*/
      V = A2_column(A, jcolV) ;
      beta = betas[jcolV] ;
      if ( msglvl > 2 ) {
         fprintf(msgFile, "\n   %% beta = %12.4e", beta) ;
         fflush(msgFile) ;
      }
      if ( A2_IS_REAL(Q) ) {
         double   fac, sum = X[jcolV] ;
         int      irow ;
         for ( irow = jcolV + 1 ; irow < nrowA ; irow++ ) {
            if ( msglvl > 2 ) {
               fprintf(msgFile, 
                       "\n      %% V[%d] = %12.4e, X[%d] = %12.4e",
                       irow, V[irow], irow, X[irow]) ;
               fflush(msgFile) ;
            }
            sum += V[irow] * X[irow] ;
         }
         if ( msglvl > 2 ) {
            fprintf(msgFile, "\n   %% sum = %12.4e", sum) ;
            fflush(msgFile) ;
         }
         fac = beta * sum ;
         if ( msglvl > 2 ) {
            fprintf(msgFile, "\n   %% fac = %12.4e", fac) ;
            fflush(msgFile) ;
         }
         X[jcolV] -= fac ;
         for ( irow = jcolV + 1 ; irow < nrowA ; irow++ ) {
            X[irow] -= fac * V[irow] ;
         }
      } else {
         double   rfac, ifac, rsum = X[2*jcolV], isum = X[2*jcolV+1] ;
         int      irow ;
         for ( irow = jcolV + 1 ; irow < nrowA ; irow++ ) {
            double   Vi, Vr, Xi, Xr ;
            Vr = V[2*irow] ; Vi = V[2*irow+1] ;
            Xr = X[2*irow] ; Xi = X[2*irow+1] ;
            rsum += Vr*Xr + Vi*Xi ;
            isum += Vr*Xi - Vi*Xr ;
         }
         rfac = beta * rsum ;
         ifac = beta * isum ;
         X[2*jcolV]   -= rfac ;
         X[2*jcolV+1] -= ifac ;
         for ( irow = jcolV + 1 ; irow < nrowA ; irow++ ) {
            double   Vi, Vr ;
            Vr = V[2*irow] ; Vi = V[2*irow+1] ;
            X[2*irow]   -= rfac*Vr - ifac*Vi ;
            X[2*irow+1] -= rfac*Vi + ifac*Vr ;
         }
      }
   }
}
return ; }
Example #4
0
/*
   -----------------------------------------------------------
   A contains the following data from the A = QR factorization

   A(1:ncolA,1:ncolA) = R
   A(j+1:nrowA,j) is v_j, the j-th householder vector, 
       where v_j[j] = 1.0

   we compute Y = Q^T X when A is real
          and Y = Q^H X when A is complex

   NOTE: A, Y and X must be column major.
   NOTE: Y and X can be the same object,
         in which case X is overwritten with Y

   created -- 98dec10, cca
   -----------------------------------------------------------
*/
void
A2_applyQT (
   A2     *Y,
   A2     *A,
   A2     *X,
   DV     *workDV,
   int    msglvl,
   FILE   *msgFile
) {
double   *betas ;
int      irowA, jcolA, jcolX, ncolA, ncolX, nrowA ;
/*
   ---------------
   check the input
   ---------------
*/
if ( A == NULL ) {
   fprintf(stderr, "\n fatal error in A2_applyQT()"
           "\n A is NULL\n") ;
   exit(-1) ;
}
if ( X == NULL ) {
   fprintf(stderr, "\n fatal error in A2_applyQT()"
           "\n X is NULL\n") ;
   exit(-1) ;
}
if ( workDV == NULL ) {
   fprintf(stderr, "\n fatal error in A2_applyQT()"
           "\n workDV is NULL\n") ;
   exit(-1) ;
}
if ( msglvl > 0 && msgFile == NULL ) {
   fprintf(stderr, "\n fatal error in A2_applyQT()"
           "\n msglvl > 0 and msgFile is NULL\n") ;
   exit(-1) ;
}
nrowA = A2_nrow(A) ;
ncolA = A2_ncol(A) ;
ncolX = A2_ncol(X) ;
if ( nrowA <= 0 ) {
   fprintf(stderr, "\n fatal error in A2_applyQT()"
           "\n nrowA = %d\n", nrowA) ;
   exit(-1) ;
}
if ( ncolA <= 0 ) {
   fprintf(stderr, "\n fatal error in A2_applyQT()"
           "\n ncolA = %d\n", nrowA) ;
   exit(-1) ;
}
if ( nrowA != A2_nrow(X) ) {
   fprintf(stderr, "\n fatal error in A2_applyQT()"
           "\n nrowA = %d, nrowX = %d\n", nrowA, A2_nrow(X)) ;
   exit(-1) ;
}
switch ( A->type ) {
case SPOOLES_REAL :
case SPOOLES_COMPLEX :
   break ;
default :
   fprintf(stderr, "\n fatal error in A2_applyQT()"
           "\n invalid type for A\n") ;
   exit(-1) ;
}
if ( A->type != X->type ) {
   fprintf(stderr, "\n fatal error in A2_applyQT()"
           "\n A->type = %d, X->type = %d\n", A->type, X->type) ;
   exit(-1) ;
}
if ( A2_inc1(A) != 1 ) {
   fprintf(stderr, "\n fatal error in A2_applyQT()"
           "\n A->inc1 = %d \n", A2_inc1(A)) ; 
   exit(-1) ;
}
if ( A2_inc1(X) != 1 ) {
   fprintf(stderr, "\n fatal error in A2_applyQT()"
           "\n X->inc1 = %d, \n", A2_inc1(X)) ;
   exit(-1) ;
}
/*
   --------------------------------------------------
   compute the beta values, beta_j = 2./(V_j^H * V_j)
   --------------------------------------------------
*/
DV_setSize(workDV, ncolA) ;
betas = DV_entries(workDV) ;
if ( A2_IS_REAL(A) ) {
   int   irowA, jcolA ;
   double   sum ;
   double   *colA ;

   for ( jcolA = 0 ; jcolA < ncolA ; jcolA++ ) {
      sum = 1.0 ;
      colA = A2_column(A, jcolA) ;
      for ( irowA = jcolA + 1 ; irowA < nrowA ; irowA++ ) {
         sum += colA[irowA] * colA[irowA] ;
      }
      betas[jcolA] = 2./sum ;
   }
} else {
   double   ival, rval, sum ;
   double   *colA ;

   for ( jcolA = 0 ; jcolA < ncolA ; jcolA++ ) {
      sum = 1.0 ;
      colA = A2_column(A, jcolA) ;
      for ( irowA = jcolA + 1 ; irowA < nrowA ; irowA++ ) {
         rval = colA[2*irowA] ; ival = colA[2*irowA+1] ;
         sum += rval*rval + ival*ival ;
      }
      betas[jcolA] = 2./sum ;
   }
}
/*
   ------------------------------------------
   loop over the number of columns in X and Y
   ------------------------------------------
*/
for ( jcolX = 0 ; jcolX < ncolX ; jcolX++ ) {
   double   *V, *colX, *colY ;
   int      jcolV ;
   if ( msglvl > 2 ) {
      fprintf(msgFile, "\n\n %% jcolX = %d", jcolX) ;
      fflush(msgFile) ;
   }
/*
   -------------------------------
   copy X(:,jcolX) into Y(:,jcolX)
   -------------------------------
*/
   colY = A2_column(Y, jcolX) ;
   colX = A2_column(X, jcolX) ;
   if ( A2_IS_REAL(A) ) {
      DVcopy(nrowA, colY, colX) ;
   } else {
      DVcopy(2*nrowA, colY, colX) ;
   }
   for ( jcolV = 0 ; jcolV < ncolA ; jcolV++ ) {
      double   beta ;
      if ( msglvl > 2 ) {
         fprintf(msgFile, "\n   %% jcolV = %d", jcolV) ;
         fflush(msgFile) ;
      }
/*
      ------------------------------------------------------------
      update colY = (I - beta_jcolV * V_jcolV * V_jcolV^T)colY
                  = colY - beta_jcolV * V_jcolV * V_jcolV^T * colY
                  = colY - (beta_jcolV * V_jcolV^T * Y) * V_jcolV 
      ------------------------------------------------------------
*/
      V = A2_column(A, jcolV) ;
      beta = betas[jcolV] ;
      if ( msglvl > 2 ) {
         fprintf(msgFile, "\n   %% beta = %12.4e", beta) ;
         fflush(msgFile) ;
      }
      if ( A2_IS_REAL(A) ) {
         double   fac, sum = colY[jcolV] ;
         int      irow ;
         for ( irow = jcolV + 1 ; irow < nrowA ; irow++ ) {
            if ( msglvl > 2 ) {
               fprintf(msgFile, 
                       "\n      %% V[%d] = %12.4e, X[%d] = %12.4e",
                       irow, V[irow], irow, colY[irow]) ;
               fflush(msgFile) ;
            }
            sum += V[irow] * colY[irow] ;
         }
         if ( msglvl > 2 ) {
            fprintf(msgFile, "\n   %% sum = %12.4e", sum) ;
            fflush(msgFile) ;
         }
         fac = beta * sum ;
         if ( msglvl > 2 ) {
            fprintf(msgFile, "\n   %% fac = %12.4e", fac) ;
            fflush(msgFile) ;
         }
         colY[jcolV] -= fac ;
         for ( irow = jcolV + 1 ; irow < nrowA ; irow++ ) {
            colY[irow] -= fac * V[irow] ;
         }
      } else {
         double   rfac, ifac, 
                  rsum = colY[2*jcolV], isum = colY[2*jcolV+1] ;
         int      irow ;
         for ( irow = jcolV + 1 ; irow < nrowA ; irow++ ) {
            double   Vi, Vr, Yi, Yr ;
            Vr = V[2*irow] ; Vi = V[2*irow+1] ;
            Yr = colY[2*irow] ; Yi = colY[2*irow+1] ;
            rsum += Vr*Yr + Vi*Yi ;
            isum += Vr*Yi - Vi*Yr ;
         }
         rfac = beta * rsum ;
         ifac = beta * isum ;
         colY[2*jcolV]   -= rfac ;
         colY[2*jcolV+1] -= ifac ;
         for ( irow = jcolV + 1 ; irow < nrowA ; irow++ ) {
            double   Vi, Vr ;
            Vr = V[2*irow] ; Vi = V[2*irow+1] ;
            colY[2*irow]   -= rfac*Vr - ifac*Vi ;
            colY[2*irow+1] -= rfac*Vi + ifac*Vr ;
         }
      }
   }
}
return ; }
Example #5
0
/*
   --------------------------------------------------------------
   purpose -- compute A = QR, where Q is a product of householder
              vectors, (I - beta_j v_j v_j^T). on return, v_j is 
              found in the lower triangle of A, v_j(j) = 1.0.

   return value -- # of floating point operations

   created -- 98may25, cca
   --------------------------------------------------------------
*/
double
A2_QRreduce (
   A2       *mtxA,
   DV       *workDV,
   int      msglvl,
   FILE     *msgFile
) {
A2       tempA ;
double   nops ;
double   beta0 ;
double   *colA, *H0, *W0 ;
int      inc1, inc2, jcol, lastrow, length, ncolA, nrowA, nstep ;
/*
   ---------------
   check the input
   ---------------
*/
if (   mtxA == NULL || workDV == NULL
    || (msglvl > 0 && msgFile == NULL) ) {
   fprintf(stderr, "\n fatal error in A2_QRreduce()"
           "\n bad input\n") ;
   exit(-1) ;
}
if ( ! (A2_IS_REAL(mtxA) || A2_IS_COMPLEX(mtxA)) ) {
   fprintf(stderr, "\n fatal error in A2_QRreduce()"
           "\n matrix must be real or complex\n") ;
   exit(-1) ;
}
nrowA = A2_nrow(mtxA) ; 
ncolA = A2_ncol(mtxA) ;
inc1  = A2_inc1(mtxA) ;
inc2  = A2_inc2(mtxA) ;
if ( A2_IS_REAL(mtxA) ) {
   DV_setSize(workDV, nrowA + ncolA) ;
   H0 = DV_entries(workDV) ;
   W0 = H0 + nrowA ;
} else if ( A2_IS_COMPLEX(mtxA) ) {
   DV_setSize(workDV, 2*(nrowA + ncolA)) ;
   H0 = DV_entries(workDV) ;
   W0 = H0 + 2*nrowA ;
}
/*
   -------------------------------------------------
   determine the number of steps = min(ncolA, nrowA)
   -------------------------------------------------
*/
nstep = (ncolA <= nrowA) ? ncolA : nrowA ;
/*
   -------------------
   loop over the steps
   -------------------
*/
nops = 0.0 ; 
for ( jcol = 0 ; jcol < nstep ; jcol++ ) {
   if ( msglvl > 3 ) {
      fprintf(msgFile, "\n %% jcol = %d", jcol) ;
   }
/*
   ----------------------------------
   copy the column of A into a vector
   and find the last nonzero element
   ----------------------------------
*/
   A2_subA2(&tempA, mtxA, jcol, nrowA-1, jcol, ncolA-1) ;
   length = 1 + copyIntoVec1(&tempA, H0, msglvl, msgFile) ;
   lastrow = jcol + length - 1 ;
   if ( msglvl > 5 ) {
      fprintf(msgFile, 
            "\n %% return from copyIntoVec1, length = %d, lastrow = %d",
            length, lastrow) ;
   }
/*
   ------------------------------
   compute the Householder vector
   and place into the column of A
   ------------------------------
*/
   colA = A2_column(mtxA, jcol) ;
   if ( A2_IS_REAL(mtxA) ) {
      nops += getHouseholderVector1(SPOOLES_REAL, length, H0, 
                                    &beta0, msglvl, msgFile) ;
      A2_subA2(&tempA, mtxA, jcol, lastrow, jcol, jcol) ;
      A2_setColumn(&tempA, H0, 0) ;
      H0[0] = 1.0 ;
   } else if ( A2_IS_COMPLEX(mtxA) ) {
      nops += getHouseholderVector1(SPOOLES_COMPLEX, length, H0, 
                                    &beta0, msglvl, msgFile) ;
      A2_subA2(&tempA, mtxA, jcol, lastrow, jcol, jcol) ;
      A2_setColumn(&tempA, H0, 0) ;
      H0[0] = 1.0 ; H0[1] = 0.0 ;
   }
   if ( msglvl > 5 && jcol == 0 ) {
      fprintf(msgFile, "\n %% beta0 = %12.4e;", beta0) ;
   }
   if ( beta0 != 0.0 && jcol + 1 < ncolA ) {
      A2_subA2(&tempA, mtxA, jcol, lastrow, jcol+1, ncolA-1) ;
/*
      ------------------------------------------------
      compute w = v^T * A(jcol:lastrow,jcol+1:nrowA-1)
      ------------------------------------------------
*/
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n %% compute w") ;
      }
      nops += computeW1(&tempA, H0, W0, msglvl, msgFile) ;
/*
      -------------------------------------------------
      update A(jcol:lastrow,jcol+1:nrowA-1) -= beta*v*w
      -------------------------------------------------
*/
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n %% update A") ;
      }
      nops += updateA1(&tempA, H0, beta0, W0, msglvl, msgFile) ;
   }
}
return(nops) ; }