Example #1
0
void SampleLightCO(void){
	
	unsigned long ulADC0_Value[1];
	SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
	SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
	GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_3);
	ADCSequenceConfigure(ADC0_BASE, 3, ADC_TRIGGER_PROCESSOR, 0);
	ADCSequenceStepConfigure(ADC0_BASE, 3, 0, ADC_CTL_CH0 | ADC_CTL_IE |
	ADC_CTL_END);
	ADCSequenceEnable(ADC0_BASE, 3);
	ADCIntClear(ADC0_BASE, 3);

	while(1){
		ADCProcessorTrigger(ADC0_BASE, 3);
		while(!ADCIntStatus(ADC0_BASE, 3, false)){
		}
		ADCIntClear(ADC0_BASE, 3);
		ADCSequenceDataGet(ADC0_BASE, 3, ulADC0_Value);
		
		Log("Breath Level = ");
		LogD(ulADC0_Value[0]);
		Log("\r");

		SysCtlDelay(SysCtlClockGet() / 12);
	}
}
Example #2
0
unsigned long ADC_In(unsigned int channelNum){

  unsigned long config;
  unsigned long data;

  // Configuring ADC to start by processor call instead of interrupt
  ADCSequenceConfigure(ADC0_BASE, 3, ADC_TRIGGER_PROCESSOR, 0);

  // Determine input channel
  switch(channelNum){
    case 0: config = ADC_CTL_CH0; break;
	case 1: config = ADC_CTL_CH1; break;
	case 2: config = ADC_CTL_CH2; break;
	case 3: config = ADC_CTL_CH3; break;
  } 

  // Enable ADC interrupt and last step of sequence
  config |= ADC_CTL_IE | ADC_CTL_END;
  ADCSequenceStepConfigure(ADC0_BASE, 3, 0, config);

  ADCSequenceEnable(ADC0_BASE, 3);
  ADCIntClear(ADC0_BASE, 3);

  // Start ADC conversion
  ADCProcessorTrigger(ADC0_BASE, 3);

  // Wait for ADC conversion to finish
  while(!ADCIntStatus(ADC0_BASE, 3, false)){}

  // Clear interrupt flag and read conversion data
  ADCIntClear(ADC0_BASE, 3);
  ADCSequenceDataGet(ADC0_BASE, 3, &data);

  return data;
}
Example #3
0
int main(void)
{

    SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

    SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
    GPIOPinTypeADC(GPIO_PORTB_BASE, GPIO_PIN_5);
    GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_5);

    ADCSequenceConfigure(ADC0_BASE, 2, ADC_TRIGGER_PROCESSOR, 0);
    ADCSequenceStepConfigure(ADC0_BASE, 2, 0, ADC_CTL_CH8);
    ADCSequenceStepConfigure(ADC0_BASE, 2, 1, ADC_CTL_CH11 | ADC_CTL_IE | ADC_CTL_END);
    ADCSequenceEnable(ADC0_BASE, 2);
    ADCIntClear(ADC0_BASE, 2);

    while(1)
    {
        ADCProcessorTrigger(ADC0_BASE, 2);
        while(!ADCIntStatus(ADC0_BASE, 2, false));
        ADCIntClear(ADC0_BASE, 2);
        ADCSequenceDataGet(ADC0_BASE, 2, adcValue);
        SysCtlDelay(SysCtlClockGet() / 12);
    }
}
Example #4
0
//---------------------------------------------------------------------------
// hardware_init()
//
// inits GPIO pins for toggling the LED
//---------------------------------------------------------------------------
void hardware_init(void)
{

	//Set CPU Clock to 40MHz. 400MHz PLL/2 = 200 DIV 5 = 40MHz
	SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);
	SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

		SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
		SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);
		SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
		SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

		//Removing Locks From Switch
					LOCK_F=0x4C4F434B;
					CR_F=GPIO_PIN_0|GPIO_PIN_4;

	SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);

	GPIOPinTypeADC(GPIO_PORTD_BASE, GPIO_PIN_0);            // Configuring PD0 as ADC input (channel 1)     CH7 ADC0
	GPIOPinTypeADC(GPIO_PORTD_BASE, GPIO_PIN_1);

	SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
	SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC1);

	ADCSequenceConfigure(ADC0_BASE,	1, ADC_TRIGGER_PROCESSOR, 0);
	ADCSequenceConfigure(ADC1_BASE,	1, ADC_TRIGGER_PROCESSOR, 0);

	ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_CH7);
	ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_CH7);
	ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_CH7);
	ADCSequenceStepConfigure(ADC0_BASE, 1, 3, ADC_CTL_CH7 | ADC_CTL_IE | ADC_CTL_END);

	ADCSequenceStepConfigure(ADC1_BASE, 1, 0, ADC_CTL_CH6);
	ADCSequenceStepConfigure(ADC1_BASE, 1, 1, ADC_CTL_CH6);
	ADCSequenceStepConfigure(ADC1_BASE, 1, 2, ADC_CTL_CH6);
	ADCSequenceStepConfigure(ADC1_BASE, 1, 3, ADC_CTL_CH6 | ADC_CTL_IE | ADC_CTL_END);

	ADCSequenceEnable(ADC0_BASE, 1);
	ADCSequenceEnable(ADC1_BASE, 1);
	ADCIntClear(ADC0_BASE, 1);
	ADCIntClear(ADC1_BASE, 1);

	GPIOPinTypeGPIOOutput(GPIO_PORTB_BASE, GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7);
		GPIOPinTypeGPIOOutput(GPIO_PORTC_BASE, GPIO_PIN_4 | GPIO_PIN_6);
		GPIOPinTypeGPIOOutput(GPIO_PORTD_BASE, GPIO_PIN_3);
		GPIOPinTypeGPIOOutput(GPIO_PORTE_BASE, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_5);
		GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_0);
		//GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7);

		GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_4,0x10);

}
void CapacitorTask(void* pvParameter)
{
	unsigned long ulValue=0;
	int i=0;

	cqueue = xQueueCreate(100,sizeof(unsigned long));


	//SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
	GPIOPinTypeGPIOOutput(GPIO_PORTD_BASE, GPIO_PIN_1);
	GPIOPadConfigSet(GPIO_PORTD_BASE, GPIO_PIN_1, GPIO_STRENGTH_4MA, GPIO_PIN_TYPE_OD);
	GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_1, 0x02);//Setting the Pin 0 to "high"

	//Initialize the ADC using functions from the Stellaris API
	//SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
	ADCSequenceConfigure(ADC_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
	ADCSequenceStepConfigure(ADC0_BASE, 0, 1, ADC_CTL_IE|ADC_CTL_END|ADC_CTL_CH1);
	ADCSequenceEnable(ADC0_BASE, 1);
	//ADCIntEnable(ADC0_BASE, 1);
	ADCIntClear(ADC0_BASE, 1);

	//Trigger from the Processor
	while(true)
	{

		if(flagcap==1)
		{
			GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_1, 0x00);//Setting the Pin 0 to "high"
			vTaskDelay(TICK_R*0.5);
			GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_1, 0x02);//Setting the Pin 0 to "high"
			i=0;
			flagcap = 0;
			//ADCIntClear(ADC0_BASE, 1);
			while(i<100)
			{
				ADCProcessorTrigger(ADC0_BASE, 1);
				while(!ADCIntStatus(ADC0_BASE, 1, false))
				{
				}
				ADCSequenceDataGet(ADC0_BASE, 1, &ulValue);//Enable ADC sequence 0
				ADCIntClear(ADC0_BASE, 1);
				xQueueSend(cqueue, &ulValue, 0);
				i++;
				vTaskDelay(TICK_R*1.0)
;			}
			flagUART = 1;

		}
		vTaskDelay(TICK_R*10);
	}

}
/**
Reads the current sense amplifier output using the Analog to Digital Converter (ADC).
Current sense resistor is 0.2 ohms, amplifier multiplies voltage drop by 50. Therefore, every mA of
current translates into 10mV measured by the microcontroller
@note Current sense input is on PE5 on Stellaris LaunchPad
@pre Current sense shunt is installed on the BoosterPack
@return Current in mA multiplied by 10 (e.g. return value of 713 = 71.3mA)
@see StellarisWare/examples/peripherals/adc/single_ended.c
*/
uint16_t getCurrentSensor()
{
    /* This array is used for storing the data read from the ADC FIFO. It must be as large as the
    FIFO for the sequencer in use.  This example uses sequence 3 which has a FIFO depth of 1. */
	uint32_t ulADC0_Value[1];

    /* Enable sample sequence 3 with a processor signal trigger.  Sequence 3 will do a single sample
    when the processor sends a signal to start the conversion. */
    ADCSequenceConfigure(ADC0_BASE, 3, ADC_TRIGGER_PROCESSOR, 0);

    /* Configure step 0 on sequence 3.  Sample channel 8 (ADC_CTL_CH8) in single-ended mode
     * (default) and configure the interrupt flag (ADC_CTL_IE) to be set when the sample is done.
     * Tell the ADC logic that this is the last conversion on sequence 3 (ADC_CTL_END). */
    ADCSequenceStepConfigure(ADC0_BASE, 3, 0, ADC_CTL_CH8 | ADC_CTL_IE | ADC_CTL_END);

    // Since sample sequence 3 is now configured, it must be enabled.
    ADCSequenceEnable(ADC0_BASE, 3);

    // Clear the interrupt status flag.  This is done to make sure the
    // interrupt flag is cleared before we sample.
    ADCIntClear(ADC0_BASE, 3);

    //
    // Now the setup is done, let's actually measure something!
    //

    // Trigger the ADC conversion.
    ADCProcessorTrigger(ADC0_BASE, 3);

    // Wait for conversion to be completed.
    while(!ADCIntStatus(ADC0_BASE, 3, false))
    {
    }

    // Clear the ADC interrupt flag.
    ADCIntClear(ADC0_BASE, 3);

    // Read ADC Value into ulADC0_Value
    ADCSequenceDataGet(ADC0_BASE, 3, ulADC0_Value);

    // This part does not have a separate voltage reference
    // Therefore we have to measure with reference to what we think VCC is, 3.30V
#define REFERENCE_VOLTAGE_MV                (3300l)

    uint32_t temp = (ulADC0_Value[0] * REFERENCE_VOLTAGE_MV);

#define NUMBER_OF_STEPS_12_BIT_RESOLUTION   (4096l)

    return ((uint16_t) (temp / NUMBER_OF_STEPS_12_BIT_RESOLUTION));
}
Example #7
0
void joyTask(void *pvParameters) {

	//initialize queues for communication and user feedback
	dataBuffer = xQueueCreate(5, sizeof(unsigned long));
	feedBack = xQueueCreate(5, sizeof(unsigned long));

	//Enable ADC peripheral for joystick (left and right only)
	SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

	//Set ADC to trigger from software, high priority
	ADCSequenceConfigure(ADC0_BASE, 0, ADC_TRIGGER_PROCESSOR, 0);

	//configure adc to have an interrupt, to throw it at the end of the step sequence
	ADCSequenceStepConfigure(ADC0_BASE, 0, 0,(ADC_CTL_END|ADC_CTL_CH0|ADC_CTL_IE));

	//Enable the configured sequence
	ADCSequenceEnable(ADC0_BASE, 0);

	//clear the interrupt
	ADCIntClear(ADC0_BASE, 0);


	//temporary variable to catch adc vals, since queue docs are full of lies
	unsigned long temp;

	while(true) {
		// Trigger the sample sequence.
		ADCProcessorTrigger(ADC0_BASE, 0);

		// Block until the sampling completes (fcn returns 0 until interrupt is thrown)
		while(!ADCIntStatus(ADC0_BASE, 0, false)){}

		// Read the value from the ADC into a temporary var
		ADCSequenceDataGet(ADC0_BASE, 0, &temp);

		//clear the interrupt
		ADCIntClear(ADC0_BASE, 0);

		//write temp value to queue
		xQueueSend(dataBuffer, (void*) &temp, 0);

		//send ADC value to the OLDE for display
		xQueueSend(feedBack, (void*) &temp, 0);


		//return control to Task scheduler
        vTaskDelay(100*ONE_MS);
	}
}
//******************************************************************************
// The handler for the ADC conversion (height) complete interrupt.
// Writes to the circular buffer.
//*****************************************************************************
void HeightIntHandler(void)
{
	unsigned long ulValue;
	static int counter = 0;      //Keeping track of the buffer count for the initialRead
	int current;
	int sum = 0;
	int i;

	// Clean up, clearing the interrupt
	ADCIntClear(ADC0_BASE, 3);

	// Get the single sample from ADC0. (Yes, I know, I just did what you did sir :p)
	ADCSequenceDataGet(ADC0_BASE, 3, &ulValue);

	// Place it in the circular buffer (advancing write index)
	g_inBuffer.data[g_inBuffer.windex] = (int) ulValue;
	g_inBuffer.windex++;
	if (g_inBuffer.windex >= g_inBuffer.size)
		g_inBuffer.windex = 0;

	if (counter < BUF_SIZE) {
			counter++;
			if (counter == BUF_SIZE) {
				for (i = 0; i < BUF_SIZE; i++) {
					current = ulValue;
					sum = sum + current;
				}
        //Average voltage to calibrate the minimum height of the helicopter
				initialRead = ADC_TO_MILLIS(sum/BUF_SIZE);
			}
		}
}
Example #9
0
File: main.c Project: mybays/lm3s
void ADC0IntHandler()
{

    unsigned long adc0Value;   // Holds the ADC result
    char adc0String[5];        // Holds the string-converted ADC result

    // 清ADC0中断标志.
    // ADCIntClear (unsigned long ulBase, unsigned long ulSequenceNum) 
    ADCIntClear(ADC0_BASE, 0);
    
    //从SSO读出转换结果 (FIFO0),本例中只有一个采样.如果要使用多个转换源,需要使用数组做为参数传递给API函数,保存FIFO转换结果.
    // long ADCSequenceDataGet (unsigned long ulBase,unsigned long ulSequenceNum,unsigned long *pulBuffer) 
    ADCSequenceDataGet(ADC0_BASE, 0, &adc0Value);
    adc0Value= ((59960 - (adc0Value * 100)) / 356);
    
    
    // 在OLED上显示当前温度
    usprintf(adc0String, "%d", adc0Value);    
    IntMasterDisable();
    RIT128x96x4StringDraw("Current temp :         ", 6, 48, 15);
    RIT128x96x4StringDraw(adc0String, 94, 48, 15);
    IntMasterEnable();  

    // ADC模块空闲,可以进行下一次转换
    adc_busy=0;    
 
}
Example #10
0
void adc_init_and_run(void){
	// Тактирование выбранного модуля АЦП.
	SysCtlPeripheralEnable(SYSCTL_PERIPH_ADCx);

	// Ожидание готовности выбранного модуля АЦП к настройке.
	while(!SysCtlPeripheralReady(SYSCTL_PERIPH_ADCx)) { }

	ADCHardwareOversampleConfigure(ADCx_BASE, 4);

	// Установка триггера выбранного буфера АЦП.
	ADCSequenceConfigure(ADCx_BASE, SSy, ADC_TRIGGER, 0);

	ADCSequenceStepConfigure(ADCx_BASE, SSy, 0, ADC_CTL_CH0);
	ADCSequenceStepConfigure(
		ADCx_BASE, SSy, 1, ADC_CTL_CH1|ADC_CTL_IE|ADC_CTL_END
	);

	ADCIntClear(ADCx_BASE, SSy);

	IntEnable(INT_ADCxSSy);
	IntPrioritySet(INT_ADCxSSy, 1);

	ADCSequenceEnable(ADCx_BASE, SSy);
	ADCProcessorTrigger(ADCx_BASE, SSy);
}
Example #11
0
int main(void)
{
	uint32_t ui32ADC0Value[4];
	volatile uint32_t ui32TempAvg;
	volatile uint32_t ui32TempValueC;
	volatile uint32_t ui32TempValueF;

	setup();

	ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
	ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_TS);
	ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_TS);
	ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_TS);
	ADCSequenceStepConfigure(ADC0_BASE,1,3,ADC_CTL_TS|ADC_CTL_IE|ADC_CTL_END);
	ADCSequenceEnable(ADC0_BASE, 1);

	while(1)
	{
		ADCIntClear(ADC0_BASE, 1);
		ADCProcessorTrigger(ADC0_BASE, 1);

		while(!ADCIntStatus(ADC0_BASE, 1, false))
		{
		}
		ADCSequenceDataGet(ADC0_BASE, 1, ui32ADC0Value);
		ui32TempAvg = (ui32ADC0Value[0] + ui32ADC0Value[1] + ui32ADC0Value[2] + ui32ADC0Value[3] + 2)/4;
		ui32TempValueC = (1475 - ((2475 * ui32TempAvg)) / 4096)/10;
		ui32TempValueF = ((ui32TempValueC * 9) + 160) / 5;


	}

}
Example #12
0
/*****************************************************
 * 	Function: checkIntTempSensor
 *	Description: Reads internal temperature sensor
 *	Input: NONE
 *	Output: ui32TempAvg, ui32TempValueC, ui32TempValueF
 *****************************************************/
void checkIntTempSensor(void)
{
	// Clear flag
	ADCIntClear(ADC0_BASE, 0);

	// Trigger processor
	ADCProcessorTrigger(ADC0_BASE, 0);

	// Wait for ADC status to be set
	while(!ADCIntStatus(ADC0_BASE, 0, false)){}

	// Get data and convert to useful values
	// Read all four steps of sequence into ui32ADC0Value
	ADCSequenceDataGet(ADC0_BASE, 0, ui32ADC0Value);
	ui32TempAvg = (ui32ADC0Value[0] + ui32ADC0Value[1] + ui32ADC0Value[2] + ui32ADC0Value[3] + 2)/4;
	ui32TempValueC = (1475 - ((2475 * ui32TempAvg)) / 4096)/10;
	ui32TempValueF = ((ui32TempValueC * 9) + 160) / 5;

	// Shutdown if device is getting too hot
	if(ui32TempValueF >= SHUTDOWN_TEMP)
	{
		mode = SYSTEM_SHUTDOWN;
	}

}
void UARTIntHandler() {
	uint32_t ui32Status;
	uint32_t ui32ADC0Value[4]; 			// ADC FIFO
	volatile uint32_t ui32TempAvg; 		// Store average
	volatile uint32_t ui32TempValueC; 	// Temp in C
	volatile uint32_t ui32TempValueF; 	// Temp in F

	ui32Status = UARTIntStatus(UART0_BASE, true); //get interrupt status

	UARTIntClear(UART0_BASE, ui32Status); //clear the asserted interrupts

	ADCIntClear(ADC0_BASE, 2); 			// Clear ADC0 interrupt flag.
	ADCProcessorTrigger(ADC0_BASE, 2); 	// Trigger ADC conversion.

	while (!ADCIntStatus(ADC0_BASE, 2, false))
		; 	// wait for conversion to complete.

	ADCSequenceDataGet(ADC0_BASE, 2, ui32ADC0Value); 	// get converted data.
	// Average read values, and round.
	// Each Value in the array is the result of the mean of 64 samples.
	ui32TempAvg = (ui32ADC0Value[0] + ui32ADC0Value[1] + ui32ADC0Value[2]
			+ ui32ADC0Value[3] + 2) / 4;
	ui32TempValueC = (1475 - ((2475 * ui32TempAvg)) / 4096) / 10; // calc temp in C
	ui32TempValueF = ((ui32TempValueC * 9) + 160) / 5;

	//while(UARTCharsAvail(UART0_BASE)) //loop while there are chars
	//{
	//  UARTCharPutNonBlocking(UART0_BASE, UARTCharGetNonBlocking(UART0_BASE)); //echo character
	GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2); //blink LED
	SysCtlDelay(SysCtlClockGet() / (1000 * 3)); //delay ~1 msec
	GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0); //turn off LED
	//}
}
Example #14
0
/*
 * 初始化ADC引脚和配置
 * 其中ADC0的输入引脚配置为CH1,ADC1的输入引脚配置为CH2
 */
void Init_ADC()
{
	SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
	GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_1);
	GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_2);

	ADCSequenceConfigure(ADC0_BASE, 3, ADC_TRIGGER_PROCESSOR, 0);
    ADCSequenceStepConfigure(ADC0_BASE, 3, 0, ADC_CTL_CH1 | ADC_CTL_IE | ADC_CTL_END);
    ADCSequenceEnable(ADC0_BASE, 3);
    ADCIntClear(ADC0_BASE, 3);

	ADCSequenceConfigure(ADC1_BASE, 3, ADC_TRIGGER_PROCESSOR, 0);
    ADCSequenceStepConfigure(ADC1_BASE, 3, 0, ADC_CTL_CH2 | ADC_CTL_IE | ADC_CTL_END);
    ADCSequenceEnable(ADC1_BASE, 3);
    ADCIntClear(ADC1_BASE, 3);
}
Example #15
0
// Control the major or minor cycle in main function
void pirates(void* taskDataPtr)
{
    pirateDataStruct* dataPtr = (pirateDataStruct*) taskDataPtr;
    unsigned short* pirateProximityPtr = dataPtr->pirateProximity;
    while (1) {
        // Start of ADC2                                                    //removed to free up ADC lines
        //
        static unsigned long adc2Reading[4] = {0};

        // interrupt flag is cleared before we sample.
        ADCIntClear(ADC0_BASE, 2);

        // Trigger the ADC conversion.
        ADCProcessorTrigger(ADC0_BASE, 2);

        // Wait for conversion to be completed.
        while(!ADCIntStatus(ADC0_BASE, 2, false))
        {
        }

        // Clear the ADC interrupt flag.
        ADCIntClear(ADC0_BASE, 2);

        // Read ADC Value.
        ADCSequenceDataGet(ADC0_BASE, 2, adc2Reading);
        converted = (double) (1023 - adc2Reading[2]) * (200.0 / 1023) * 2;
        *pirateProximityPtr = (unsigned short) converted;
        //disable phasor and photon
        GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_5, 0x00);
        GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_6, 0x00);
        if(*pirateProximityPtr>100) {
            //disable phasor and photon
            GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_5, 0x00);
            GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_6, 0x00);
            //xTaskSuspend(piratesHandle);
        }
        else if(*pirateProximityPtr<30) {
            //fire phasors fault pin
            GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_6, 0xFF);
        }
        if(*pirateProximityPtr<5) {
            //fire photons PD5
            GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_5, 0xFF);
        }
        vTaskDelay(100);
    }
}
Example #16
0
long getADCValues(int port) {
	unsigned long ADCValue[4] = {0,0,0,0};
	ADCIntClear(ADC_BASE, port);
  ADCProcessorTrigger(ADC_BASE, port); 
	while(!ADCIntStatus(ADC_BASE, port, false)); 
	ADCSequenceDataGet(ADC_BASE, port, ADCValue);
	return ADCValue[0];
}
Example #17
0
long sampleAdcPort(int port) {
	unsigned long ADCValues[4] = {0};
	ADCProcessorTrigger(ADC_BASE, 0 ); 
	while(!ADCIntStatus(ADC_BASE, 0, false)); 
	ADCSequenceDataGet(ADC_BASE, 0, ADCValues);
	ADCIntClear(ADC_BASE, 0);
	return ADCValues[port];
}
Example #18
0
void InitializeInterrupts()
{
	//Enable and clear all configured interrupts before starting main loop
	IntEnable(INT_ADC3);
	IntEnable(INT_TIMER1A);
	IntMasterEnable();
	ADCIntClear(ADC0_BASE, 3);
}
Example #19
0
//*****************************************************************************
//
//! \brief ADC0 Interrupt Handler.
//!
//! If users want to user the ADC0 Callback feature, Users should promise 
//! that the ADC0 Handle in the vector table is ADCIntHandler.
//!
//! \return None.
//
//*****************************************************************************
unsigned long ADC0IntFucntion(void *pvCBData,
                                       unsigned long ulEvent,
                                       unsigned long ulMsgParam,
                                       void *pvMsgData)
{
    ADCIntClear(ADC1_BASE, ADC_INT_END_CONVERSION);
    return 0;
}
Example #20
0
void mode1()	//Obtain samples from ADC
{
	ADCProcessorTrigger(ADC0_BASE, 2);		// Start Sampling
	while(!ADCIntStatus(ADC0_BASE, 2, false));	// Wait until sampling is done
	ADCIntClear(ADC0_BASE, 2);	//Clear Interrupt
	ADCSequenceDataGet(ADC0_BASE, 2, adcValue);	//Obtain the sample
	ssdset(adcValue[0]);
}
Example #21
0
//triggers when it's got all the channels read
void adc_interrupt(void)
{
	unsigned long temp[4];
	unsigned long i;
	ADCIntClear(ADC0_BASE, 1);
	ADCSequenceDataGet(ADC0_BASE, 1, temp);
	ADCIntClear(ADC0_BASE, 1);

	for ( i = 0; i < 4; i++ )
	{
		temp[i] = temp[i] >> 5; // 7-bit number (128 steps)
		if ( temp[i] != adcValues[i] ) UARTprintf("ADC[%d]: %d\n", i, temp[i] );
		adcValues[i] = (unsigned char)temp[i];
	}



}
Example #22
0
void ADC0_Handler(void){

  // Clear flag
  ADCIntClear(ADC0_BASE, 0);
  
  ADCSequenceDataGet(ADC0_BASE, 0, Buffer);
	
  Status = TRUE;
}
Example #23
0
void get_temp(void){
	ADCIntClear(ADC0_BASE, 1);
	ADCProcessorTrigger(ADC0_BASE, 1);
	while(!ADCIntStatus(ADC0_BASE, 1, false))
	{
	}
	ADCSequenceDataGet(ADC0_BASE, 1, ui32ADC0Value);
	ui32TempAvg = (ui32ADC0Value[0] + ui32ADC0Value[1] + ui32ADC0Value[2] + ui32ADC0Value[3] + 2)/4;
	ui32TempValueC = (1475 - ((2475 * ui32TempAvg)) / 4096)/10;
}
Example #24
0
void adc_read() {
    ADCProcessorTrigger(ADC0_BASE, 0);

    while(!ADCIntStatus(ADC0_BASE, 0, false));

    ADCIntClear(ADC0_BASE, 0);
    ADCSequenceDataGet(ADC0_BASE, 0, ulADC0_Value);

    ADCSequenceEnable(ADC0_BASE, 0);
}
void ADCIntHandler(void) {
    while(!ADCIntStatus(MODULE_ADC_BASE, MODULE_ADC_SEQUENCE_NUM, false));
    ADCIntClear(MODULE_ADC_BASE, MODULE_ADC_SEQUENCE_NUM);

    xSemaphoreTakeFromISR(adc_mutex, pdFALSE);
    ADCSequenceDataGet(MODULE_ADC_BASE, MODULE_ADC_SEQUENCE_NUM, adc_vals);
    xSemaphoreGiveFromISR(adc_mutex, pdTRUE);

    ADCProcessorTrigger(MODULE_ADC_BASE, MODULE_ADC_SEQUENCE_NUM);
}
Example #26
0
/*
 * This function is the implementation of the ADC0 interrupt handler.
 */
interrupt void ADC0IntHandler(void) {
	//Clear the ADC interrupt flags
	ADCIntClear(ADC0_BASE, 3);

	//Get data from ADC0 sequence 3
	ADCSequenceDataGet(ADC0_BASE, 3, ulCurrent);

	UARTprintf("Current: %u ", ulCurrent[0]);

}
Example #27
0
/*
 * This function is the implementation of the ADC1 interrupt handler.
 */
interrupt void ADC1IntHandler(void) {
	//Clear the ADC interrupt flags
	ADCIntClear(ADC1_BASE, 3);

	//Get data from ADC0 sequence 3
	ADCSequenceDataGet(ADC1_BASE, 3, ulLVDT);

	UARTprintf("LVDT: %u\n", ulLVDT[0]);

}
// *******************************************************
// Initializes the ADC pins and their ISRs.
void heightInit(void)
{
	// using code from WEEK-2_ADC, my_adc.c written by Dr. Steve Weddell



	//SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
	//                 SYSCTL_XTAL_8MHZ);

	//
	// The ADC0 peripheral must be enabled for use.
	SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

	//
	// For this example ADC0 is used with AIN0 on port B1. This
	// was given by the LM3S1968 data sheet.
	// Therefore, GPIO port B needs to be enabled
	// so these pins can be used.
	SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

	// Select the analog ADC function for these pins.
	// The LM3S1968 data sheet was consulted to see which functions are
	// allocated per pin.
	GPIOPinTypeADC(GPIO_PORTB_BASE, GPIO_PIN_1);

	// Enable sample sequence 3 with a processor signal trigger.  Sequence 3
	// will do a single sample when the processor sends a signal to start the
	// conversion.  Each ADC module has 4 programmable sequences, sequence 0
	// to sequence 3.  This example is arbitrarily using sequence 3.
	ADCSequenceConfigure(ADC0_BASE, 3, ADC_TRIGGER_PROCESSOR, 0);

	//
	// Configure step 0 on sequence 3.  Sample channel 0 (ADC_CTL_CH0) in
	// single-ended mode (default) and configure the interrupt flag
	// (ADC_CTL_IE) to be set when the sample is done.  Tell the ADC logic
	// that this is the last conversion on sequence 3 (ADC_CTL_END).  Sequence
	// 3 has only one programmable step.  Sequence 1 and 2 have 4 steps, and
	// sequence 0 has 8 programmable steps.  Since we are only doing a single
	// conversion using sequence 3 we will only configure step 0.  For more
	// information on the ADC sequences and steps, reference the datasheet.
	ADCSequenceStepConfigure(ADC0_BASE, 3, 0, ADC_CTL_CH0 | ADC_CTL_IE |
							 ADC_CTL_END);

	//
	// Since sample sequence 3 is now configured, it must be enabled.
	ADCSequenceEnable(ADC0_BASE, 3);

	//
	// Clear the interrupt status flag.  This is done to make sure the
	// interrupt flag is cleared before we sample.
	ADCIntClear(ADC0_BASE, 3);

	initCircBuf (&g_heightBuf, CIRCBUF_SIZE);

}
Example #29
0
void RMBD01Init( void )
{

  //
  // Configure the ADC for Pitch and Roll
  // sequence 3 means a single sample
  // sequence 1, 2 means up to 4 samples
  // sequence 0 means up to 8 samples
  // we use sequence 1
  //
  if (SysCtlPeripheralPresent(SYSCTL_PERIPH_ADC0))
  {

    SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
    ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_TIMER, 0); // 1 captures up to 4 samples

    //
    // Select the external reference for greatest accuracy.
    //
    ADCReferenceSet(ADC0_BASE, ADC_REF_EXT_3V);

    ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ENCODER_CHANNEL_PITCH);     // sample pitch
    ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ENCODER_CHANNEL_ROLL | ADC_CTL_IE | ADC_CTL_END);     // sample roll
    ADCIntRegister(ADC0_BASE,1,ADCIntHandler);
    ADCSequenceEnable(ADC0_BASE, 1);
    ADCIntEnable(ADC0_BASE, 1);


    //
    // Setup timer for ADC_TRIGGER_TIMER
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER1);
	
    //
    // Configure the second timer to generate triggers to the ADC 
    //
    TimerConfigure(TIMER1_BASE, TIMER_CFG_32_BIT_PER);
    TimerLoadSet(TIMER1_BASE, TIMER_A, SysCtlClockGet() / 1000); // 2 ms
  
    TimerControlStall(TIMER1_BASE, TIMER_A, true);
    TimerControlTrigger(TIMER1_BASE, TIMER_A, true);

    //
    // Enable the timers.
    //	
    TimerEnable(TIMER1_BASE, TIMER_A);
    new_adc = false;
    //
  }
  //
  // Clear outstanding ADC interrupt and enable
  //
  ADCIntClear(ADC0_BASE, 1);
  IntEnable(INT_ADC0);
} // InitADC
Example #30
0
int main(void) {
	settemp = 25;
	uint32_t ui32ADC0Value[4];
	SysCtlClockSet(
			SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN
					| SYSCTL_XTAL_16MHZ);
	SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
	SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
	SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
	ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
	ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_TS);
	ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_TS);
	ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_TS);
	ADCSequenceStepConfigure(ADC0_BASE,1,3,ADC_CTL_TS|ADC_CTL_IE|ADC_CTL_END);
	ADCSequenceEnable(ADC0_BASE, 1);
	GPIOPinConfigure(GPIO_PA0_U0RX);
	GPIOPinConfigure(GPIO_PA1_U0TX);
	GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
	SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
	GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
	UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 115200,
			(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));
	IntMasterEnable();
	IntEnable(INT_UART0);
	UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT);
	while(1){
		ADCIntClear(ADC0_BASE, 1);
		ADCProcessorTrigger(ADC0_BASE, 1);
		while(!ADCIntStatus(ADC0_BASE, 1, false))
		{
		}
		ADCSequenceDataGet(ADC0_BASE, 1, ui32ADC0Value);
		ui32TempAvg = (ui32ADC0Value[0] + ui32ADC0Value[1] + ui32ADC0Value[2] + ui32ADC0Value[3] + 2)/4;
		ui32TempValueC = (1475 - ((2475 * ui32TempAvg)) / 4096)/10;
		ui32TempValueF = ((ui32TempValueC * 9) + 160) / 5;
		char m[] = "Current Temperature is    *C, Set Temperature is    *C";
		m[23]=(ui32TempValueC/10 % 10) + '0';
		m[24]=(ui32TempValueC%10) + '0';
		m[49]=(settemp/10 % 10) + '0';
		m[50]=(settemp%10) + '0';
		int i;
		for(i=0;m[i];i++){
			UARTCharPut(UART0_BASE, m[i]);
		}
		if(ui32TempValueC < settemp){
			GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3,8);
		}
		else{
			GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3,2);
		}
		UARTCharPut(UART0_BASE, '\r');
		UARTCharPut(UART0_BASE, '\n');
		SysCtlDelay(1000000);
	}
}