Example #1
0
MRI_IMARR * THD_medmad_bricks( THD_3dim_dataset *dset )
{
   int nvox , nvals , ii ;
   MRI_IMAGE *tsim , *madim, *medim ;
   float             *madar, *medar ;
   MRI_IMARR *imar ;
   float *tsar ;

ENTRY("THD_medmad_bricks") ;

   if( !ISVALID_DSET(dset) ) RETURN(NULL) ;

   nvals = DSET_NVALS(dset) ; if( nvals == 1 ) RETURN(NULL) ;

   DSET_load(dset) ;  if( !DSET_LOADED(dset) ) RETURN(NULL) ;
   tsim  = DSET_BRICK(dset,0) ;

   madim = mri_new_conforming( tsim , MRI_float ) ;
   madar = MRI_FLOAT_PTR(madim) ;
   medim = mri_new_conforming( tsim , MRI_float ) ;
   medar = MRI_FLOAT_PTR(medim) ;
   nvox  = DSET_NVOX(dset) ;

   tsar = (float *) calloc( sizeof(float),nvals+1 ) ;
   for( ii=0 ; ii < nvox ; ii++ ){
     THD_extract_array( ii , dset , 0 , tsar ) ;
     qmedmad_float( nvals , tsar , medar+ii , madar+ii ) ;
   }

   free(tsar) ;
   INIT_IMARR(imar) ; ADDTO_IMARR(imar,medim) ; ADDTO_IMARR(imar,madim) ;
   RETURN(imar) ;
}
Example #2
0
MRI_IMARR * IMARR_medmad_bricks( MRI_IMARR *dmar )
{
   int nvox , nvals , ii , kk ;
   MRI_IMAGE *tsim , *madim, *medim ;
   float             *madar, *medar ;
   MRI_IMARR *imar ;
   float *tsar , **dar ;

ENTRY("IMARR_medmad_bricks") ;

   if( dmar == NULL || IMARR_COUNT(dmar) < 2 ) RETURN(NULL) ;

   nvals = IMARR_COUNT(dmar) ;
   tsim  = IMARR_SUBIM(dmar,0) ;
   madim = mri_new_conforming( tsim , MRI_float ) ;
   madar = MRI_FLOAT_PTR(madim) ;
   medim = mri_new_conforming( tsim , MRI_float ) ;
   medar = MRI_FLOAT_PTR(medim) ;
   nvox  = tsim->nvox ;

   dar = (float **)malloc(sizeof(float *)*nvals) ;
   for( kk=0 ; kk < nvals ; kk++ )
     dar[kk] = MRI_FLOAT_PTR( IMARR_SUBIM(dmar,kk) ) ;

   tsar = (float *) calloc( sizeof(float),nvals+1 ) ;
   for( ii=0 ; ii < nvox ; ii++ ){
     for( kk=0 ; kk < nvals ; kk++ ) tsar[kk] = dar[kk][ii] ;
     qmedmad_float( nvals , tsar , medar+ii , madar+ii ) ;
   }

   free(tsar) ; free(dar) ;
   INIT_IMARR(imar) ; ADDTO_IMARR(imar,medim) ; ADDTO_IMARR(imar,madim) ;
   RETURN(imar) ;
}
Example #3
0
MRI_IMARR * mri_complex_to_pair( MRI_IMAGE * cim )
{
   MRI_IMARR * imarr ;
   MRI_IMAGE * rim , * iim ;
   register int ii , nvox ;
   register float * rar , * iar ;
   register complex * car ;

ENTRY("mri_complex_to_pair") ;

   if( cim == NULL || cim->kind != MRI_complex ) RETURN( NULL );

   rim  = mri_new_conforming( cim , MRI_float ) ; rar = MRI_FLOAT_PTR(rim) ;
   iim  = mri_new_conforming( cim , MRI_float ) ; iar = MRI_FLOAT_PTR(iim) ;
   car  = MRI_COMPLEX_PTR(cim) ;
   nvox = cim->nvox ;

   for( ii=0 ; ii < nvox ; ii++ ){ rar[ii] = car[ii].r ; iar[ii] = car[ii].i ; }

   INIT_IMARR(imarr) ;
   ADDTO_IMARR(imarr,rim) ;
   ADDTO_IMARR(imarr,iim) ;

   RETURN( imarr );
}
Example #4
0
MRI_IMARR * mri_rgb_to_3byte( MRI_IMAGE *oldim )  /* 15 Apr 1999 */
{
   MRI_IMARR *imar ;
   MRI_IMAGE *rim , *gim , *bim ;
   byte      *rr  , *gg  , *bb  , *rgb ;
   int ii , npix ;

ENTRY("mri_rgb_to_3byte") ;
   if( oldim == NULL || oldim->kind != MRI_rgb ) RETURN( NULL );

   rim = mri_new_conforming( oldim , MRI_byte ) ; rr = MRI_BYTE_PTR(rim) ;
   gim = mri_new_conforming( oldim , MRI_byte ) ; gg = MRI_BYTE_PTR(gim) ;
   bim = mri_new_conforming( oldim , MRI_byte ) ; bb = MRI_BYTE_PTR(bim) ;
                                                  rgb= MRI_BYTE_PTR(oldim);
   npix = oldim->nvox ;

   for( ii=0 ; ii < npix ; ii++ ){
     rr[ii] = rgb[3*ii  ] ;
     gg[ii] = rgb[3*ii+1] ;
     bb[ii] = rgb[3*ii+2] ;
   }

   INIT_IMARR(imar) ;
   ADDTO_IMARR(imar,rim) ; ADDTO_IMARR(imar,gim) ; ADDTO_IMARR(imar,bim) ;

   RETURN( imar );
}
Example #5
0
MRI_IMAGE * mri_bport( float dt, float fbot, float ftop, int nblock, int *ntim )
{
   MRI_IMAGE *tim ; MRI_IMARR *bimar ;
   int nrow , nbef , naft , tt ;

ENTRY("mri_bport") ;

   if( nblock <= 0 || ntim == NULL ) RETURN(NULL) ;
   if( nblock == 1 ){
     tim = mri_bport_contig( dt,fbot,ftop , ntim[0],0,0 ) ;
     RETURN(tim) ;
   }

   for( nrow=tt=0 ; tt < nblock ; tt++ ){
     if( ntim[tt] < 9 ) RETURN(NULL) ;
     nrow += ntim[tt] ;
   }
   INIT_IMARR(bimar) ;

   nbef = 0 ;
   naft = nrow - ntim[0] ;
   for( tt=0 ; tt < nblock ; tt++ ){
     tim = mri_bport_contig( dt,fbot,ftop , ntim[tt],nbef,naft ) ;
     if( tim == NULL ){
       DESTROY_IMARR(bimar) ; RETURN(NULL) ;
     }
     ADDTO_IMARR(bimar,tim) ;
     if( tt < nblock-1 ){ nbef += ntim[tt]; naft -= ntim[tt+1]; }
   }

   tim = mri_catvol_1D( bimar , 2 ) ;
   DESTROY_IMARR(bimar) ;
   RETURN(tim) ;
}
Example #6
0
MRI_IMARR * LSS_mangle_matrix( MRI_IMAGE *ima, int jbot, int jtop )
{
   int ii , jj , jnew , jn , njj , nn,mm ;
   MRI_IMAGE *imb , *imc ; MRI_IMARR *imar ;
   float *aa , *bb , *cc , *acol , *bcol , *ccol ;

ENTRY("LSS_mangle_matrix") ;

   if( ima == NULL || ima->kind != MRI_float ) RETURN(NULL) ;
   nn = ima->nx ; mm = ima->ny ;
   njj = jtop-jbot+1 ; if( njj <= 1 )          RETURN(NULL) ;
   if( jbot < 0 || jtop >= mm )                RETURN(NULL) ;

   imb = mri_new( nn , mm-njj+1 , MRI_float ) ;  /* matrix without jbot..jtop */
   imc = mri_new( nn , njj      , MRI_float ) ;  /* matrix with jbot..jtop */
   aa  = MRI_FLOAT_PTR(ima) ;
   bb  = MRI_FLOAT_PTR(imb) ;
   cc  = MRI_FLOAT_PTR(imc) ;

   /* copy non-excised columns into the new imb */

   for( jn=jj=0 ; jj < mm ; jj++ ){
     if( jj >= jbot && jj <= jtop ) continue ;
     acol = aa + jj*nn ;        /* jj = old column index */
     bcol = bb + jn*nn ; jn++ ; /* jn = new column index */
     for( ii=0 ; ii < nn ; ii++ ) bcol[ii] = acol[ii] ;
   }

   /* copy excised columns into the new imc,
      and also add them up into the last column of imb */

   bcol = bb + (mm-njj)*nn ;  /* last col of imb */
   for( jn=0,jj=jbot ; jj <= jtop ; jj++ ){
     acol = aa + jj*nn ;
     ccol = cc + jn*nn ; jn++ ;
     for( ii=0 ; ii < nn ; ii++ ){
       ccol[ii] = acol[ii] ; bcol[ii] += acol[ii] ;
     }
   }

   INIT_IMARR(imar) ; ADDTO_IMARR(imar,imb) ; ADDTO_IMARR(imar,imc) ; RETURN(imar) ;
}
Example #7
0
void PH_redraw(void)
{
   MRI_IMAGE * imc , * im3 ;
   MRI_IMARR * imar ;
   float fgap = 0.0 ;

   if( P_ima == NULL || P_imb == NULL ) return ;

#if 0
fprintf(stderr,"PH_redraw:  A:nx=%d ny=%d   B:nx=%d ny=%d\n",
               P_ima->nx,P_ima->ny , P_imb->nx,P_imb->ny ) ;
fprintf(stderr,"PH_redraw: calling mri_scramble\n") ;
#endif

   imc = mri_scramble( P_ima,P_imb , 1.0-P_alpha,1.0-P_beta )  ;

#if 0
if(imc==NULL)fprintf(stderr,"  - returned NULL!\n") ;
#endif

   INIT_IMARR(imar) ;
   ADDTO_IMARR(imar,P_ima); ADDTO_IMARR(imar,imc); ADDTO_IMARR(imar,P_imb);

#if 0
fprintf(stderr,"PH_redraw: calling mri_cat2D\n") ;
if(imc!=NULL)fprintf(stderr,"  C:nx=%d ny=%d\n", imc->nx,imc->ny ) ;
#endif

   im3 = mri_cat2D( 3,1 , 3 , &fgap , imar ) ;
   FREE_IMARR(imar) ; mri_free(imc) ;

#if 0
if(im3==NULL)fprintf(stderr,"  - returned NULL!\n") ;
fprintf(stderr,"PH_redraw: calling PH_popup_image\n") ;
#endif

   P_handle = PH_popup_image( P_handle , im3 ) ;

   mri_free(im3) ; return ;
}
Example #8
0
MRI_IMARR * mri_to_imarr( MRI_IMAGE *imin )
{
   MRI_IMARR *imar ; MRI_IMAGE *qim ;
   int nx,ny,nz , kk ;

   if( imin == NULL ) return NULL ;

   nx = imin->nx ; ny = imin->ny ; nz = imin->nz ;

   INIT_IMARR(imar) ;

   for( kk=0 ; kk < nz ; kk++ ){
     qim = mri_cut_3D( imin , 0,nx-1 , 0,ny-1 , kk,kk ) ;
     ADDTO_IMARR(imar,qim) ;
   }

   return imar ;
}
Example #9
0
MRI_IMARR * THD_extract_many_series( int ns, int *ind, THD_3dim_dataset *dset )
{
   MRI_IMARR *imar ; /* output */
   MRI_IMAGE *im ;
   int nv , ival , kk ;
   char *iar ;      /* brick in the input */
   float **far ;    /* 27 Feb 2003: ptrs to output */

ENTRY("THD_extract_many_series") ;

   if( ns <= 0 || ind == NULL | dset == NULL ) RETURN( NULL );

   /* try to load dataset */

   nv  = dset->dblk->nvals ;
   iar = DSET_ARRAY(dset,0) ;
   if( iar == NULL ){  /* if data needs to be loaded from disk */
     (void) THD_load_datablock( dset->dblk ) ;
     iar = DSET_ARRAY(dset,0) ;
     if( iar == NULL ){
       static int nerr=0 ;
       if( nerr < 2 ){ ERROR_message("Can't load dataset %s",DSET_HEADNAME(dset)); nerr++; }
       RETURN( NULL );
     }
   }

   /* create output */

   far = (float **) malloc(sizeof(float *)*ns) ;  /* 27 Feb 2003 */
   NULL_CHECK(far) ;
   INIT_IMARR(imar) ;
   for( kk=0 ; kk < ns ; kk++ ){
     im = mri_new( nv , 1 , MRI_float ) ;  /* N.B.: now does 0 fill */
     far[kk] = MRI_FLOAT_PTR(im) ;         /* ptr to kk-th output series */
     ADDTO_IMARR(imar,im) ;
   }

   /* fill the output */

   switch( DSET_BRICK_TYPE(dset,0) ){

      default:             /* don't know what to do --> return nada */
        DESTROY_IMARR(imar) ; free(far) ;
        RETURN( NULL );

      case MRI_byte:{
        byte * bar ;
        for( ival=0 ; ival < nv ; ival++ ){
          bar = (byte *) DSET_ARRAY(dset,ival) ;
          if( bar != NULL ){
            for( kk=0 ; kk < ns ; kk++ ){
              far[kk][ival] = (float)bar[ind[kk]] ;
            }
          }
        }
      }
      break ;

      case MRI_short:{
        short * bar ;
        for( ival=0 ; ival < nv ; ival++ ){
          bar = (short *) DSET_ARRAY(dset,ival) ;
          if( bar != NULL ){
            for( kk=0 ; kk < ns ; kk++ ){
              far[kk][ival] = (float)bar[ind[kk]] ;
            }
          }
        }
      }
      break ;

      case MRI_float:{
         float * bar ;
         for( ival=0 ; ival < nv ; ival++ ){
            bar = (float *) DSET_ARRAY(dset,ival) ;
            if( bar != NULL ){
              for( kk=0 ; kk < ns ; kk++ ){
                 far[kk][ival] = bar[ind[kk]] ;
              }
            }
         }
      }
      break ;

#if 0
      case MRI_int:{
         int * bar ;
         for( ival=0 ; ival < nv ; ival++ ){
            bar = (int *) DSET_ARRAY(dset,ival) ;
            if( bar != NULL ){
              for( kk=0 ; kk < ns ; kk++ ){
                 far[kk][ival] = bar[ind[kk]] ;
              }
            }
         }
      }
      break ;

      case MRI_double:{
         double * bar ;
         for( ival=0 ; ival < nv ; ival++ ){
            bar = (double *) DSET_ARRAY(dset,ival) ;
            if( bar != NULL ){
              for( kk=0 ; kk < ns ; kk++ ){
                 far[kk][ival] = (float)bar[ind[kk]] ;
              }
            }
         }
      }
      break ;
#endif

      case MRI_complex:{
         complex * bar ;
         for( ival=0 ; ival < nv ; ival++ ){
            bar = (complex *) DSET_ARRAY(dset,ival) ;
            if( bar != NULL ){
              for( kk=0 ; kk < ns ; kk++ ){
                 far[kk][ival] = bar[ind[kk]].r ;
              }
            }
         }
      }
      break ;

   }

   /* scale outputs, if needed */

   if( THD_need_brick_factor(dset) ){
      MRI_IMAGE *qim ;
      for( kk=0 ; kk < ns ; kk++ ){
         im  = IMARR_SUBIMAGE(imar,kk) ;
         qim = mri_mult_to_float( dset->dblk->brick_fac , im ) ;
         mri_free(im) ;
         IMARR_SUBIMAGE(imar,kk) = qim ;
      }
   }

#if 0  /* 27 Feb 2003 */
   /* convert to floats, if needed */

   if( IMARR_SUBIMAGE(imar,0)->kind != MRI_float ){
      MRI_IMAGE * qim ;
      for( kk=0 ; kk < ns ; kk++ ){
         im  = IMARR_SUBIMAGE(imar,kk) ;
         qim = mri_to_float( im ) ;
         mri_free(im) ;
         IMARR_SUBIMAGE(imar,kk) = qim ;
      }
   }
#endif

   /* add time axis stuff to output images, if present */

   if( dset->taxis != NULL ){
      float zz , tt ;
      int kz ;

      for( kk=0 ; kk < ns ; kk++ ){
         kz = ind[kk] / ( dset->daxes->nxx * dset->daxes->nyy ) ;
         zz = dset->daxes->zzorg + kz * dset->daxes->zzdel ;
         tt = THD_timeof( 0 , zz , dset->taxis ) ;
         im = IMARR_SUBIMAGE(imar,kk) ;
         im->xo = tt ; im->dx = dset->taxis->ttdel ;   /* origin and delta */
         if( dset->taxis->units_type == UNITS_MSEC_TYPE ){ /* convert to sec */
            im->xo *= 0.001 ; im->dx *= 0.001 ;
         }
      }
   } else {
      for( kk=0 ; kk < ns ; kk++ ){
         im = IMARR_SUBIMAGE(imar,kk) ;
         im->xo = 0.0 ; im->dx = 1.0 ;
      }
   }

   free(far) ; RETURN(imar);
}
Example #10
0
int main( int argc , char *argv[] )
{
   THD_3dim_dataset *inset=NULL ;
   byte *mask=NULL ; int mask_nx=0,mask_ny=0,mask_nz=0 , automask=0 , masknum=0 ;
   int iarg=1 , verb=1 , ntype=0 , nev,kk,ii,nxyz,nt ;
   float na,nb,nc , dx,dy,dz ;
   MRI_IMARR *imar=NULL ; int *ivox ; MRI_IMAGE *pim ;
   int do_vmean=0 , do_vnorm=0 , sval_itop=0 ;
   int polort=-1 ; float *ev ;
   MRI_IMARR *ortar ; MRI_IMAGE *ortim ; int nyort=0 ;
   float bpass_L=0.0f , bpass_H=0.0f , dtime ; int do_bpass=0 ;

   if( argc < 2 || strcmp(argv[1],"-help") == 0 ){
     printf(
       "Usage:  3dmaskSVD [options] inputdataset\n"
       "Author: Zhark the Gloriously Singular\n"
       "\n"
       "* Computes the principal singular vector of the time series\n"
       "    vectors extracted from the input dataset over the input mask.\n"
       "  ++ You can use the '-sval' option to change which singular\n"
       "     vectors are output.\n"
       "* The sign of the output vector is chosen so that the average\n"
       "    of arctanh(correlation coefficient) over all input data\n"
       "    vectors (from the mask) is positive.\n"
       "* The output vector is normalized: the sum of its components\n"
       "    squared is 1.\n"
       "* You probably want to use 3dDetrend (or something similar) first,\n"
       "    to get rid of annoying artifacts, such as motion, breathing,\n"
       "    dark matter interactions with the brain, etc.\n"
       "  ++ If you are lazy scum like Zhark, you might be able to get\n"
       "     away with using the '-polort' option.\n"
       "  ++ In particular, if your data time series has a nonzero mean,\n"
       "     then you probably want at least '-polort 0' to remove the\n"
       "     mean, otherwise you'll pretty much just get a constant\n"
       "     time series as the principal singular vector!\n"
       "* An alternative to this program would be 3dmaskdump followed\n"
       "    by 1dsvd, which could give you all the singular vectors you\n"
       "    could ever want, and much more -- enough to confuse you for days.\n"
       "  ++ In particular, although you COULD input a 1D file into\n"
       "     3dmaskSVD, the 1dsvd program would make much more sense.\n"
       "* This program will be pretty slow if there are over about 2000\n"
       "    voxels in the mask.  It could be made more efficient for\n"
       "    such cases, but you'll have to give Zhark some 'incentive'.\n"
       "* Result vector goes to stdout.  Redirect per your pleasures and needs.\n"
       "* Also see program 3dLocalSVD if you want to compute the principal\n"
       "    singular time series vector from a neighborhood of EACH voxel.\n"
       "  ++ (Which is a pretty slow operation!)\n"
       "* http://en.wikipedia.org/wiki/Singular_value_decomposition\n"
       "\n"
       "-------\n"
       "Options:\n"
       "-------\n"
       " -vnorm      = L2 normalize all time series before SVD [recommended!]\n"
       " -sval a     = output singular vectors 0 .. a [default a=0 = first one only]\n"
       " -mask mset  = define the mask [default is entire dataset == slow!]\n"
       " -automask   = you'll have to guess what this option does\n"
       " -polort p   = if you are lazy and didn't run 3dDetrend (like Zhark)\n"
       " -bpass L H  = bandpass [mutually exclusive with -polort]\n"
       " -ort xx.1D  = time series to remove from the data before SVD-ization\n"
       "               ++ You can give more than 1 '-ort' option\n"
       "               ++ 'xx.1D' can contain more than 1 column\n"
       " -input ddd  = alternative way to give the input dataset name\n"
       "\n"
       "-------\n"
       "Example:\n"
       "-------\n"
       " You have a mask dataset with discrete values 1, 2, ... 77 indicating\n"
       " some ROIs; you want to get the SVD from each ROI's time series separately,\n"
       " and then put these into 1 big 77 column .1D file.  You can do this using\n"
       " a csh shell script like the one below:\n"
       "\n"
       " # Compute the individual SVD vectors\n"
       " foreach mm ( `count 1 77` )\n"
       "   3dmaskSVD -vnorm -mask mymask+orig\"<${mm}..${mm}>\" epi+orig > qvec${mm}.1D\n"
       " end\n"
       " # Glue them together into 1 big file, then delete the individual files\n"
       " 1dcat qvec*.1D > allvec.1D\n"
       " /bin/rm -f qvec*.1D\n"
       " # Plot the results to a JPEG file, then compute their correlation matrix\n"
       " 1dplot -one -nopush -jpg allvec.jpg allvec.1D\n"
       " 1ddot -terse allvec.1D > allvec_COR.1D\n"
       "\n"
       " [[ If you use the bash shell,  you'll have to figure out the syntax ]]\n"
       " [[ yourself. Zhark has no sympathy for you bash shell infidels, and ]]\n"
       " [[ considers you only slightly better than those lowly Emacs users. ]]\n"
       " [[ And do NOT ever even mention 'nedit' in Zhark's august presence! ]]\n"
     ) ;
     PRINT_COMPILE_DATE ; exit(0) ;
   }

   /*---- official startup ---*/

   PRINT_VERSION("3dmaskSVD"); mainENTRY("3dmaskSVD main"); machdep();
   AFNI_logger("3dmaskSVD",argc,argv); AUTHOR("Zhark the Singular");

   /*---- loop over options ----*/

   INIT_IMARR(ortar) ;

   mpv_sign_meth = AFNI_yesenv("AFNI_3dmaskSVD_meansign") ;

   while( iarg < argc && argv[iarg][0] == '-' ){

     if( strcasecmp(argv[iarg],"-bpass") == 0 ){
       if( iarg+2 >= argc ) ERROR_exit("need 2 args after -bpass") ;
       bpass_L = (float)strtod(argv[++iarg],NULL) ;
       bpass_H = (float)strtod(argv[++iarg],NULL) ;
       if( bpass_L < 0.0f || bpass_H <= bpass_L )
         ERROR_exit("Illegal values after -bpass: %g %g",bpass_L,bpass_H) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-ort") == 0 ){  /* 01 Oct 2009 */
       int nx,ny ;
       if( ++iarg >= argc ) ERROR_exit("Need argument after '-ort'") ;
       ortim = mri_read_1D( argv[iarg] ) ;
       if( ortim == NULL ) ERROR_exit("-ort '%s': Can't read 1D file",argv[iarg]) ;
       nx = ortim->nx ; ny = ortim->ny ;
       if( nx == 1 && ny > 1 ){
         MRI_IMAGE *tim=mri_transpose(ortim); mri_free(ortim); ortim = tim; ny = 1;
       }
       mri_add_name(argv[iarg],ortim) ; ADDTO_IMARR(ortar,ortim) ; nyort += ny ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-polort") == 0 ){
       char *qpt ;
       if( ++iarg >= argc ) ERROR_exit("Need argument after '-polort'") ;
       polort = (int)strtod(argv[iarg],&qpt) ;
       if( *qpt != '\0' ) WARNING_message("Illegal non-numeric value after -polort") ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-vnorm") == 0 ){
       do_vnorm = 1 ; iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-input") == 0 ){
       if( inset != NULL  ) ERROR_exit("Can't have two -input options") ;
       if( ++iarg >= argc ) ERROR_exit("Need argument after '-input'") ;
       inset = THD_open_dataset( argv[iarg] ) ;
       CHECK_OPEN_ERROR(inset,argv[iarg]) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-sval") == 0 ){
       if( ++iarg >= argc ) ERROR_exit("Need argument after '-sval'") ;
       sval_itop = (int)strtod(argv[iarg],NULL) ;
       if( sval_itop < 0 ){ sval_itop = 0 ; WARNING_message("'-sval' reset to 0") ; }
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-mask") == 0 ){
       THD_3dim_dataset *mset ; int mmm ;
       if( ++iarg >= argc ) ERROR_exit("Need argument after '-mask'") ;
       if( mask != NULL || automask ) ERROR_exit("Can't have two mask inputs") ;
       mset = THD_open_dataset( argv[iarg] ) ;
       CHECK_OPEN_ERROR(mset,argv[iarg]) ;
       DSET_load(mset) ; CHECK_LOAD_ERROR(mset) ;
       mask_nx = DSET_NX(mset); mask_ny = DSET_NY(mset); mask_nz = DSET_NZ(mset);
       mask = THD_makemask( mset , 0 , 0.5f, 0.0f ) ; DSET_delete(mset) ;
       if( mask == NULL ) ERROR_exit("Can't make mask from dataset '%s'",argv[iarg]) ;
       masknum = mmm = THD_countmask( mask_nx*mask_ny*mask_nz , mask ) ;
       INFO_message("Number of voxels in mask = %d",mmm) ;
       if( mmm < 2 ) ERROR_exit("Mask is too small to process") ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-automask") == 0 ){
       if( mask != NULL ) ERROR_exit("Can't have two mask inputs!") ;
       automask = 1 ; iarg++ ; continue ;
     }

     ERROR_exit("Unknown option '%s'",argv[iarg]) ;

   } /*--- end of loop over options ---*/

   /*---- deal with input dataset ----*/

   if( inset == NULL ){
     if( iarg >= argc ) ERROR_exit("No input dataset on command line?") ;
     inset = THD_open_dataset( argv[iarg] ) ;
     CHECK_OPEN_ERROR(inset,argv[iarg]) ;
   }
   nt = DSET_NVALS(inset) ;  /* vector lengths */
   if( nt < 9 )
     ERROR_exit("Must have at least 9 values per voxel") ;
   if( polort+1 >= nt )
     ERROR_exit("'-polort %d' too big for time series length = %d",polort,nt) ;

   DSET_load(inset) ; CHECK_LOAD_ERROR(inset) ;
   nxyz = DSET_NVOX(inset) ;

   DSET_UNMSEC(inset) ;
   dtime = DSET_TR(inset) ;
   if( dtime <= 0.0f ) dtime = 1.0f ;
   do_bpass = (bpass_L < bpass_H) ;
   if( do_bpass ){
     kk = THD_bandpass_OK( nt , dtime , bpass_L , bpass_H , 1 ) ;
     if( kk <= 0 ) ERROR_exit("Can't continue since -bpass setup is illegal") ;
     polort = -1 ;
   }

   /*--- deal with the masking ---*/

   if( mask != NULL ){
     if( mask_nx != DSET_NX(inset) ||
         mask_ny != DSET_NY(inset) ||
         mask_nz != DSET_NZ(inset)   )
       ERROR_exit("-mask dataset grid doesn't match input dataset") ;

   } else if( automask ){
     int mmm ;
     mask = THD_automask( inset ) ;
     if( mask == NULL )
       ERROR_message("Can't create -automask from input dataset?") ;
     masknum = mmm = THD_countmask( DSET_NVOX(inset) , mask ) ;
     INFO_message("Number of voxels in automask = %d",mmm) ;
     if( mmm < 9 ) ERROR_exit("Automask is too small to process") ;
   } else {
     mask = (byte *)malloc(sizeof(byte)*nxyz) ; masknum = nxyz ;
     memset( mask , 1 , sizeof(byte)*nxyz ) ;
     INFO_message("Using all %d voxels in dataset",nxyz) ;
   }

   nev = MIN(nt,masknum) ;  /* max possible number of eigenvalues */
   if( sval_itop >= nev ){
     sval_itop = nev-1 ;
     WARNING_message("'-sval' reset to '%d'",sval_itop) ;
   }
   mri_principal_vector_params( 0 , do_vnorm , sval_itop ) ;
   mri_principal_setev(nev) ;

   /*-- get data vectors --*/

   ivox = (int *)malloc(sizeof(int)*masknum) ;
   for( kk=ii=0 ; ii < nxyz ; ii++ ) if( mask[ii] ) ivox[kk++] = ii ;
   INFO_message("Extracting data vectors") ;
   imar = THD_extract_many_series( masknum, ivox, inset ) ; DSET_unload(inset) ;
   if( imar == NULL ) ERROR_exit("Can't get data vector?!") ;

   /*-- detrending --*/

   if( polort >= 0 || nyort > 0 || do_bpass ){
     float **polref=NULL ; float *tsar ;
     int nort=IMARR_COUNT(ortar) , nref=0 ;

     if( polort >= 0 ){  /* polynomials */
       nref = polort+1 ; polref = THD_build_polyref(nref,nt) ;
     }

     if( nort > 0 ){     /* other orts */
       float *oar , *par ; int nx,ny , qq,tt ;
       for( kk=0 ; kk < nort ; kk++ ){  /* loop over input -ort files */
         ortim = IMARR_SUBIM(ortar,kk) ;
         nx = ortim->nx ; ny = ortim->ny ;
         if( nx < nt )
           ERROR_exit("-ort '%s' length %d shorter than dataset length %d" ,
                      ortim->name , nx , nt ) ;
         polref = (float **)realloc(polref,(nref+ny)*sizeof(float *)) ;
         oar    = MRI_FLOAT_PTR(ortim) ;
         for( qq=0 ; qq < ny ; qq++,oar+=nx ){
           par = polref[nref+qq] = (float *)malloc(sizeof(float)*nt) ;
           for( tt=0 ; tt < nt ; tt++ ) par[tt] = oar[tt] ;
                if( polort == 0 ) THD_const_detrend (nt,par,NULL) ;
           else if( polort >  0 ) THD_linear_detrend(nt,par,NULL,NULL) ;
         }
         nref += ny ;
       }
       DESTROY_IMARR(ortar) ;
     }

     if( !do_bpass ){            /* old style ort-ification */

       MRI_IMAGE *imq , *imp ; float *qar ;
       INFO_message("Detrending data vectors") ;
#if 1
       imq = mri_new( nt , nref , MRI_float) ; qar = MRI_FLOAT_PTR(imq) ;
       for( kk=0 ; kk < nref ; kk++ )
         memcpy( qar+kk*nt , polref[kk] , sizeof(float)*nt ) ;
       imp = mri_matrix_psinv( imq , NULL , 1.e-8 ) ;
       for( kk=0 ; kk < IMARR_COUNT(imar) ; kk++ ){
         mri_matrix_detrend( IMARR_SUBIM(imar,kk) , imq , imp ) ;
       }
       mri_free(imp) ; mri_free(imq) ;
#else
       for( kk=0 ; kk < IMARR_COUNT(imar) ; kk++ ){
         tsar = MRI_FLOAT_PTR(IMARR_SUBIM(imar,kk)) ;
         THD_generic_detrend_LSQ( nt , tsar , -1 , nref , polref , NULL ) ;
       }
#endif

     } else {                   /* bandpass plus (maybe) orts */

       float **vec = (float **)malloc(sizeof(float *)*IMARR_COUNT(imar)) ;
       INFO_message("Bandpassing data vectors") ;
       for( kk=0 ; kk < IMARR_COUNT(imar) ; kk++ )
         vec[kk] = MRI_FLOAT_PTR(IMARR_SUBIM(imar,kk)) ;
       (void)THD_bandpass_vectors( nt    , IMARR_COUNT(imar) , vec     ,
                                   dtime , bpass_L           , bpass_H ,
                                   2     , nref              , polref   ) ;
       free(vec) ;
     }

     for( kk=0 ; kk < nref; kk++ ) free(polref[kk]) ;
     free(polref) ;
   } /* end of detrendization */

   /*--- the actual work ---*/

   INFO_message("Computing SVD") ;
   pim  = mri_principal_vector( imar ) ; DESTROY_IMARR(imar) ;
   if( pim == NULL ) ERROR_exit("SVD failure!?!") ;
   ev = mri_principal_getev() ;
   switch(sval_itop+1){
     case 1:
       INFO_message("First singular value: %g",ev[0]) ; break ;
     case 2:
       INFO_message("First 2 singular values: %g %g",ev[0],ev[1]) ; break ;
     case 3:
       INFO_message("First 3 singular values: %g %g %g",ev[0],ev[1],ev[2]) ; break ;
     case 4:
       INFO_message("First 4 singular values: %g %g %g %g",ev[0],ev[1],ev[2],ev[3]) ; break ;
     default:
     case 5:
       INFO_message("First 5 singular values: %g %g %g %g %g",ev[0],ev[1],ev[2],ev[3],ev[4]) ; break ;
   }
   mri_write_1D(NULL,pim) ;

   exit(0) ;
}
Example #11
0
MRI_IMARR * THD_time_fit_dataset( THD_3dim_dataset *dset ,
                                  int nref , float **ref , int meth , byte *mask )
{
   int ii , nvox,nval , qq,tt ;
   float *far , *fit , *var , val ;
   MRI_IMARR *imar ; MRI_IMAGE *qim ; float **fitar ;

ENTRY("THD_time_fit_dataset") ;

   if( !ISVALID_DSET(dset) ||
       nref < 1 || nref >= DSET_NVALS(dset) || ref == NULL ) RETURN(NULL) ;
   DSET_load(dset) ; if( !DSET_LOADED(dset) ) RETURN(NULL) ;

   /* construct output images */

   INIT_IMARR(imar) ;
   fitar = (float **)malloc(sizeof(float *)*nref) ;
   for( qq=0 ; qq < nref ; qq++ ){
     qim = mri_new_conforming( DSET_BRICK(dset,0) , MRI_float ) ;
     fitar[qq] = MRI_FLOAT_PTR(qim) ;
     ADDTO_IMARR(imar,qim) ;
   }
   qim = mri_new_conforming( DSET_BRICK(dset,0) , MRI_float ) ;
   var = MRI_FLOAT_PTR(qim) ; ADDTO_IMARR(imar,qim) ;

   nvox = DSET_NVOX(dset) ; nval = DSET_NVALS(dset) ;
   far  = (float *)malloc(sizeof(float)*nval) ;
   fit  = (float *)malloc(sizeof(float)*nref) ;
   for( ii=0 ; ii < nvox ; ii++ ){
     if( !INMASK(ii) ) continue ;
     qq = THD_extract_array( ii , dset , 0 , far ) ;  /* get data */
     if( qq == 0 ){
       switch(meth){                                  /* get fit */
         default:
         case 2: THD_generic_detrend_LSQ( nval, far, -1, nref,ref, fit ); break;
         case 1: THD_generic_detrend_L1 ( nval, far, -1, nref,ref, fit ); break;
       }
       for( qq=0 ; qq < nref ; qq++ ) fitar[qq][ii] = fit[qq] ; /* save fit */

       /* at this point, far[] contains the residuals */

       switch(meth){                    /* get stdev or MAD */
         default:
         case 2:{
           float mm,vv ;
           for( mm=0.0,tt=0 ; tt < nval ; tt++ ) mm += far[tt] ;
           mm /= nval ;
           for( vv=0.0,tt=0 ; tt < nval ; tt++ ) vv += (far[tt]-mm)*(far[tt]-mm) ;
           var[ii] = sqrtf( vv/(nval-1.0) ) ;
         }
         break ;

         case 1:{
           for( tt=0 ; tt < nval ; tt++ ) far[tt] = fabsf(far[tt]) ;
           var[ii] = qmed_float( nval , far ) ;
         }
         break ;
       }
     }
   }

   free(fit); free(far); free(fitar); RETURN(imar);
}
Example #12
0
/*-------------------------------------------------------------------------
 * read data into image array, based on mosaic (fill image and image array)
 * (from mri_read_dicom.c                               22 Dec 2010 [rickr]
 *
 * - fp         : open file pointer                     (input/output)
 * - im         : current image                         (output)
 * - imar       : mosaic image array                    (output)
 * - flip_slices: whether to reverse slice order        (output)
 * - mi         : mosaic info                           (input)
 * - datum      : type for image array                  (input)
 * - bpp        : bytes per pixel                       (input)
 * - kor        : slice direction orientation           (input)
 * - swap       : whether to byte swap data             (input)
 * - dx,y,z     : slice dimensions                      (input)
 * - dt         : TR, if > 0                            (input)
 *
 * return 0 on success
 *        1 on error
 */
int read_mosaic_data( FILE *fp, MRI_IMAGE *im, MRI_IMARR *imar,
   int * flip_slices, Siemens_extra_info *mi, int datum, int bpp, int kor,
   int swap, float dx, float dy, float dz, float dt)
{   /*-- 28 Oct 2002:  is a 2D mosaic --*******************/

   char * dar=NULL, * iar ;
   int    nvox, yy, xx, nxx, ii, jj, slice ;
   int    mos_nx, mos_ny, mos_nz, mos_ix, mos_iy, mosaic_num;
   int    verb = g_dicom_ctrl.verb;  /* typing ease, default level is 1 */

   ENTRY("read_mosaic_data");

   if( !mi->good ) {
      if( verb ) fprintf(stderr,"** apply_z_orient but not mosaic");
      RETURN(1);
   }

   /* determine if slices should be reversed */
   *flip_slices = flip_slices_mosaic(mi, kor);

   /* just to make it a little easier to read */
   mos_nx = mi->mos_nx;   mos_ny = mi->mos_ny;
   mos_ix = mi->mos_ix;   mos_iy = mi->mos_ix; /* always square */
   mos_nz = mos_ix * mos_iy ;   /* number of slices in mosaic */

   if( verb > 1 )
      fprintf(stderr, "-- read_mosaic_data flip_slices %d "
                      "mos_nx,ny,nz = %d,%d,%d  mos_ix = %d\n",
              *flip_slices,mos_nx,mos_ny,mos_nz, mos_ix);

   mosaic_num = mi->mosaic_num;

   nvox = mos_nx*mos_ny*mos_nz ;         /* total number of voxels */

   if( g_dicom_ctrl.read_data ) {
      dar = (char*)calloc(bpp,nvox) ; /* make space for super-image */
      if(dar==NULL)  {  /* exit if can't allocate memory */
         ERROR_message("Could not allocate memory for mosaic volume");
         RETURN(1);
      }

      fread( dar , bpp , nvox , fp ) ;    /* read data directly into it */

      if( swap ){                        /* swap bytes? */
        switch( bpp ){
          default: break ;
          case 2:  swap_twobytes (   nvox, dar ) ; break ;  /* short */
          case 4:  swap_fourbytes(   nvox, dar ) ; break ;  /* int, float */
          case 8:  swap_fourbytes( 2*nvox, dar ) ; break ;  /* complex */
        }
      }
   }

   /* load data from dar into images */
   nxx = mos_nx * mos_ix ;              /* # pixels per mosaic line */

   for (ii=0;ii<mosaic_num;ii++) {
      /* find right slice - may be reading the series of slices backwards */
      if(*flip_slices) slice = mosaic_num - ii -1;
      else slice = ii;
      xx = slice % mos_ix; /* xx,yy are indices for position in mosaic matrix */
      yy = slice / mos_iy;
      /* im = mri_new( mos_nx , mos_ny , datum ) ; */
      im = mri_new_7D_generic(mos_nx,mos_ny, 1,1,1,1,1, datum,
                              g_dicom_ctrl.read_data);
      if( !im ) {
         fprintf(stderr,"** RMD: failed to allocate %d voxel image\n",
                 mos_nx * mos_ny);
         RETURN(1);
      }

      /* if reading data, actually copy data into MRI image */
      if( g_dicom_ctrl.read_data ) {
         iar = mri_data_pointer( im ) ;             /* sub-image array */

         for( jj=0 ; jj < mos_ny ; jj++ )  /* loop over rows inside sub-image */
           memcpy( iar + jj*mos_nx*bpp ,
                   dar + xx*mos_nx*bpp + (jj+yy*mos_ny)*nxx*bpp ,
                   mos_nx*bpp                                    ) ;
       }

       if( dx > 0.0 && dy > 0.0 && dz > 0.0 ){
         im->dx = dx; im->dy = dy; im->dz = dz; im->dw = 1.0;
       }
       if( dt > 0.0 ) im->dt = dt ;
       if( swap ) im->was_swapped = 1 ;

       ADDTO_IMARR(imar,im) ;
   } /* end of ii sub-image loop */

   if( dar )
      free(dar); /* don't need no more; copied all data out of it now */

   /* truncate zero images out of tail of mosaic */
   if( mosaic_num < IMARR_COUNT(imar) )
       TRUNCATE_IMARR(imar,mosaic_num) ;

   if( verb > 1 )
      fprintf(stderr,"\nmri_read_dicom Mosaic: mos_nx=%d mos_ny=%d mos_ix=%d"
                     " mos_iy=%d slices=%d\n",
              mos_nx,mos_ny,mos_ix,mos_iy,IMARR_COUNT(imar)) ;
      /* MCHECK ; */

   RETURN(0);
}
Example #13
0
MRI_IMARR * THD_get_many_timeseries( THD_string_array * dlist )
{
   int id , ii , ndir ;
   MRI_IMARR * outar=NULL, * tmpar=NULL ;
   char * epath , * eee ;
   char   efake[] = "./" ;
   THD_string_array *qlist ; /* 02 Feb 2002 */

ENTRY("THD_get_many_timeseries") ;

   /*----- sanity check and initialize -----*/

                       epath = my_getenv( "AFNI_TSPATH" ) ;
   if( epath == NULL ) epath = my_getenv( "AFNI_TS_PATH" ) ; /* 07 Oct 1996 */
   if( epath == NULL ) epath = efake ;                      /* 07 Oct 1996 */

   ndir = (dlist != NULL) ? dlist->num : 0 ;

   if( ndir == 0 && epath == NULL ) RETURN( outar ) ;

   INIT_IMARR( outar ) ;
   INIT_SARR( qlist ) ;

   /*----- for each input directory, find all *.1D files -----*/

   for( id=0 ; id < ndir ; id++ ){

      ADDTO_SARR(qlist,dlist->ar[id]) ;

      tmpar = THD_get_all_timeseries( dlist->ar[id] ) ;
      if( tmpar == NULL ) continue ;

      for( ii=0 ; ii < tmpar->num ; ii++ )  /* move images to output array */
         ADDTO_IMARR( outar , tmpar->imarr[ii] ) ;

      FREE_IMARR(tmpar) ;  /* don't need this no more */
   }

   /*----- also do directories in environment path, if any -----*/

   if( epath != NULL ){
      int epos =0 , ll = strlen(epath) ;
      char * elocal ;
      char ename[THD_MAX_NAME] ;

      /* copy path list into local memory */

      elocal = (char *) malloc( sizeof(char) * (ll+2) ) ;
      if( elocal == NULL ){
         fprintf(stderr,
                "\n*** THD_get_many_timeseries malloc failure - is memory full? ***\n");
         EXIT(1) ;
      }
      strcpy( elocal , epath ) ; elocal[ll] = ' ' ; elocal[ll+1] = '\0' ;

      /* replace colons with blanks */

      for( ii=0 ; ii < ll ; ii++ )
         if( elocal[ii] == ':' ) elocal[ii] = ' ' ;

      /* extract blank delimited strings,
         use as directory names to get timeseries files */

      do{
         ii = sscanf( elocal+epos , "%s%n" , ename , &id ) ;
         if( ii < 1 ) break ;  /* no read --> end of work */
         epos += id ;          /* epos = char after last one scanned */

         ii = strlen(ename) ;                         /* make sure name has */
         if( ename[ii-1] != '/' ){                    /* a trailing '/' on it */
            ename[ii]  = '/' ; ename[ii+1] = '\0' ;
         }

         if( !THD_is_directory(ename) ) continue ;  /* 21 May 2002 - rcr */

         /* 02 Feb 2002: check if scanned this directory before */

         for( ii=0 ; ii < qlist->num ; ii++ )
            if( THD_equiv_files(qlist->ar[ii],ename) ) break ;
         if( ii < qlist->num ) continue ;  /* skip to end of do loop */
         ADDTO_SARR(qlist,ename) ;

         tmpar = THD_get_all_timeseries( ename ) ; /* read this directory */
         if( tmpar != NULL ){
            for( ii=0 ; ii < tmpar->num ; ii++ )   /* move images to output array */
               ADDTO_IMARR( outar , tmpar->imarr[ii] ) ;

            FREE_IMARR(tmpar) ;                    /* don't need this no more */
         }
      } while( epos < ll ) ;  /* scan until 'epos' is after end of epath */

      free(elocal) ;
   }

   if( IMARR_COUNT(outar) == 0 ) DESTROY_IMARR(outar) ;

   DESTROY_SARR(qlist) ;
   RETURN( outar ) ;
}
Example #14
0
float * mri_lsqfit( MRI_IMAGE * fitim , MRI_IMARR * refim , MRI_IMAGE * wtim )
{
   float *fit = NULL ;                 /* will be the output */
   MRI_IMAGE *ffitim , *tim , *wim ;   /* local versions of inputs */
   MRI_IMARR *frefim ;

   int ii , jj , npix,nref ;
   float **refar , *fitar , *war ;

ENTRY("mri_lsqfit") ;

   /****---- check inputs, convert to float type if needed ----****/

   if( fitim == NULL ){
     ERROR_message("mri_lsqfit has NULL fitim"); RETURN(NULL);
   }

   if( fitim->kind == MRI_float ) ffitim = fitim ;
   else                           ffitim = mri_to_float( fitim ) ;
   npix  = ffitim->nvox ;
   fitar = mri_data_pointer(ffitim) ;

   if( wtim == NULL ){
      wim = NULL ;
      war = NULL ;
   } else if( wtim->kind == MRI_float ){
      wim = wtim ;
      war = mri_data_pointer( wim ) ;
      if( wim->nvox != npix ){
         ERROR_message("mri_lsqfit: MISMATCH wtim->nvox=%d npix=%d",
                       wtim->nvox , npix );
         RETURN(NULL);
      }
   } else {
      wim = mri_to_float( wtim ) ;
      war = mri_data_pointer( wim ) ;
      if( wim->nvox != npix ){
         ERROR_message("mri_lsqfit: MISMATCH wtim->nvox=%d npix=%d",
                       wtim->nvox , npix );
         RETURN(NULL);
      }
   }

   if( refim == NULL || refim->num < 1 ){
      ERROR_message("mri_lsqfit: NULL refim"); RETURN(NULL);
   }

   nref = refim->num ;

   INIT_IMARR(frefim) ;
   refar = (float **) malloc( sizeof(float *) * nref ) ;
   if( refar == NULL ){
     fprintf(stderr,"** mri_lsqfit: malloc failure for refar"); RETURN(NULL);
   }

   for( ii=0 ; ii < nref ; ii++ ){
      if( refim->imarr[ii] == NULL ){
         ERROR_message("mri_lsqfit: NULL refim[%d]!",ii); RETURN(NULL);
      }
      if( refim->imarr[ii]->nvox != npix ){
         ERROR_message("mri_lsqfit: MISMATCH refim[%d]!",ii); RETURN(NULL);
      }
      if( refim->imarr[ii]->kind == MRI_float ) tim = refim->imarr[ii] ;
      else                                      tim = mri_to_float(refim->imarr[ii]) ;
      ADDTO_IMARR(frefim,tim) ;
      refar[ii] = mri_data_pointer(tim) ;
   }

   /****---- get coefficients ----****/

   fit = lsqfit( npix , fitar , war , nref , refar ) ;

   /****---- clean up and exit ----****/

   if( ffitim != fitim ) mri_free( ffitim ) ;
   if( wim != NULL && wim != wtim ) mri_free( wim ) ;
   for( ii=0 ; ii < nref ; ii++ ){
      if( frefim->imarr[ii] != refim->imarr[ii] ) mri_free( frefim->imarr[ii] ) ;
   }
   FREE_IMARR(frefim) ;
   free(refar) ;

   RETURN(fit) ;
}
Example #15
0
/*-------------------------------------------------------*/
MRI_IMARR * dset_to_mri(THD_3dim_dataset * dset)
/*--------------------------------------------------------*/
{

   int ii, kk, ntime, datum;
   int nvox, nx, ny, nz;
   int use_fac;
   
   MRI_IMARR * ims_in;
   MRI_IMAGE * im, *temp_im;
   

   byte   ** bptr  = NULL ;  /* one of these will be the array of */
   short  ** sptr  = NULL ;  /* pointers to input dataset sub-bricks */
   float  ** fptr  = NULL ;  /* (depending on input datum type) */
   
   float * fac  = NULL ;  /* array of brick scaling factors */
   
   float * fout;
   

   ntime = DSET_NUM_TIMES(dset) ;
   nx = dset->daxes->nxx;
   ny = dset->daxes->nyy;
   nz = dset->daxes->nzz;
   nvox = dset->daxes->nxx * dset->daxes->nyy * dset->daxes->nzz ;
   datum = DSET_BRICK_TYPE( dset , 0 ) ; /* get dataset datum type */

   switch( datum ){  /* pointer type depends on input datum type */

      default:
         return NULL  ;

      /** create array of pointers into old dataset sub-bricks **/

      /*--------- input is bytes ----------*/
      /* voxel #i at time #k is bptr[k][i] */
      /* for i=0..nvox-1 and k=0..ntime-1.  */

      case MRI_byte:
         bptr = (byte **) malloc( sizeof(byte *) * ntime ) ;
         if( bptr == NULL ) return NULL ;
         for( kk=0 ; kk < ntime ; kk++ )
            bptr[kk] = (byte *) DSET_ARRAY(dset,kk) ;
      break ;

      /*--------- input is shorts ---------*/
      /* voxel #i at time #k is sptr[k][i] */
      /* for i=0..nvox-1 and k=0..ntime-1.  */

      case MRI_short:
         sptr = (short **) malloc( sizeof(short *) * ntime ) ;
         if( sptr == NULL ) return NULL ;
         for( kk=0 ; kk < ntime; kk++ )
            sptr[kk] = (short *) DSET_ARRAY(dset,kk) ;
      break ;

      /*--------- input is floats ---------*/
      /* voxel #i at time #k is fptr[k][i] */
      /* for i=0..nvox-1 and k=0..ntime-1.  */

      case MRI_float:
         fptr = (float **) malloc( sizeof(float *) * ntime) ;
         if( fptr == NULL ) return NULL ;
         for( kk=0 ; kk < ntime; kk++ )
            fptr[kk] = (float *) DSET_ARRAY(dset,kk) ;
      break ;

   } /* end of switch on input type */
   
   INIT_IMARR(ims_in) ;
   for( kk=0 ; kk < ntime ; kk++ ){
      im = mri_new_vol_empty( nx , ny , nz , datum ) ;
      ADDTO_IMARR(ims_in,im) ;
   }
   
   for( kk=0 ; kk < ntime ; kk++ ){
      im = IMARR_SUBIMAGE(ims_in,kk) ;
      
      switch( datum ){
         case MRI_byte:  mri_fix_data_pointer( bptr[kk], im ) ; break ;
         case MRI_short: mri_fix_data_pointer( sptr[kk], im ) ; break ;
         case MRI_float: mri_fix_data_pointer( fptr[kk], im ) ; break ;
      }
   }


   
   return(ims_in);
}
Example #16
0
int main( int argc , char *argv[] )
{
   int iarg , ii,jj,kk,mm , nvec , nx=0,ny , ff , vlen=4 ;
   MRI_IMAGE *tim , *vsim=NULL ;
   MRI_IMARR *tar ;
   char **vecnam , *tnam ;
   float *far , **tvec , *vsig=NULL , xsig,ysig ;
   float_quad qcor ; float_pair pci ; float corst, cor025, cor500, cor975 ;
   char fmt[256] ;
   int cormeth=0 ;    /* 0=Pearson, 1=Spearman, 2=Quadrant, 3=Kendall tau_b */
   float (*corfun)(int,float *,float *) ;

   /*-- start the AFNI machinery --*/

   mainENTRY("1dCorrelate main") ; machdep() ;

   /* check for options */

   iarg = 1 ; nvec = 0 ;
   while( iarg < argc && argv[iarg][0] == '-' ){
      /* I get by with a little help from my friends? */

      if( strcmp(argv[iarg],"-help") == 0 || strcmp(argv[iarg],"-h") == 0){
         usage_1dCorrelate(strlen(argv[iarg])>3 ? 2:1);
         exit(0) ;
      }

     /*--- methods ---*/

     if( toupper(argv[iarg][1]) == 'P' ){ cormeth = 0 ; iarg++ ; continue ; }
     if( toupper(argv[iarg][1]) == 'S' ){ cormeth = 1 ; iarg++ ; continue ; }
     if( toupper(argv[iarg][1]) == 'Q' ){ cormeth = 2 ; iarg++ ; continue ; }
     if( toupper(argv[iarg][1]) == 'K' ){ cormeth = 3 ; iarg++ ; continue ; }
     if( toupper(argv[iarg][1]) == 'T' ){ cormeth = 4 ; iarg++ ; continue ; }
     if( toupper(argv[iarg][1]) == 'U' ){ cormeth = 5 ; iarg++ ; continue ; }

     /*--- set nboot ---*/

     if( strcasecmp(argv[iarg],"-nboot") == 0 || strcasecmp(argv[iarg],"-num") == 0 ){
       iarg++ ; if( iarg >= argc ) ERROR_exit("Need argument after '-nboot'") ;
       nboot = (int)strtod(argv[iarg],NULL) ;
       if( nboot < NBMIN ){
         WARNING_message("Replacing -nboot %d with %d",nboot,NBMIN) ;
         nboot = NBMIN ;
       }
       iarg++ ; continue ;
     }

     /*--- set alpha ---*/

     if( strcasecmp(argv[iarg],"-alpha") == 0 ){
       iarg++ ; if( iarg >= argc ) ERROR_exit("Need argument after '-alpha'") ;
       alpha = (float)strtod(argv[iarg],NULL) ;
       if( alpha < 1.0f ){
         WARNING_message("Replacing -alpha %.1f with 1",alpha) ;
         alpha = 0.01f ;
       } else if( alpha > 20.0f ){
         WARNING_message("Replacing -alpha %.1f with 20",alpha) ;
         alpha = 0.20f ;
       } else {
         alpha *= 0.01f ;  /* convert from percent to fraction */
       }
       iarg++ ; continue ;
     }

     /*--- block resampling ---*/

     if( strcasecmp(argv[iarg],"-blk") == 0 || strcasecmp(argv[iarg],"-block") == 0 ){
       doblk = 1 ; iarg++ ; continue ;
     }

     if( strcasecmp(argv[iarg],"-vsig") == 0 ){
       if( vsim != NULL ) ERROR_exit("Can't use -vsig twice!") ;
       if( ++iarg >= argc ) ERROR_exit("Need argument after -vsig") ;
       vsim = mri_read_1D(argv[iarg]) ;
       if( vsim == NULL ) ERROR_exit("Can't read -vsig file '%s'",argv[iarg]) ;
       iarg++ ; continue ;
     }

     /*--- user should be flogged ---*/

     ERROR_message("Monstrously illegal option '%s'",argv[iarg]) ;
     suggest_best_prog_option(argv[0], argv[iarg]);
     exit(1);
   }

   /*--- user should be flogged twice ---*/

   if( argc < 2 ){
     usage_1dCorrelate(1) ; exit(0) ; 
   }

   if( iarg == argc )
     ERROR_exit("No 1D files on command line!?\n") ;

   /* the function to compute the correlation */

   corfun = cor_func[cormeth] ;

   /* check and assemble list of input 1D files */

   ff = iarg ;
   INIT_IMARR(tar) ;
   for( ; iarg < argc ; iarg++ ){
     tim = mri_read_1D( argv[iarg] ) ;
     if( tim == NULL ) ERROR_exit("Can't read 1D file '%s'",argv[iarg]) ;
     if( nx == 0 ){
       nx = tim->nx ;
       if( nx < 3 )
         ERROR_exit("1D file '%.77s' length=%d is less than 3",argv[iarg],nx) ;
       else if( nx < 7 )
         WARNING_message("1D file '%.77s' length=%d is less than 7",argv[iarg],nx) ;
     } else if( tim->nx != nx ){
       ERROR_exit("Length of 1D file '%.77s' [%d] doesn't match first file [%d]",
                   argv[iarg] , tim->nx , nx );
     }
     nvec += tim->ny ;
     ADDTO_IMARR(tar,tim) ;
   }

   /* user is really an idiot -- flogging's too good for him */

   if( nvec < 2 ) ERROR_exit("Must have at least 2 input columns!") ;

   if( nx < 20 && doblk ){
     doblk = 0 ;
     WARNING_message("Column length %d < 20 ==> cannot use block resampling",nx) ;
   }

   if( vsim != NULL ){
     if( vsim->nvox < nvec )
       ERROR_exit("-vsig file only has %d entries, but needs at least %d",vsim->nvox,nvec) ;
     vsig = MRI_FLOAT_PTR(vsim) ;
   }

   /* create vectors from 1D files */

   tvec = (float **)malloc( sizeof(float *)*nvec ) ;
   vecnam = (char **)malloc( sizeof(char *)*nvec ) ;
   for( jj=0 ; jj < nvec ; jj++ ){
     tvec[jj] = (float *)malloc( sizeof(float)*nx ) ;
     vecnam[jj] = (char *)malloc(sizeof(char)*THD_MAX_NAME) ;
   }

   /* copy data into new space, create output labels, check for stoopiditees */

   for( kk=mm=0 ; mm < IMARR_COUNT(tar) ; mm++ ){
     tim = IMARR_SUBIM(tar,mm) ;
     far = MRI_FLOAT_PTR(tim) ;
     tnam = tim->name ; if( tnam == NULL ) tnam = "File" ;
     for( jj=0 ; jj < tim->ny ; jj++,kk++ ){
       for( ii=0 ; ii < nx ; ii++ ) tvec[kk][ii] = far[ii+jj*nx] ;
       sprintf(vecnam[kk],"%s[%d]",THD_trailname(tnam,0),jj) ; /* vector name */
       iarg = strlen(vecnam[kk]) ; vlen = MAX(vlen,iarg) ;
       if( THD_is_constant(nx,tvec[kk]) )
         ERROR_exit("Column %s is constant!",vecnam[kk]) ;
     }
   }
   DESTROY_IMARR(tar) ;

   /*--- Print a beeyootiful header ---*/

   printf("# %s correlation [n=%d #col=%d]\n",cor_name[cormeth],nx,nvec) ;
   sprintf(fmt,"# %%-%ds  %%-%ds",vlen,vlen) ;
   printf(fmt,"Name","Name") ;
   printf("   Value   BiasCorr  %5.2f%%   %5.2f%%",50.0f*alpha,100.0f-50.0f*alpha) ;
   if( cormeth == 0 )  /* Pearson */
     printf("  N:%5.2f%% N:%5.2f%%",50.0f*alpha,100.0f-50.0f*alpha) ;
   printf("\n") ;
   printf("# ") ;
   for( ii=0 ; ii < vlen ; ii++ ) printf("-") ;
   printf("  ") ;
   for( ii=0 ; ii < vlen ; ii++ ) printf("-") ;
   printf(" ") ;
   printf(" --------") ;
   printf(" --------") ;
   printf(" --------") ;
   printf(" --------") ;
   if( cormeth == 0 ){ printf(" --------") ; printf(" --------") ; }
   printf("\n") ;
   if( cormeth != 0 )  /* non-Pearson */
     sprintf(fmt,"  %%-%ds  %%-%ds  %%+8.5f %%+8.5f %%+8.5f %%+8.5f\n",vlen,vlen) ;
   else                /* Pearson */
     sprintf(fmt,"  %%-%ds  %%-%ds  %%+8.5f %%+8.5f %%+8.5f %%+8.5f %%+8.5f %%+8.5f\n",vlen,vlen) ;

   /*--- Do some actual work for a suprising change ---*/

   for( jj=0 ; jj < nvec ; jj++ ){       /* loops over column pairs */
     for( kk=jj+1 ; kk < nvec ; kk++ ){

       if( vsig != NULL ){ xsig = vsig[jj]; ysig = vsig[kk]; } else { xsig = ysig = 0.0f; }

       qcor = Corrboot( nx, tvec[jj], tvec[kk], xsig, ysig, corfun ) ;  /* outsourced */

       corst = qcor.a ; cor025 = qcor.b ; cor500 = qcor.c ; cor975 = qcor.d ;

       if( cormeth == 0 ){                      /* Pearson */
         pci = PCorrCI( nx , corst , alpha ) ;
         printf(fmt, vecnam[jj], vecnam[kk], corst, cor500, cor025, cor975, pci.a,pci.b ) ;
       } else {                                 /* all other methods */
         printf(fmt, vecnam[jj], vecnam[kk], corst, cor500, cor025, cor975 ) ;
       }

     }
   }

   /* Finished -- go back to watching Star Trek reruns -- Tribbles ahoy, Cap'n! */

   exit(0) ;
}
Example #17
0
char * IMREG_main( PLUGIN_interface * plint )
{
    MCW_idcode * idc ;                          /* input dataset idcode */
    THD_3dim_dataset * old_dset , * new_dset ;  /* input and output datasets */
    char * new_prefix , * str ;                 /* strings from user */
    int base , ntime , datum , nx,ny,nz , ii,kk , npix ;
    float                      dx,dy,dz ;
    MRI_IMARR * ims_in , * ims_out ;
    MRI_IMAGE * im , * imbase ;

    byte   ** bptr = NULL , ** bout = NULL ;
    short  ** sptr = NULL , ** sout = NULL ;
    float  ** fptr = NULL , ** fout = NULL ;

    float * dxar = NULL , * dyar = NULL , * phiar = NULL ;

    /*--------------------------------------------------------------------*/
    /*----- Check inputs from AFNI to see if they are reasonable-ish -----*/

    /*--------- go to first input line ---------*/

    PLUTO_next_option(plint) ;

    idc      = PLUTO_get_idcode(plint) ;   /* get dataset item */
    old_dset = PLUTO_find_dset(idc) ;      /* get ptr to dataset */
    if( old_dset == NULL )
        return "*************************\n"
               "Cannot find Input Dataset\n"
               "*************************"  ;

    ntime = DSET_NUM_TIMES(old_dset) ;
    if( ntime < 2 )
        return "*****************************\n"
               "Dataset has only 1 time point\n"
               "*****************************"  ;

    ii = DSET_NVALS_PER_TIME(old_dset) ;
    if( ii > 1 )
        return "************************************\n"
               "Dataset has > 1 value per time point\n"
               "************************************"  ;

    nx = old_dset->daxes->nxx ;
    dx = old_dset->daxes->xxdel ;
    ny = old_dset->daxes->nyy ;
    dy = old_dset->daxes->yydel ;
    npix = nx*ny ;
    nz = old_dset->daxes->nzz ;
    dz = old_dset->daxes->zzdel ;

    if( nx != ny || fabs(dx) != fabs(dy) ) {

#ifdef IMREG_DEBUG
        fprintf(stderr,"\nIMREG: nx=%d ny=%d nz=%d  dx=%f dy=%f dz=%f\n",
                nx,ny,nz,dx,dy,dz ) ;
#endif

        return "***********************************\n"
               "Dataset does not have square slices\n"
               "***********************************"  ;
    }

    new_prefix = PLUTO_get_string(plint) ;   /* get string item (the output prefix) */
    if( ! PLUTO_prefix_ok(new_prefix) )      /* check if it is OK */
        return "************************\n"
               "Output Prefix is illegal\n"
               "************************"  ;

    /*--------- go to next input line ---------*/

    PLUTO_next_option(plint) ;

    base = PLUTO_get_number(plint) ;
    if( base >= ntime )
        return "********************\n"
               "Base value too large\n"
               "********************"  ;

    /*--------- see if the 3rd option line is present --------*/

    str = PLUTO_get_optiontag( plint ) ;
    if( str != NULL ) {
        float fsig , fdxy , fdph ;
        fsig = PLUTO_get_number(plint) * 0.42466090 ;
        fdxy = PLUTO_get_number(plint) ;
        fdph = PLUTO_get_number(plint) ;
        mri_align_params( 0 , 0.0,0.0,0.0 , fsig,fdxy,fdph ) ;
        /* fprintf(stderr,"Set fine params = %f %f %f\n",fsig,fdxy,fdph) ; */
    }

    /*------------- ready to compute new dataset -----------*/

#ifdef IMREG_DEBUG
    fprintf(stderr,"IMREG: loading dataset\n") ;
#endif

    DSET_load( old_dset ) ;

    /*** 1) Copy the dataset in toto ***/

#ifdef IMREG_DEBUG
    fprintf(stderr,"IMREG: Copying dataset\n") ;
#endif

    new_dset = PLUTO_copy_dset( old_dset , new_prefix ) ;
    if( new_dset == NULL )
        return "****************************\n"
               "Failed to copy input dataset\n"
               "****************************"  ;

    /*** 2) Make an array of empty images ***/

#ifdef IMREG_DEBUG
    fprintf(stderr,"IMREG: making empty images\n") ;
#endif

    datum = DSET_BRICK_TYPE(new_dset,0) ;

    INIT_IMARR(ims_in) ;
    for( ii=0 ; ii < ntime ; ii++ ) {
        im = mri_new_vol_empty( nx , ny , 1 , datum ) ;
        ADDTO_IMARR(ims_in,im) ;
    }

    imbase = mri_new_vol_empty( nx , ny , 1 , datum ) ;

    dxar  = (float *) malloc( sizeof(float) * ntime ) ;
    dyar  = (float *) malloc( sizeof(float) * ntime ) ;
    phiar = (float *) malloc( sizeof(float) * ntime ) ;

    /*** 3) Get pointers to sub-bricks in old and new datasets ***/

#ifdef IMREG_DEBUG
    fprintf(stderr,"IMREG: getting input brick pointers\n") ;
#endif

    switch( datum ) { /* pointer type depends on input datum type */
    case MRI_byte:
        bptr = (byte **) malloc( sizeof(byte *) * ntime ) ;
        bout = (byte **) malloc( sizeof(byte *) * ntime ) ;
        for( ii=0 ; ii < ntime ; ii++ ) {
            bptr[ii] = (byte *) DSET_ARRAY(old_dset,ii) ;
            bout[ii] = (byte *) DSET_ARRAY(new_dset,ii) ;
        }
        break ;

    case MRI_short:
        sptr = (short **) malloc( sizeof(short *) * ntime ) ;
        sout = (short **) malloc( sizeof(short *) * ntime ) ;
        for( ii=0 ; ii < ntime ; ii++ ) {
            sptr[ii] = (short *) DSET_ARRAY(old_dset,ii) ;
            sout[ii] = (short *) DSET_ARRAY(new_dset,ii) ;
        }

#ifdef IMREG_DEBUG
        fprintf(stderr,"IMREG: sptr[0] = %p  sout[0] = %p\n",sptr[0],sout[0]) ;
#endif

        break ;

    case MRI_float:
        fptr = (float **) malloc( sizeof(float *) * ntime ) ;
        fout = (float **) malloc( sizeof(float *) * ntime ) ;
        for( ii=0 ; ii < ntime ; ii++ ) {
            fptr[ii] = (float *) DSET_ARRAY(old_dset,ii) ;
            fout[ii] = (float *) DSET_ARRAY(new_dset,ii) ;
        }
        break ;
    }

    /*** 4) Loop over slices ***/

    PLUTO_popup_meter(plint) ;

    for( kk=0 ; kk < nz ; kk++ ) {

        /*** 4a) Setup ims_in images to point to input slices ***/

#ifdef IMREG_DEBUG
        fprintf(stderr,"IMREG: slice %d -- setup input images\n",kk) ;
#endif

        for( ii=0 ; ii < ntime ; ii++ ) {
            im = IMARR_SUBIMAGE(ims_in,ii) ;
            switch( datum ) {
            case MRI_byte:
                mri_fix_data_pointer( bptr[ii] + kk*npix, im ) ;
                break ;
            case MRI_short:
                mri_fix_data_pointer( sptr[ii] + kk*npix, im ) ;
                break ;
            case MRI_float:
                mri_fix_data_pointer( fptr[ii] + kk*npix, im ) ;
                break ;
            }
        }

        /*** 4b) Setup im to point to base image ***/

#ifdef IMREG_DEBUG
        fprintf(stderr,"IMREG: slice %d -- setup base image\n",kk) ;
#endif

        switch( datum ) {
        case MRI_byte:
            mri_fix_data_pointer( bptr[base] + kk*npix, imbase ) ;
            break ;
        case MRI_short:
            mri_fix_data_pointer( sptr[base] + kk*npix, imbase ) ;
            break ;
        case MRI_float:
            mri_fix_data_pointer( fptr[base] + kk*npix, imbase ) ;
            break ;
        }

        /*** 4c) Register this slice at all times ***/

#ifdef IMREG_DEBUG
        fprintf(stderr,"IMREG: slice %d -- register\n",kk) ;
#endif

        ims_out = mri_align_dfspace( imbase , NULL , ims_in ,
                                     ALIGN_REGISTER_CODE , dxar,dyar,phiar ) ;

        if( ims_out == NULL )
            fprintf(stderr,"IMREG: mri_align_dfspace return NULL\n") ;

        /*** 4d) Put the output back in on top of the input;
                 note that the output is always in MRI_float format ***/

#ifdef IMREG_DEBUG
        fprintf(stderr,"IMREG: slice %d -- put output back into dataset\n",kk) ;
#endif

        for( ii=0 ; ii < ntime ; ii++ ) {
            switch( datum ) {
            case MRI_byte:
                im = mri_to_mri( MRI_byte , IMARR_SUBIMAGE(ims_out,ii) ) ;
                memcpy( bout[ii] + kk*npix , MRI_BYTE_PTR(im) , sizeof(byte)*npix ) ;
                mri_free(im) ;
                break ;

            case MRI_short:
#ifdef IMREG_DEBUG
                if( ii==0 )fprintf(stderr,"IMREG: conversion to short at ii=%d\n",ii) ;
#endif

                im = mri_to_mri( MRI_short , IMARR_SUBIMAGE(ims_out,ii) ) ;

#ifdef IMREG_DEBUG
                if( ii==0 )fprintf(stderr,"IMREG: copying to %p from %p\n",sout[ii] + kk*npix,MRI_SHORT_PTR(im)) ;
#endif

                memcpy( sout[ii] + kk*npix , MRI_SHORT_PTR(im) , sizeof(short)*npix ) ;

#ifdef IMREG_DEBUG
                if( ii==0 )fprintf(stderr,"IMREG: freeing\n") ;
#endif

                mri_free(im) ;
                break ;

            case MRI_float:
                im = IMARR_SUBIMAGE(ims_out,ii) ;
                memcpy( fout[ii] + kk*npix , MRI_FLOAT_PTR(im) , sizeof(float)*npix ) ;
                break ;
            }
        }

        PLUTO_set_meter(plint, (100*(kk+1))/nz ) ;

        /*** 4e) Destroy the output images ***/

#ifdef IMREG_DEBUG
        fprintf(stderr,"IMREG: destroying aligned output\n") ;
#endif

        DESTROY_IMARR( ims_out ) ;
    }

    /*** 5) Destroy the empty images and other workspaces ***/

#ifdef IMREG_DEBUG
    fprintf(stderr,"IMREG: destroy workspaces\n") ;
#endif

    mri_clear_data_pointer(imbase) ;
    mri_free(imbase) ;
    for( ii=0 ; ii < ntime ; ii++ ) {
        im = IMARR_SUBIMAGE(ims_in,ii) ;
        mri_clear_data_pointer(im) ;
    }
    DESTROY_IMARR(ims_in) ;
    FREE_WORKSPACE ;

    /*------------- let AFNI know about the new dataset ------------*/

#ifdef IMREG_DEBUG
    fprintf(stderr,"IMREG: send result to AFNI\n") ;
#endif

    PLUTO_add_dset( plint , new_dset , DSET_ACTION_MAKE_CURRENT ) ;

    return NULL ;  /* null string returned means all was OK */
}
Example #18
0
int main( int argc , char * argv[] )
{
   int do_norm=0 , qdet=2 , have_freq=0 , do_automask=0 ;
   float dt=0.0f , fbot=0.0f,ftop=999999.9f , blur=0.0f ;
   MRI_IMARR *ortar=NULL ; MRI_IMAGE *ortim=NULL ;
   THD_3dim_dataset **ortset=NULL ; int nortset=0 ;
   THD_3dim_dataset *inset=NULL , *outset ;
   char *prefix="bandpass" ;
   byte *mask=NULL ;
   int mask_nx=0,mask_ny=0,mask_nz=0,nmask , verb=1 , 
       nx,ny,nz,nvox , nfft=0 , kk ;
   float **vec , **ort=NULL ; int nort=0 , vv , nopt , ntime  ;
   MRI_vectim *mrv ;
   float pvrad=0.0f ; int nosat=0 ;
   int do_despike=0 ;

   /*-- help? --*/

   AFNI_SETUP_OMP(0) ;  /* 24 Jun 2013 */

   if( argc < 2 || strcmp(argv[1],"-help") == 0 ){
     printf(
       "\n"
       "** NOTA BENE:  For the purpose of preparing resting-state FMRI datasets **\n"
       "** for analysis (e.g., with 3dGroupInCorr),  this program is now mostly **\n"
       "** superseded by the afni_proc.py script.  See the 'afni_proc.py -help' **\n"
       "** section 'Resting state analysis (modern)' to get our current rs-FMRI **\n"
       "** pre-processing recommended sequence of steps. -- RW Cox, et alii.    **\n"
       "\n"
       "Usage: 3dBandpass [options] fbot ftop dataset\n"
       "\n"
       "* One function of this program is to prepare datasets for input\n"
       "   to 3dSetupGroupInCorr.  Other uses are left to your imagination.\n"
       "\n"
       "* 'dataset' is a 3D+time sequence of volumes\n"
       "   ++ This must be a single imaging run -- that is, no discontinuities\n"
       "       in time from 3dTcat-ing multiple datasets together.\n"
       "\n"
       "* fbot = lowest frequency in the passband, in Hz\n"
       "   ++ fbot can be 0 if you want to do a lowpass filter only;\n"
       "       HOWEVER, the mean and Nyquist freq are always removed.\n"
       "\n"
       "* ftop = highest frequency in the passband (must be > fbot)\n"
       "   ++ if ftop > Nyquist freq, then it's a highpass filter only.\n"
       "\n"
       "* Set fbot=0 and ftop=99999 to do an 'allpass' filter.\n"
       "  ++ Except for removal of the 0 and Nyquist frequencies, that is.\n"
       "\n"
       "* You cannot construct a 'notch' filter with this program!\n"
       "  ++ You could use 3dBandpass followed by 3dcalc to get the same effect.\n"
       "  ++ If you are understand what you are doing, that is.\n"
       "  ++ Of course, that is the AFNI way -- if you don't want to\n"
       "     understand what you are doing, use Some other PrograM, and\n"
       "     you can still get Fine StatisticaL maps.\n"
       "\n"
       "* 3dBandpass will fail if fbot and ftop are too close for comfort.\n"
       "  ++ Which means closer than one frequency grid step df,\n"
       "     where df = 1 / (nfft * dt) [of course]\n"
       "\n"
       "* The actual FFT length used will be printed, and may be larger\n"
       "   than the input time series length for the sake of efficiency.\n"
       "  ++ The program will use a power-of-2, possibly multiplied by\n"
       "     a power of 3 and/or 5 (up to and including the 3rd power of\n"
       "     each of these: 3, 9, 27, and 5, 25, 125).\n"
       "\n"
       "* Note that the results of combining 3dDetrend and 3dBandpass will\n"
       "   depend on the order in which you run these programs.  That's why\n"
       "   3dBandpass has the '-ort' and '-dsort' options, so that the\n"
       "   time series filtering can be done properly, in one place.\n"
       "\n"
       "* The output dataset is stored in float format.\n"
       "\n"
       "* The order of processing steps is the following (most are optional):\n"
       " (0) Check time series for initial transients [does not alter data]\n"
       " (1) Despiking of each time series\n"
       " (2) Removal of a constant+linear+quadratic trend in each time series\n"
       " (3) Bandpass of data time series\n"
       " (4) Bandpass of -ort time series, then detrending of data\n"
       "      with respect to the -ort time series\n"
       " (5) Bandpass and de-orting of the -dsort dataset,\n"
       "      then detrending of the data with respect to -dsort\n"
       " (6) Blurring inside the mask [might be slow]\n"
       " (7) Local PV calculation     [WILL be slow!]\n"
       " (8) L2 normalization         [will be fast.]\n"
       "\n"
       "--------\n"
       "OPTIONS:\n"
       "--------\n"
       " -despike        = Despike each time series before other processing.\n"
       "                   ++ Hopefully, you don't actually need to do this,\n"
       "                      which is why it is optional.\n"
       " -ort f.1D       = Also orthogonalize input to columns in f.1D\n"
       "                   ++ Multiple '-ort' options are allowed.\n"
       " -dsort fset     = Orthogonalize each voxel to the corresponding\n"
       "                    voxel time series in dataset 'fset', which must\n"
       "                    have the same spatial and temporal grid structure\n"
       "                    as the main input dataset.\n"
       "                   ++ At present, only one '-dsort' option is allowed.\n"
       " -nodetrend      = Skip the quadratic detrending of the input that\n"
       "                    occurs before the FFT-based bandpassing.\n"
       "                   ++ You would only want to do this if the dataset\n"
       "                      had been detrended already in some other program.\n"
       " -dt dd          = set time step to 'dd' sec [default=from dataset header]\n"
       " -nfft N         = set the FFT length to 'N' [must be a legal value]\n"
       " -norm           = Make all output time series have L2 norm = 1\n"
       "                   ++ i.e., sum of squares = 1\n"
       " -mask mset      = Mask dataset\n"
       " -automask       = Create a mask from the input dataset\n"
       " -blur fff       = Blur (inside the mask only) with a filter\n"
       "                    width (FWHM) of 'fff' millimeters.\n"
       " -localPV rrr    = Replace each vector by the local Principal Vector\n"
       "                    (AKA first singular vector) from a neighborhood\n"
       "                    of radius 'rrr' millimiters.\n"
       "                   ++ Note that the PV time series is L2 normalized.\n"
       "                   ++ This option is mostly for Bob Cox to have fun with.\n"
       "\n"
       " -input dataset  = Alternative way to specify input dataset.\n"
       " -band fbot ftop = Alternative way to specify passband frequencies.\n"
       "\n"
       " -prefix ppp     = Set prefix name of output dataset.\n"
       " -quiet          = Turn off the fun and informative messages. (Why?)\n"
       "\n"
       " -notrans        = Don't check for initial positive transients in the data:\n"
       "  *OR*             ++ The test is a little slow, so skipping it is OK,\n"
       " -nosat               if you KNOW the data time series are transient-free.\n"
       "                   ++ Or set AFNI_SKIP_SATCHECK to YES.\n"
       "                   ++ Initial transients won't be handled well by the\n"
       "                      bandpassing algorithm, and in addition may seriously\n"
       "                      contaminate any further processing, such as inter-voxel\n"
       "                      correlations via InstaCorr.\n"
       "                   ++ No other tests are made [yet] for non-stationary behavior\n"
       "                      in the time series data.\n"
     ) ;
     PRINT_AFNI_OMP_USAGE(
       "3dBandpass" ,
       "* At present, the only part of 3dBandpass that is parallelized is the\n"
       "  '-blur' option, which processes each sub-brick independently.\n"
     ) ;
     PRINT_COMPILE_DATE ; exit(0) ;
   }

   /*-- startup --*/

   mainENTRY("3dBandpass"); machdep();
   AFNI_logger("3dBandpass",argc,argv);
   PRINT_VERSION("3dBandpass"); AUTHOR("RW Cox");

   nosat =  AFNI_yesenv("AFNI_SKIP_SATCHECK") ;

   nopt = 1 ;
   while( nopt < argc && argv[nopt][0] == '-' ){

     if( strcmp(argv[nopt],"-despike") == 0 ){  /* 08 Oct 2010 */
       do_despike++ ; nopt++ ; continue ;
     }

     if( strcmp(argv[nopt],"-nfft") == 0 ){
       int nnup ;
       if( ++nopt >= argc ) ERROR_exit("need an argument after -nfft!") ;
       nfft = (int)strtod(argv[nopt],NULL) ;
       nnup = csfft_nextup_even(nfft) ;
       if( nfft < 16 || nfft != nnup )
         ERROR_exit("value %d after -nfft is illegal! Next legal value = %d",nfft,nnup) ;
       nopt++ ; continue ;
     }

     if( strcmp(argv[nopt],"-blur") == 0 ){
       if( ++nopt >= argc ) ERROR_exit("need an argument after -blur!") ;
       blur = strtod(argv[nopt],NULL) ;
       if( blur <= 0.0f ) WARNING_message("non-positive blur?!") ;
       nopt++ ; continue ;
     }

     if( strcmp(argv[nopt],"-localPV") == 0 ){
       if( ++nopt >= argc ) ERROR_exit("need an argument after -localpv!") ;
       pvrad = strtod(argv[nopt],NULL) ;
       if( pvrad <= 0.0f ) WARNING_message("non-positive -localpv?!") ;
       nopt++ ; continue ;
     }

     if( strcmp(argv[nopt],"-prefix") == 0 ){
       if( ++nopt >= argc ) ERROR_exit("need an argument after -prefix!") ;
       prefix = strdup(argv[nopt]) ;
       if( !THD_filename_ok(prefix) ) ERROR_exit("bad -prefix option!") ;
       nopt++ ; continue ;
     }

     if( strcmp(argv[nopt],"-automask") == 0 ){
       if( mask != NULL ) ERROR_exit("Can't use -mask AND -automask!") ;
       do_automask = 1 ; nopt++ ; continue ;
     }

     if( strcmp(argv[nopt],"-mask") == 0 ){
       THD_3dim_dataset *mset ;
       if( ++nopt >= argc ) ERROR_exit("Need argument after '-mask'") ;
       if( mask != NULL || do_automask ) ERROR_exit("Can't have two mask inputs") ;
       mset = THD_open_dataset( argv[nopt] ) ;
       CHECK_OPEN_ERROR(mset,argv[nopt]) ;
       DSET_load(mset) ; CHECK_LOAD_ERROR(mset) ;
       mask_nx = DSET_NX(mset); mask_ny = DSET_NY(mset); mask_nz = DSET_NZ(mset);
       mask = THD_makemask( mset , 0 , 0.5f, 0.0f ) ; DSET_delete(mset) ;
       if( mask == NULL ) ERROR_exit("Can't make mask from dataset '%s'",argv[nopt]) ;
       nmask = THD_countmask( mask_nx*mask_ny*mask_nz , mask ) ;
       if( verb ) INFO_message("Number of voxels in mask = %d",nmask) ;
       if( nmask < 1 ) ERROR_exit("Mask is too small to process") ;
       nopt++ ; continue ;
     }

     if( strcmp(argv[nopt],"-norm") == 0 ){
       do_norm = 1 ; nopt++ ; continue ;
     }

     if( strcmp(argv[nopt],"-quiet") == 0 ){
       verb = 0 ; nopt++ ; continue ;
     }

     if( strcmp(argv[nopt],"-notrans") == 0 || strcmp(argv[nopt],"-nosat") == 0 ){
       nosat = 1 ; nopt++ ; continue ;
     }

     if( strcmp(argv[nopt],"-ort") == 0 ){
       if( ++nopt >= argc ) ERROR_exit("need an argument after -ort!") ;
       if( ortar == NULL ) INIT_IMARR(ortar) ;
       ortim = mri_read_1D( argv[nopt] ) ;
       if( ortim == NULL ) ERROR_exit("can't read from -ort '%s'",argv[nopt]) ;
       mri_add_name(argv[nopt],ortim) ;
       ADDTO_IMARR(ortar,ortim) ;
       nopt++ ; continue ;
     }

     if( strcmp(argv[nopt],"-dsort") == 0 ){
       THD_3dim_dataset *qset ;
       if( ++nopt >= argc ) ERROR_exit("need an argument after -dsort!") ;
       if( nortset > 0 ) ERROR_exit("only 1 -dsort option is allowed!") ;
       qset = THD_open_dataset(argv[nopt]) ;
       CHECK_OPEN_ERROR(qset,argv[nopt]) ;
       ortset = (THD_3dim_dataset **)realloc(ortset,
                                       sizeof(THD_3dim_dataset *)*(nortset+1)) ;
       ortset[nortset++] = qset ;
       nopt++ ; continue ;
     }

     if( strncmp(argv[nopt],"-nodetrend",6) == 0 ){
       qdet = 0 ; nopt++ ; continue ;
     }

     if( strcmp(argv[nopt],"-dt") == 0 ){
       if( ++nopt >= argc ) ERROR_exit("need an argument after -dt!") ;
       dt = (float)strtod(argv[nopt],NULL) ;
       if( dt <= 0.0f ) WARNING_message("value after -dt illegal!") ;
       nopt++ ; continue ;
     }

     if( strcmp(argv[nopt],"-input") == 0 ){
       if( inset != NULL ) ERROR_exit("Can't have 2 -input options!") ;
       if( ++nopt >= argc ) ERROR_exit("need an argument after -input!") ;
       inset = THD_open_dataset(argv[nopt]) ;
       CHECK_OPEN_ERROR(inset,argv[nopt]) ;
       nopt++ ; continue ;
     }

     if( strncmp(argv[nopt],"-band",5) == 0 ){
       if( ++nopt >= argc-1 ) ERROR_exit("need 2 arguments after -band!") ;
       if( have_freq ) WARNING_message("second -band option replaces first one!") ;
       fbot = strtod(argv[nopt++],NULL) ;
       ftop = strtod(argv[nopt++],NULL) ;
       have_freq = 1 ; continue ;
     }

     ERROR_exit("Unknown option: '%s'",argv[nopt]) ;
   }

   /** check inputs for reasonablositiness **/

   if( !have_freq ){
     if( nopt+1 >= argc )
       ERROR_exit("Need frequencies on command line after options!") ;
     fbot = (float)strtod(argv[nopt++],NULL) ;
     ftop = (float)strtod(argv[nopt++],NULL) ;
   }

   if( inset == NULL ){
     if( nopt >= argc )
       ERROR_exit("Need input dataset name on command line after options!") ;
     inset = THD_open_dataset(argv[nopt]) ;
     CHECK_OPEN_ERROR(inset,argv[nopt]) ; nopt++ ;
   }
   DSET_UNMSEC(inset) ;

   if( fbot < 0.0f  ) ERROR_exit("fbot value can't be negative!") ;
   if( ftop <= fbot ) ERROR_exit("ftop value %g must be greater than fbot value %g!",ftop,fbot) ;

   ntime = DSET_NVALS(inset) ;
   if( ntime < 9 ) ERROR_exit("Input dataset is too short!") ;

   if( nfft <= 0 ){
     nfft = csfft_nextup_even(ntime) ;
     if( verb ) INFO_message("Data length = %d  FFT length = %d",ntime,nfft) ;
     (void)THD_bandpass_set_nfft(nfft) ;
   } else if( nfft < ntime ){
     ERROR_exit("-nfft %d is less than data length = %d",nfft,ntime) ;
   } else {
     kk = THD_bandpass_set_nfft(nfft) ;
     if( kk != nfft && verb )
       INFO_message("Data length = %d  FFT length = %d",ntime,kk) ;
   }

   if( dt <= 0.0f ){
     dt = DSET_TR(inset) ;
     if( dt <= 0.0f ){
       WARNING_message("Setting dt=1.0 since input dataset lacks a time axis!") ;
       dt = 1.0f ;
     }
   }

   if( !THD_bandpass_OK(ntime,dt,fbot,ftop,1) ) ERROR_exit("Can't continue!") ;

   nx = DSET_NX(inset); ny = DSET_NY(inset); nz = DSET_NZ(inset); nvox = nx*ny*nz;

   /* check mask, or create it */

   if( verb ) INFO_message("Loading input dataset time series" ) ;
   DSET_load(inset) ;

   if( mask != NULL ){
     if( mask_nx != nx || mask_ny != ny || mask_nz != nz )
       ERROR_exit("-mask dataset grid doesn't match input dataset") ;

   } else if( do_automask ){
     mask = THD_automask( inset ) ;
     if( mask == NULL )
       ERROR_message("Can't create -automask from input dataset?") ;
     nmask = THD_countmask( DSET_NVOX(inset) , mask ) ;
     if( verb ) INFO_message("Number of voxels in automask = %d",nmask);
     if( nmask < 1 ) ERROR_exit("Automask is too small to process") ;

   } else {
     mask = (byte *)malloc(sizeof(byte)*nvox) ; nmask = nvox ;
     memset(mask,1,sizeof(byte)*nvox) ;
     if( verb ) INFO_message("No mask ==> processing all %d voxels",nvox);
   }

   /* A simple check of dataset quality [08 Feb 2010] */

   if( !nosat ){
     float val ;
     INFO_message(
      "Checking dataset for initial transients [use '-notrans' to skip this test]") ;
     val = THD_saturation_check(inset,mask,0,0) ; kk = (int)(val+0.54321f) ;
     if( kk > 0 )
       ININFO_message(
        "Looks like there %s %d non-steady-state initial time point%s :-(" ,
        ((kk==1) ? "is" : "are") , kk , ((kk==1) ? " " : "s") ) ;
     else if( val > 0.3210f )  /* don't ask where this threshold comes from! */
       ININFO_message(
        "MAYBE there's an initial positive transient of 1 point, but it's hard to tell\n") ;
     else
       ININFO_message("No widespread initial positive transient detected :-)") ;
   }

   /* check -dsort inputs for match to inset */

   for( kk=0 ; kk < nortset ; kk++ ){
     if( DSET_NX(ortset[kk])    != nx ||
         DSET_NY(ortset[kk])    != ny ||
         DSET_NZ(ortset[kk])    != nz ||
         DSET_NVALS(ortset[kk]) != ntime )
       ERROR_exit("-dsort %s doesn't match input dataset grid" ,
                  DSET_BRIKNAME(ortset[kk]) ) ;
   }

   /* convert input dataset to a vectim, which is more fun */

   mrv = THD_dset_to_vectim( inset , mask , 0 ) ;
   if( mrv == NULL ) ERROR_exit("Can't load time series data!?") ;
   DSET_unload(inset) ;

   /* similarly for the ort vectors */

   if( ortar != NULL ){
     for( kk=0 ; kk < IMARR_COUNT(ortar) ; kk++ ){
       ortim = IMARR_SUBIM(ortar,kk) ;
       if( ortim->nx < ntime )
         ERROR_exit("-ort file %s is shorter than input dataset time series",
                    ortim->name ) ;
       ort  = (float **)realloc( ort , sizeof(float *)*(nort+ortim->ny) ) ;
       for( vv=0 ; vv < ortim->ny ; vv++ )
         ort[nort++] = MRI_FLOAT_PTR(ortim) + ortim->nx * vv ;
     }
   }

   /* check whether processing leaves any DoF remaining  18 Mar 2015 [rickr] */
   {
      int nbprem = THD_bandpass_remain_dim(ntime, dt, fbot, ftop, 1);
      int bpused, nremain;
      int wlimit;               /* warning limit */

      bpused = ntime - nbprem;  /* #dim lost in bandpass step */

      nremain = nbprem - nort;  /* #dim left in output */
      if( nortset == 1 ) nremain--;
      nremain -= (qdet+1);

      if( verb ) INFO_message("%d dimensional data reduced to %d by:\n"
                    "    %d (bandpass), %d (-ort), %d (-dsort), %d (detrend)",
                    ntime, nremain, bpused, nort, nortset?1:0, qdet+1);

      /* possibly warn (if 95% lost) user or fail */
      wlimit = ntime/20;
      if( wlimit < 3 ) wlimit = 3;
      if( nremain < wlimit && nremain > 0 )
         WARNING_message("dimensionality reduced from %d to %d, be careful!",
                         ntime, nremain);
      if( nremain <= 0 ) /* FAILURE */
         ERROR_exit("dimensionality reduced from %d to %d, failing!",
                    ntime, nremain);
   }

   /* all the real work now */

   if( do_despike ){
     int_pair nsp ;
     if( verb ) INFO_message("Testing data time series for spikes") ;
     nsp = THD_vectim_despike9( mrv ) ;
     if( verb ) ININFO_message(" -- Squashed %d spikes from %d voxels",nsp.j,nsp.i) ;
   }

   if( verb ) INFO_message("Bandpassing data time series") ;
   (void)THD_bandpass_vectim( mrv , dt,fbot,ftop , qdet , nort,ort ) ;

   /* OK, maybe a little more work */

   if( nortset == 1 ){
     MRI_vectim *orv ;
     orv = THD_dset_to_vectim( ortset[0] , mask , 0 ) ;
     if( orv == NULL ){
       ERROR_message("Can't load -dsort %s",DSET_BRIKNAME(ortset[0])) ;
     } else {
       float *dp , *mvv , *ovv , ff ;
       if( verb ) INFO_message("Orthogonalizing to bandpassed -dsort") ;
       (void)THD_bandpass_vectim( orv , dt,fbot,ftop , qdet , nort,ort ) ;
       THD_vectim_normalize( orv ) ;
       dp = malloc(sizeof(float)*mrv->nvec) ;
       THD_vectim_vectim_dot( mrv , orv , dp ) ;
       for( vv=0 ; vv < mrv->nvec ; vv++ ){
         ff = dp[vv] ;
         if( ff != 0.0f ){
           mvv = VECTIM_PTR(mrv,vv) ; ovv = VECTIM_PTR(orv,vv) ;
           for( kk=0 ; kk < ntime ; kk++ ) mvv[kk] -= ff*ovv[kk] ;
         }
       }
       VECTIM_destroy(orv) ; free(dp) ;
     }
   }

   if( blur > 0.0f ){
     if( verb )
       INFO_message("Blurring time series data spatially; FWHM=%.2f",blur) ;
     mri_blur3D_vectim( mrv , blur ) ;
   }
   if( pvrad > 0.0f ){
     if( verb )
       INFO_message("Local PV-ing time series data spatially; radius=%.2f",pvrad) ;
     THD_vectim_normalize( mrv ) ;
     THD_vectim_localpv( mrv , pvrad ) ;
   }
   if( do_norm && pvrad <= 0.0f ){
     if( verb ) INFO_message("L2 normalizing time series data") ;
     THD_vectim_normalize( mrv ) ;
   }

   /* create output dataset, populate it, write it, then quit */

   if( verb ) INFO_message("Creating output dataset in memory, then writing it") ;
   outset = EDIT_empty_copy(inset) ;
   /* do not copy scalars    11 Sep 2015 [rickr] */
   EDIT_dset_items( outset , ADN_prefix,prefix ,
                             ADN_brick_fac,NULL ,
                    ADN_none ) ;
   tross_Copy_History( inset , outset ) ;
   tross_Make_History( "3dBandpass" , argc,argv , outset ) ;

   for( vv=0 ; vv < ntime ; vv++ )
     EDIT_substitute_brick( outset , vv , MRI_float , NULL ) ;

#if 1
   THD_vectim_to_dset( mrv , outset ) ;
#else
 AFNI_OMP_START ;
#pragma omp parallel
 { float *far , *var ; int *ivec=mrv->ivec ; int vv,kk ;
#pragma omp for
   for( vv=0 ; vv < ntime ; vv++ ){
     far = DSET_BRICK_ARRAY(outset,vv) ; var = mrv->fvec + vv ;
     for( kk=0 ; kk < nmask ; kk++ ) far[ivec[kk]] = var[kk*ntime] ;
   }
 }
 AFNI_OMP_END ;
#endif
   VECTIM_destroy(mrv) ;
   DSET_write(outset) ; if( verb ) WROTE_DSET(outset) ;

   exit(0) ;
}
Example #19
0
int main( int argc , char * argv[] )
{
   float mrad=0.0f , fwhm=0.0f ;
   int nrep=1 ;
   char *prefix = "Polyfit" ;
   char *resid  = NULL ;
   char *cfnam  = NULL ;
   int iarg , verb=0 , do_automask=0 , nord=3 , meth=2 , do_mclip=0 ;
   THD_3dim_dataset *inset ;
   MRI_IMAGE *imout , *imin ;
   byte *mask=NULL ; int nvmask=0 , nmask=0 , do_mone=0 , do_byslice=0 ;
   MRI_IMARR *exar=NULL ;
   floatvec *fvit=NULL ;   /* 26 Feb 2019 */

   if( argc < 2 || strcasecmp(argv[1],"-help") == 0 ){
      printf("\n"
             "Usage: 3dPolyfit [options] dataset   ~1~\n"
             "\n"
             "* Fits a polynomial in space to the input dataset and outputs that fitted dataset.\n"
             "\n"
             "* You can also add your own basis datasets to the fitting mix, using the\n"
             "  '-base' option.\n"
             "\n"
             "* You can get the fit coefficients using the '-1Dcoef' option.\n"
             "\n"
             "--------\n"
             "Options:   ~1~\n"
             "--------\n"
             "\n"
             "  -nord n    = Maximum polynomial order (0..9) [default order=3]\n"
             "                [n=0 is the constant 1]\n"
             "                [n=-1 means only use volumes from '-base']\n"
             "\n"
             "  -blur f    = Gaussian blur input dataset (inside mask) with FWHM='f' (mm)\n"
             "\n"
             "  -mrad r    = Radius (voxels) of preliminary median filter of input\n"
             "                [default is no blurring of either type; you can]\n"
             "                [do both types (Gaussian and median), but why??]\n"
             "                [N.B.: median blur is slower than Gaussian]\n"
             "\n"
             "  -prefix pp = Use 'pp' for prefix of output dataset (the fit).\n"
             "                [default prefix is 'Polyfit'; use NULL to skip this output]\n"
             "\n"
             "  -resid  rr = Use 'rr' for the prefix of the residual dataset.\n"
             "                [default is not to output residuals]\n"
             "\n"
             "  -1Dcoef cc = Save coefficients of fit into text file cc.1D.\n"
             "                [default is not to save these coefficients]\n"
             "\n"
             "  -automask  = Create a mask (a la 3dAutomask)\n"
             "  -mask mset = Create a mask from nonzero voxels in 'mset'.\n"
             "                [default is not to use a mask, which is probably a bad idea]\n"
             "\n"
             "  -mone      = Scale the mean value of the fit (inside the mask) to 1.\n"
             "                [probably this option is not useful for anything]\n"
             "\n"
             "  -mclip     = Clip fit values outside the rectilinear box containing the\n"
             "               mask to the edge of that box, to avoid weird artifacts.\n"
             "\n"
             "  -meth mm   = Set 'mm' to 2 for least squares fit;\n"
             "               set it to 1 for L1 fit [default method=2]\n"
             "                [Note that L1 fitting is slower than L2 fitting!]\n"
             "\n"
             "  -base bb   = In addition to the polynomial fit, also use\n"
             "               the volumes in dataset 'bb' as extra basis functions.\n"
             "                [If you use a base dataset, then you can set nord]\n"
             "                [to -1, to skip using any spatial polynomial fit.]\n"
             "\n"
             "  -verb      = Print fun and useful progress reports :-)\n"
             "\n"
             "------\n"
             "Notes:   ~1~\n"
             "------\n"
             "* Output dataset is always stored in float format.\n"
             "\n"
             "* If the input dataset has more than 1 sub-brick, only sub-brick #0\n"
             "  is processed. To fit more than one volume, you'll have to use a script\n"
             "  to loop over the input sub-bricks, and then glue (3dTcat) the results\n"
             "  together to get a final result. A simple example:\n"
             "     #!/bin/tcsh\n"
             "     set base = model.nii\n"
             "     set dset = errts.nii\n"
             "     set nval = `3dnvals $dset`\n"
             "     @ vtop = $nval - 1\n"
             "     foreach vv ( `count 0 $vtop` )\n"
             "       3dPolyfit -base \"$base\" -nord 0 -mask \"$base\" -1Dcoef QQ.$vv -prefix QQ.$vv.nii $dset\"[$vv]\"\n"
             "     end\n"
             "     3dTcat -prefix QQall.nii QQ.0*.nii\n"
             "     1dcat  QQ.0*.1D > QQall.1D\n"
             "     \rm QQ.0*\n"
             "     exit 0\n"
             "\n"
             "* If the '-base' dataset has multiple sub-bricks, all of them are used.\n"
             "\n"
             "* You can use the '-base' option more than once, if desired or needed.\n"
             "\n"
             "* The original motivation for this program was to fit a spatial model\n"
             "  to a field map MRI, but that didn't turn out to be useful. Nevertheless,\n"
             "  I make this program available to someone who might find it beguiling.\n"
             "\n"
             "* If you really want, I could allow you to put sign constraints on the\n"
             "  fit coefficients (e.g., say that the coefficient for a given base volume\n"
             "  should be non-negative). But you'll have to beg for this.\n"
             "\n"
             "-- Emitted by RWCox\n"
            ) ;
      PRINT_COMPILE_DATE ; exit(0) ;
   }

   /*-- startup paperwork --*/

   mainENTRY("3dPolyfit main"); machdep(); AFNI_logger("3dPolyfit",argc,argv);
   PRINT_VERSION("3dPolyfit") ;

   /*-- scan command line --*/

   iarg = 1 ;
   while( iarg < argc && argv[iarg][0] == '-' ){

     if( strcasecmp(argv[iarg],"-base") == 0 ){
       THD_3dim_dataset *bset ; int kk ; MRI_IMAGE *bim ;
       if( ++iarg >= argc ) ERROR_exit("Need argument after '-base'") ;
       bset = THD_open_dataset(argv[iarg]) ;
       CHECK_OPEN_ERROR(bset,argv[iarg]) ;
       DSET_load(bset) ; CHECK_LOAD_ERROR(bset) ;
       if( exar == NULL ) INIT_IMARR(exar) ;
       for( kk=0 ; kk < DSET_NVALS(bset) ; kk++ ){
         bim = THD_extract_float_brick(kk,bset) ;
         if( bim != NULL ) ADDTO_IMARR(exar,bim) ;
         DSET_unload_one(bset,kk) ;
       }
       DSET_delete(bset) ;
       iarg++ ; continue ;
     }

     if( strcasecmp(argv[iarg],"-verb") == 0 ){
       verb++ ; iarg++ ; continue ;
     }

     if( strcasecmp(argv[iarg],"-hermite") == 0 ){ /* 25 Mar 2013 [New Year's Day] */
       mri_polyfit_set_basis("hermite") ;          /* HIDDEN */
       iarg++ ; continue ;
     }

     if( strcasecmp(argv[iarg],"-byslice") == 0 ){ /* 25 Mar 2013 [New Year's Day] */
       do_byslice++ ; iarg++ ; continue ;          /* HIDDEN */
     }

     if( strcasecmp(argv[iarg],"-mask") == 0 ){
       THD_3dim_dataset *mset ;
       if( ++iarg >= argc ) ERROR_exit("Need argument after '-mask'") ;
       if( mask != NULL || do_automask ) ERROR_exit("Can't have two mask inputs") ;
       mset = THD_open_dataset(argv[iarg]) ;
       CHECK_OPEN_ERROR(mset,argv[iarg]) ;
       DSET_load(mset) ; CHECK_LOAD_ERROR(mset) ;
       nvmask = DSET_NVOX(mset) ;
       mask = THD_makemask( mset , 0 , 0.5f, 0.0f ) ; DSET_delete(mset) ;
       if( mask == NULL ) ERROR_exit("Can't make mask from dataset '%s'",argv[iarg]) ;
       nmask = THD_countmask( nvmask , mask ) ;
       if( nmask < 99 ) ERROR_exit("Too few voxels in mask (%d)",nmask) ;
       if( verb ) INFO_message("Number of voxels in mask = %d",nmask) ;
       iarg++ ; continue ;
     }

     if( strcasecmp(argv[iarg],"-nord") == 0 ){
       nord = (int)strtol( argv[++iarg], NULL , 10 ) ;
       if( nord < -1 || nord > 9 )
         ERROR_exit("Illegal value after -nord :(") ;
       iarg++ ; continue ;
     }

     if( strcasecmp(argv[iarg],"-meth") == 0 ){
       meth = (int)strtol( argv[++iarg], NULL , 10 ) ;
       if( meth < 1 || meth > 2 )
         ERROR_exit("Illegal value after -meth :(") ;
       iarg++ ; continue ;
     }

     if( strncmp(argv[iarg],"-automask",5) == 0 ){
       if( mask != NULL ) ERROR_exit("Can't use -mask and -automask together!") ;
       do_automask++ ; iarg++ ; continue ;
     }

     if( strncmp(argv[iarg],"-mclip",5) == 0 ){
       do_mclip++ ; iarg++ ; continue ;
     }

     if( strncmp(argv[iarg],"-mone",5) == 0 ){
       do_mone++ ; iarg++ ; continue ;
     }

     if( strcasecmp(argv[iarg],"-mrad") == 0 ){
       mrad = strtod( argv[++iarg] , NULL ) ; iarg++ ; continue ;
     }

     if( strcasecmp(argv[iarg],"-blur") == 0 ){
       fwhm = strtod( argv[++iarg] , NULL ) ; iarg++ ; continue ;
     }

     if( strcasecmp(argv[iarg],"-prefix") == 0 ){
       prefix = argv[++iarg] ;
       if( !THD_filename_ok(prefix) )
         ERROR_exit("Illegal value after -prefix :(");
       if( strcasecmp(prefix,"NULL") == 0 ) prefix = NULL ;
       iarg++ ; continue ;
     }

     if( strcasecmp(argv[iarg],"-resid") == 0 ){
       resid = argv[++iarg] ;
       if( !THD_filename_ok(resid) )
         ERROR_exit("Illegal value after -resid :(");
       if( strcasecmp(resid,"NULL") == 0 ) resid = NULL ;
       iarg++ ; continue ;
     }

     if( strcasecmp(argv[iarg],"-1Dcoef") == 0 ){  /* 26 Feb 2019 */
       cfnam = argv[++iarg] ;
       if( !THD_filename_ok(cfnam) )
         ERROR_exit("Illegal value after -1Dcoef :(");
       if( strcasecmp(cfnam,"NULL") == 0 ) cfnam = NULL ;
       iarg++ ; continue ;
     }

     ERROR_exit("Unknown option: %s\n",argv[iarg]);
   }

   /*--- check for blatant errors ---*/

   if( iarg >= argc )
     ERROR_exit("No input dataset name on command line?");

   if( prefix == NULL && resid == NULL && cfnam == NULL )
     ERROR_exit("-prefix and -resid and -1Dcoef are all NULL?!") ;

   if( do_byslice && cfnam != NULL ){
     WARNING_message("-byslice does not work with -1Dcoef option :(") ;
     cfnam = NULL ;
   }

   if( nord < 0 && exar == NULL )
     ERROR_exit("no polynomial fit AND no -base option ==> nothing to compute :(") ;

   /*-- read input --*/

   if( verb ) INFO_message("Load input dataset") ;

   inset = THD_open_dataset( argv[iarg] ) ;
   CHECK_OPEN_ERROR(inset,argv[iarg]) ;
   DSET_load(inset) ; CHECK_LOAD_ERROR(inset) ;
   if( DSET_NVALS(inset) > 1 )
     WARNING_message( "Only processing sub-brick #0 (out of %d)" , DSET_NVALS(inset) );

   /* check input mask or create automask */

   if( mask != NULL ){
     if( nvmask != DSET_NVOX(inset) )
      ERROR_exit("-mask and input datasets don't match in voxel counts :-(") ;
   } else if( do_automask ){
     THD_automask_verbose( (verb > 1) ) ;
     THD_automask_extclip( 1 ) ;
     mask = THD_automask( inset ) ; nvmask = DSET_NVOX(inset) ;
     nmask = THD_countmask( nvmask , mask ) ;
     if( nmask < 99 ) ERROR_exit("Too few voxels in automask (%d)",nmask) ;
     if( verb ) ININFO_message("Number of voxels in automask = %d",nmask) ;
   } else {
     WARNING_message("3dPolyfit is running without a mask") ;
   }

#undef  GOOD
#define GOOD(i) (mask == NULL || mask[i])

   /* check -base input datasets */

   if( exar != NULL ){
     int ii,kk , nvbad=0 , nvox=DSET_NVOX(inset),nm ; float *ex , exb ;
     for( kk=0 ; kk < IMARR_COUNT(exar) ; kk++ ){
       if( nvox != IMARR_SUBIM(exar,kk)->nvox ){
         if( IMARR_SUBIM(exar,kk)->nvox != nvbad ){
           ERROR_message("-base volume (%d voxels) doesn't match input dataset grid size (%d voxels)",
                         IMARR_SUBIM(exar,kk)->nvox , nvox ) ;
           nvbad = IMARR_SUBIM(exar,kk)->nvox ;
         }
       }
     }
     if( nvbad != 0 ) ERROR_exit("Cannot continue :-(") ;

     /* subtract mean from each base input, if is a constant polynomial in the fit */

     if( nord >= 0 ){
       if( verb ) INFO_message("subtracting spatial mean from '-base'") ;
       for( kk=0 ; kk < IMARR_COUNT(exar) ; kk++ ){
         exb = 0.0f ; ex = MRI_FLOAT_PTR(IMARR_SUBIM(exar,kk)) ;
         for( nm=ii=0 ; ii < nvox ; ii++ ){ if( GOOD(ii) ){ exb += ex[ii]; nm++; } }
         exb /= nm ;
         for( ii=0 ; ii < nvox ; ii++ ) ex[ii] -= exb ;
       }
     }
   }

   /* if blurring, edit mask a little */

   if( mask != NULL && (fwhm > 0.0f || mrad > 0.0f) ){
     int ii ;
     ii = THD_mask_remove_isolas( DSET_NX(inset),DSET_NY(inset),DSET_NZ(inset),mask ) ;
     if( ii > 0 ){
       nmask = THD_countmask( nvmask , mask ) ;
       if( verb )
         ININFO_message("Removed %d isola%s from mask, leaving %d voxels" ,
                        ii,(ii==1)?"\0":"s" , nmask ) ;
       if( nmask < 99 )
         ERROR_exit("Too few voxels left in mask after isola removal :-(") ;
     }
   }

   /* convert input to float, which is simpler to deal with */

   imin = THD_extract_float_brick(0,inset) ;
   if( imin == NULL ) ERROR_exit("Can't extract input dataset brick?! :-(") ;
   DSET_unload(inset) ;

   if( verb ) INFO_message("Start fitting process") ;

   /* do the Gaussian blurring */

   if( fwhm > 0.0f ){
     if( verb ) ININFO_message("Gaussian blur: FWHM=%g mm",fwhm) ;
     imin->dx = fabsf(DSET_DX(inset)) ;
     imin->dy = fabsf(DSET_DY(inset)) ;
     imin->dz = fabsf(DSET_DZ(inset)) ;
     mri_blur3D_addfwhm( imin , mask , fwhm ) ;
   }

   /* do the fitting */

   mri_polyfit_verb(verb) ;
   if( do_byslice )
     imout = mri_polyfit_byslice( imin , nord , exar , mask , mrad , meth ) ;
   else
     imout = mri_polyfit        ( imin , nord , exar , mask , mrad , meth ) ;

   /* WTF? */

   if( imout == NULL )
     ERROR_exit("Can't compute polynomial fit :-( !?") ;
   if( resid == NULL ) mri_free(imin) ;

   if( ! do_byslice )
     fvit = mri_polyfit_get_fitvec() ; /* get coefficients of fit [26 Feb 2019] */

   /* scale the fit dataset? */

   if( do_mone ){
     float sum=0.0f ; int nsum=0 , ii,nvox ; float *par=MRI_FLOAT_PTR(imout) ;
     nvox = imout->nvox ;
     for( ii=0 ; ii < nvox ; ii++ ){
       if( mask != NULL && mask[ii] == 0 ) continue ;
       sum += par[ii] ; nsum++ ;
     }
     if( nsum > 0 && sum != 0.0f ){
       sum = nsum / sum ;
       if( verb ) ININFO_message("-mone: scaling fit by %g",sum) ;
       for( ii=0 ; ii < nvox ; ii++ ) par[ii] *= sum ;
     }
   }

   /* if there's a mask, clip values outside of its box */

#undef  PF
#define PF(i,j,k) par[(i)+(j)*nx+(k)*nxy]
   if( mask != NULL && do_mclip ){
     int xm,xp,ym,yp,zm,zp , ii,jj,kk , nx,ny,nz,nxy ; float *par ;
     MRI_IMAGE *bim = mri_empty_conforming( imout , MRI_byte ) ;
     mri_fix_data_pointer(mask,bim) ;
     if( verb ) ININFO_message("-mclip: polynomial fit to autobox of mask") ;
     MRI_autobbox( bim , &xm,&xp , &ym,&yp , &zm,&zp ) ;
     mri_clear_data_pointer(bim) ; mri_free(bim) ;
     nx = imout->nx ; ny = imout->ny ; nz = imout->nz ; nxy = nx*ny ;
     par = MRI_FLOAT_PTR(imout) ;
     for( ii=0 ; ii < xm ; ii++ )
      for( kk=0 ; kk < nz ; kk++ )
       for( jj=0 ; jj < ny ; jj++ ) PF(ii,jj,kk) = PF(xm,jj,kk) ;
     for( ii=xp+1 ; ii < nx ; ii++ )
      for( kk=0 ; kk < nz ; kk++ )
       for( jj=0 ; jj < ny ; jj++ ) PF(ii,jj,kk) = PF(xp,jj,kk) ;
     for( jj=0 ; jj < ym ; jj++ )
      for( kk=0 ; kk < nz ; kk++ )
       for( ii=0 ; ii < nx ; ii++ ) PF(ii,jj,kk) = PF(ii,ym,kk) ;
     for( jj=yp+1 ; jj < ny ; jj++ )
      for( kk=0 ; kk < nz ; kk++ )
       for( ii=0 ; ii < nx ; ii++ ) PF(ii,jj,kk) = PF(ii,yp,kk) ;
     for( kk=0 ; kk < zm ; kk++ )
      for( jj=0 ; jj < ny ; jj++ )
       for( ii=0 ; ii < nx ; ii++ ) PF(ii,jj,kk) = PF(ii,jj,zm) ;
     for( kk=zp+1 ; kk < nz ; kk++ )
      for( jj=0 ; jj < ny ; jj++ )
       for( ii=0 ; ii < nx ; ii++ ) PF(ii,jj,kk) = PF(ii,jj,zp) ;
   }

   if( mask != NULL ) free(mask) ;

   /* write outputs */

   if( prefix != NULL ){
     THD_3dim_dataset *outset = EDIT_empty_copy( inset )  ;
     EDIT_dset_items( outset ,
                        ADN_prefix , prefix ,
                        ADN_nvals  , 1 ,
                        ADN_ntt    , 0 ,
                      ADN_none ) ;
     EDIT_substitute_brick( outset , 0 , MRI_float , MRI_FLOAT_PTR(imout) ) ;
     tross_Copy_History( inset , outset ) ;
     tross_Make_History( "3dPolyfit" , argc,argv , outset ) ;
     DSET_write(outset) ;
     WROTE_DSET(outset) ;
   }

   if( resid != NULL ){
     THD_3dim_dataset *outset = EDIT_empty_copy( inset )  ;
     float *inar=MRI_FLOAT_PTR(imin) , *outar=MRI_FLOAT_PTR(imout) ;
     int nx,ny,nz , nxyz , kk ;
     nx = imout->nx ; ny = imout->ny ; nz = imout->nz ; nxyz = nx*ny*nz ;
     for( kk=0 ; kk < nxyz ; kk++ ) outar[kk] = inar[kk] - outar[kk] ;
     mri_free(imin) ;
     EDIT_dset_items( outset ,
                        ADN_prefix , resid ,
                        ADN_nvals  , 1 ,
                        ADN_ntt    , 0 ,
                      ADN_none ) ;
     EDIT_substitute_brick( outset , 0 , MRI_float , MRI_FLOAT_PTR(imout) ) ;
     tross_Copy_History( inset , outset ) ;
     tross_Make_History( "3dPolyfit" , argc,argv , outset ) ;
     DSET_write(outset) ;
     WROTE_DSET(outset) ;
   }

   if( cfnam != NULL && fvit != NULL ){ /* won't work with '-byslice' */
     char *qn ;
     qn = STRING_HAS_SUFFIX(cfnam,".1D") ? cfnam : modify_afni_prefix(cfnam,NULL,".1D") ;
     mri_write_floatvec( qn , fvit ) ;
   }

   exit(0) ;
}
Example #20
0
void DT_read_opts( int argc , char * argv[] )
{
   int nopt = 1 , nvals , ii , nvcheck , nerr=0 ;
   MRI_IMARR *slice_imar ;

   INIT_IMARR(DT_imar) ;
   INIT_IMARR(slice_imar) ;

   while( nopt < argc && argv[nopt][0] == '-' ){

      /**** -polort p ****/

      if( strncmp(argv[nopt],"-polort",6) == 0 ){
        char *cpt ;
        nopt++ ;
        if( nopt >= argc ) ERROR_exit("Need argument after -polort") ;
        DT_polort = (int)strtod(argv[nopt],&cpt) ;
        if( *cpt != '\0' ) WARNING_message("Illegal non-numeric value after -polort") ;
        if( DT_polort < 0 )
          WARNING_message("Ignoring negative value after -polort") ;
        nopt++ ; continue ;
      }

      /**** -prefix prefix ****/

      if( strncmp(argv[nopt],"-prefix",6) == 0 ){
        nopt++ ;
        if( nopt >= argc ) ERROR_exit("Need argument after -prefix") ;
        MCW_strncpy( DT_output_prefix , argv[nopt] , THD_MAX_PREFIX ) ;
        if( !THD_filename_ok(DT_output_prefix) )
          ERROR_exit("bad name '%s' after -prefix",argv[nopt]) ;
        nopt++ ; continue ;
      }

      /**** -session directory ****/

      if( strncmp(argv[nopt],"-session",6) == 0 ){
        nopt++ ;
        if( nopt >= argc ) ERROR_exit("Need argument after -session") ;
        MCW_strncpy( DT_session , argv[nopt] , THD_MAX_NAME ) ;
        if( !THD_filename_ok(DT_session) )
          ERROR_exit("bad name '%s' after -session",argv[nopt]) ;
        nopt++ ; continue ;
      }

      /**** -verb ****/

      if( strncmp(argv[nopt],"-verb",5) == 0 ){
        DT_verb++ ; nopt++ ; continue ;
      }

      /**** -replace ****/

      if( strncmp(argv[nopt],"-replace",5) == 0 ){
        DT_replace++ ; nopt++ ; continue ;
      }

      /**** -byslice [08 Dec 1999] ****/

      if( strncmp(argv[nopt],"-byslice",5) == 0 ){
#ifdef ALLOW_BYSLICE
        if( IMARR_COUNT(slice_imar) > 0 )
          ERROR_exit("can't mix -byslice and -slicevector") ;
        DT_byslice++ ; nopt++ ; continue ;
#else
        ERROR_exit("-byslice is no longer suppported") ;
#endif
      }

      /**** -normalize [23 Nov 1999] ****/

      if( strncmp(argv[nopt],"-normalize",5) == 0 ){
        DT_norm++ ; nopt++ ; continue ;
      }

      /**** -vector ****/

      if( strncmp(argv[nopt],"-vector",4) == 0 ){
        MRI_IMAGE * flim ;
        nopt++ ;
        if( nopt >= argc ) ERROR_exit("need argument after -vector") ;
        flim = mri_read_1D( argv[nopt++] ) ;
        if( flim == NULL ) ERROR_exit("can't read -vector '%s'",argv[nopt-1]) ;
        ADDTO_IMARR(DT_imar,flim) ;
        if( DT_verb ) INFO_message("Read file %s: rows=%d cols=%d",
                                   argv[nopt-1],flim->ny,flim->nx ) ;
        continue ;
      }

      /**** -slicevector ****/

      if( strncmp(argv[nopt],"-slicevector",6) == 0 ){
        MRI_IMAGE *flim ;
        nopt++ ;
        if( nopt >= argc ) ERROR_exit("need argument after -slicevector") ;
#ifdef ALLOW_BYSLICE
        if( DT_byslice )   ERROR_exit("can't mix -slicevector and -byslice") ;
#endif
        flim = mri_read_1D( argv[nopt++] ) ;
        if( flim == NULL ) ERROR_exit("can't read -slicevector '%s'",argv[nopt-1]) ;
        ADDTO_IMARR(slice_imar,flim) ;
        if( DT_verb ) INFO_message("Read file %s: rows=%d cols=%d",
                                   argv[nopt-1],flim->ny,flim->nx ) ;
        continue ;
      }

      /**** -del ****/

      if( strncmp(argv[nopt],"-del",4) == 0 ){
        nopt++ ;
        if( nopt >= argc ) ERROR_exit("need argument after -del") ;
        DT_current_del = strtod( argv[nopt++] , NULL ) ;
        if( DT_verb )
          INFO_message("Set expression stepsize = %g\n",DT_current_del) ;
        continue ;
      }

      /**** -expr ****/

      if( strncmp(argv[nopt],"-expr",4) == 0 ){
        int nexp , qvar , kvar ;
        char sym[4] ;

        nopt++ ;
        if( nopt >= argc ) ERROR_exit("need argument after -expr") ;

        nexp = DT_exnum + 1 ;
        if( DT_exnum == 0 ){   /* initialize storage */
          DT_expr   = (char **)        malloc( sizeof(char *) ) ;
          DT_excode = (PARSER_code **) malloc( sizeof(PARSER_code *) ) ;
          DT_exdel  = (float *)        malloc( sizeof(float) ) ;
          DT_exvar  = (int *)          malloc( sizeof(int) ) ;
        } else {
          DT_expr   = (char **)        realloc( DT_expr ,
                                                sizeof(char *)*nexp ) ;
          DT_excode = (PARSER_code **) realloc( DT_excode ,
                                                sizeof(PARSER_code *)*nexp ) ;
          DT_exdel  = (float *)        realloc( DT_exdel ,
                                                sizeof(float)*nexp) ;
          DT_exvar  = (int *)          realloc( DT_exvar ,
                                                sizeof(int)*nexp) ;
        }
        DT_expr[DT_exnum]   = argv[nopt] ;                         /* string */
        DT_exdel[DT_exnum]  = DT_current_del ;                     /* delta */
        DT_excode[DT_exnum] = PARSER_generate_code( argv[nopt] ) ; /* compile */
        if( DT_excode[DT_exnum] == NULL )
          ERROR_exit("Illegal expression: '%s'",argv[nopt]) ;

        qvar = 0 ; kvar = -1 ;                       /* find symbol */
        for( ii=0 ; ii < 26 ; ii++ ){
          sym[0] = 'A' + ii ; sym[1] = '\0' ;
          if( PARSER_has_symbol(sym,DT_excode[DT_exnum]) ){
            qvar++ ; if( kvar < 0 ) kvar = ii ;
            if( DT_verb )
              INFO_message("Found expression symbol %s\n",sym) ;
          }
        }
        if( qvar > 1 )
          ERROR_exit("-expr '%s' has too many symbols",DT_expr[DT_exnum]) ;
        else if( qvar == 0 )
          WARNING_message("-expr '%s' is constant",DT_expr[DT_exnum]) ;
        DT_exvar[DT_exnum] = kvar ;
        DT_exnum = nexp ; nopt++ ; continue ;
      }

      /**** ERROR ****/

      ERROR_exit("Unknown option: %s\n",argv[nopt]) ;

   }  /* end of scan over options */

   /*-- check for errors --*/

   if( nopt >= argc ) ERROR_exit("No input dataset?!") ;

#ifdef ALLOW_BYSLICE
   if( IMARR_COUNT(slice_imar) > 0 && DT_byslice )
     ERROR_exit("Illegal mixing of -slicevector and -byslice") ;
#endif

   DT_nvector = IMARR_COUNT(DT_imar) ;
   if( DT_nvector + DT_exnum == 0 && DT_polort < 0 )
     ERROR_exit("No detrending options ordered!") ;

#ifdef ALLOW_BYSLICE
   if( DT_nvector == 0 && DT_byslice )
     ERROR_exit("No -vector option supplied with -byslice!") ;
#endif

   /*--- read input dataset ---*/

   DT_dset = THD_open_dataset( argv[nopt] ) ;
   CHECK_OPEN_ERROR(DT_dset,argv[nopt]) ;
   if( DT_dset == NULL )
     ERROR_exit("Can't open dataset %s\n",argv[nopt]) ;

   DT_current_del = DSET_TR(DT_dset) ;
   if( DT_current_del <= 0.0 ){
     DT_current_del = 1.0 ;
     if( DT_verb )
       WARNING_message("Input has no TR value; setting TR=1.0\n") ;
   } else if( DT_verb ){
     INFO_message("Input has TR=%g\n",DT_current_del) ;
   }

   /*-- check vectors for good size --*/

   nvcheck = nvals = DSET_NVALS(DT_dset) ;
#ifdef ALLOW_BYSLICE
   if( DT_byslice ) nvcheck *= DSET_NZ(DT_dset) ;
#endif
   for( ii=0 ; ii < DT_nvector ; ii++ ){
     if( IMARR_SUBIMAGE(DT_imar,ii)->nx < nvcheck ){
       ERROR_message("%d-th -vector is shorter (%d) than dataset (%d)",
                     ii+1,IMARR_SUBIMAGE(DT_imar,ii)->nx,nvcheck) ;
       nerr++ ;
     }
   }
   if( nerr > 0 ) ERROR_exit("Cannot continue") ;

   /*--- create time series from expressions */

   if( DT_exnum > 0 ){
     double atoz[26] , del ;
     int kvar , jj ;
     MRI_IMAGE *flim ;
     float *flar ;

     for( jj=0 ; jj < DT_exnum ; jj++ ){
       if( DT_verb ) INFO_message("Evaluating %d-th -expr\n",jj+1) ;
       kvar = DT_exvar[jj] ;
       del  = DT_exdel[jj] ;
       if( del <= 0.0 ) del = DT_current_del ;
       flim = mri_new( nvals , 1 , MRI_float ) ;
       flar = MRI_FLOAT_PTR(flim) ;
       for( ii=0 ; ii < 26 ; ii++ ) atoz[ii] = 0.0 ;
       for( ii=0 ; ii < nvals ; ii++ ){
         if( kvar >= 0 ) atoz[kvar] = ii * del ;
         flar[ii]   = PARSER_evaluate_one( DT_excode[jj] , atoz ) ;
       }
       ADDTO_IMARR( DT_imar , flim ) ;
     }
   }

   /*--- from polort [10 Apr 2006] ---*/

   if( DT_polort >= 0 ){
     int kk ;
     MRI_IMAGE *flim ;
     float *flar ; double fac=2.0/(nvals-1.0) ;

     for( kk=0 ; kk <= DT_polort ; kk++ ){
       flim = mri_new( nvals , 1 , MRI_float ) ;
       flar = MRI_FLOAT_PTR(flim) ;
       for( ii=0 ; ii < nvals ; ii++ ) flar[ii] = Plegendre(fac*ii-1.0,kk) ;
       ADDTO_IMARR( DT_imar , flim ) ;
     }
   }

   return ;
}
Example #21
0
int main( int argc , char *argv[] )
{
   THD_3dim_dataset *yset=NULL , *aset=NULL , *mset=NULL , *wset=NULL ;
   MRI_IMAGE *fim=NULL, *qim,*tim, *pfim=NULL , *vim     , *wim=NULL  ;
   float     *flar    , *qar,*tar, *par=NULL  , *var     , *war=NULL  ;
   MRI_IMARR *fimar=NULL ;
   MRI_IMAGE *aim , *yim ; float *aar , *yar ;
   int nt=0 , nxyz=0 , nvox=0 , nparam=0 , nqbase , polort=0 , ii,jj,kk,bb ;
   byte *mask=NULL ; int nmask=0 , iarg ;
   char *fname_out="-" ;   /** equiv to stdout **/

   float alpha=0.0f ;
   int   nfir =0 ; float firwt[5]={0.09f,0.25f,0.32f,0.25f,0.09f} ;
   int   nmed =0 ;
   int   nwt  =0 ;

#define METHOD_C  3
#define METHOD_K 11
   int   method = METHOD_C ;

   /**--- help the pitiful user? ---**/

   if( argc < 2 || strcmp(argv[1],"-help") == 0 ){
     printf(
      "Usage: 3dInvFMRI [options]\n"
      "Program to compute stimulus time series, given a 3D+time dataset\n"
      "and an activation map (the inverse of the usual FMRI analysis problem).\n"
      "-------------------------------------------------------------------\n"
      "OPTIONS:\n"
      "\n"
      " -data yyy  =\n"
      "   *OR*     = Defines input 3D+time dataset [a non-optional option].\n"
      " -input yyy =\n"
      "\n"
      " -map  aaa  = Defines activation map; 'aaa' should be a bucket dataset,\n"
      "                each sub-brick of which defines the beta weight map for\n"
      "                an unknown stimulus time series [also non-optional].\n"
      "\n"
      " -mapwt www = Defines a weighting factor to use for each element of\n"
      "                the map.  The dataset 'www' can have either 1 sub-brick,\n"
      "                or the same number as in the -map dataset.  In the\n"
      "                first case, in each voxel, each sub-brick of the map\n"
      "                gets the same weight in the least squares equations.\n"
      "                  [default: all weights are 1]\n"
      "\n"
      " -mask mmm  = Defines a mask dataset, to restrict input voxels from\n"
      "                -data and -map.  [default: all voxels are used]\n"
      "\n"
      " -base fff  = Each column of the 1D file 'fff' defines a baseline time\n"
      "                series; these columns should be the same length as\n"
      "                number of time points in 'yyy'.  Multiple -base options\n"
      "                can be given.\n"
      " -polort pp = Adds polynomials of order 'pp' to the baseline collection.\n"
      "                The default baseline model is '-polort 0' (constant).\n"
      "                To specify no baseline model at all, use '-polort -1'.\n"
      "\n"
      " -out vvv   = Name of 1D output file will be 'vvv'.\n"
      "                [default = '-', which is stdout; probably not good]\n"
      "\n"
      " -method M  = Determines the method to use.  'M' is a single letter:\n"
      "               -method C = least squares fit to data matrix Y [default]\n"
      "               -method K = least squares fit to activation matrix A\n"
      "\n"
      " -alpha aa  = Set the 'alpha' factor to 'aa'; alpha is used to penalize\n"
      "                large values of the output vectors.  Default is 0.\n"
      "                A large-ish value for alpha would be 0.1.\n"
      "\n"
      " -fir5     = Smooth the results with a 5 point lowpass FIR filter.\n"
      " -median5  = Smooth the results with a 5 point median filter.\n"
      "               [default: no smoothing; only 1 of these can be used]\n"
      "-------------------------------------------------------------------\n"
      "METHODS:\n"
      " Formulate the problem as\n"
      "    Y = V A' + F C' + errors\n"
      " where Y = data matrix      (N x M) [from -data]\n"
      "       V = stimulus         (N x p) [to -out]\n"
      "       A = map matrix       (M x p) [from -map]\n"
      "       F = baseline matrix  (N x q) [from -base and -polort]\n"
      "       C = baseline weights (M x q) [not computed]\n"
      "       N = time series length = length of -data file\n"
      "       M = number of voxels in mask\n"
      "       p = number of stimulus time series to estimate\n"
      "         = number of parameters in -map file\n"
      "       q = number of baseline parameters\n"
      "   and ' = matrix transpose operator\n"
      " Next, define matrix Z (Y detrended relative to columns of F) by\n"
      "                       -1\n"
      "   Z = [I - F(F'F)  F']  Y\n"
      "-------------------------------------------------------------------\n"
      " The method C solution is given by\n"
      "                 -1\n"
      "   V0 = Z A [A'A]\n"
      "\n"
      " This solution minimizes the sum of squares over the N*M elements\n"
      " of the matrix   Y - V A' + F C'   (N.B.: A' means A-transpose).\n"
      "-------------------------------------------------------------------\n"
      " The method K solution is given by\n"
      "             -1                            -1\n"
      "   W = [Z Z']  Z A   and then   V = W [W'W]\n"
      "\n"
      " This solution minimizes the sum of squares of the difference between\n"
      " the A(V) predicted from V and the input A, where A(V) is given by\n"
      "                    -1\n"
      "   A(V) = Z' V [V'V]   = Z'W\n"
      "-------------------------------------------------------------------\n"
      " Technically, the solution is unidentfiable up to an arbitrary\n"
      " multiple of the columns of F (i.e., V = V0 + F G, where G is\n"
      " an arbitrary q x p matrix); the solution above is the solution\n"
      " that is orthogonal to the columns of F.\n"
      "\n"
      "-- RWCox - March 2006 - purely for experimental purposes!\n"
     ) ;

     printf("\n"
     "===================== EXAMPLE USAGE =====================================\n"
     "** Step 1: From a training dataset, generate activation map.\n"
     "  The input dataset has 4 runs, each 108 time points long.  3dDeconvolve\n"
     "  is used on the first 3 runs (time points 0..323) to generate the\n"
     "  activation map.  There are two visual stimuli (Complex and Simple).\n"
     "\n"
     "  3dDeconvolve -x1D xout_short_two.1D -input rall_vr+orig'[0..323]'   \\\n"
     "      -num_stimts 2                                                   \\\n"
     "      -stim_file 1 hrf_complex.1D               -stim_label 1 Complex \\\n"
     "      -stim_file 2 hrf_simple.1D                -stim_label 2 Simple  \\\n"
     "      -concat '1D:0,108,216'                                          \\\n"
     "      -full_first -fout -tout                                         \\\n"
     "      -bucket func_ht2_short_two -cbucket cbuc_ht2_short_two\n"
     "\n"
     "  N.B.: You may want to de-spike, smooth, and register the 3D+time\n"
     "        dataset prior to the analysis (as usual).  These steps are not\n"
     "        shown here -- I'm presuming you know how to use AFNI already.\n"
     "\n"
     "** Step 2: Create a mask of highly activated voxels.\n"
     "  The F statistic threshold is set to 30, corresponding to a voxel-wise\n"
     "  p = 1e-12 = very significant.  The mask is also lightly clustered, and\n"
     "  restricted to brain voxels.\n"
     "\n"
     "  3dAutomask -prefix Amask rall_vr+orig\n"
     "  3dcalc -a 'func_ht2_short+orig[0]' -b Amask+orig -datum byte \\\n"
     "         -nscale -expr 'step(a-30)*b' -prefix STmask300\n"
     "  3dmerge -dxyz=1 -1clust 1.1 5 -prefix STmask300c STmask300+orig\n"
     "\n"
     "** Step 3: Run 3dInvFMRI to estimate the stimulus functions in run #4.\n"
     "  Run #4 is time points 324..431 of the 3D+time dataset (the -data\n"
     "  input below).  The -map input is the beta weights extracted from\n"
     "  the -cbucket output of 3dDeconvolve.\n"
     "\n"
     "  3dInvFMRI -mask STmask300c+orig                       \\\n"
     "            -data rall_vr+orig'[324..431]'              \\\n"
     "            -map cbuc_ht2_short_two+orig'[6..7]'        \\\n"
     "            -polort 1 -alpha 0.01 -median5 -method K    \\\n"
     "            -out ii300K_short_two.1D\n"
     "\n"
     "  3dInvFMRI -mask STmask300c+orig                       \\\n"
     "            -data rall_vr+orig'[324..431]'              \\\n"
     "            -map cbuc_ht2_short_two+orig'[6..7]'        \\\n"
     "            -polort 1 -alpha 0.01 -median5 -method C    \\\n"
     "            -out ii300C_short_two.1D\n"
     "\n"
     "** Step 4: Plot the results, and get confused.\n"
     "\n"
     "  1dplot -ynames VV KK CC -xlabel Run#4 -ylabel ComplexStim \\\n"
     "         hrf_complex.1D'{324..432}'                         \\\n"
     "         ii300K_short_two.1D'[0]'                           \\\n"
     "         ii300C_short_two.1D'[0]'\n"
     "\n"
     "  1dplot -ynames VV KK CC -xlabel Run#4 -ylabel SimpleStim \\\n"
     "         hrf_simple.1D'{324..432}'                         \\\n"
     "         ii300K_short_two.1D'[1]'                          \\\n"
     "         ii300C_short_two.1D'[1]'\n"
     "\n"
     "  N.B.: I've found that method K works better if MORE voxels are\n"
     "        included in the mask (lower threshold) and method C if\n"
     "        FEWER voxels are included.  The above threshold gave 945\n"
     "        voxels being used to determine the 2 output time series.\n"
     "=========================================================================\n"
     ) ;

     PRINT_COMPILE_DATE ; exit(0) ;
   }

   /**--- bureaucracy ---**/

   mainENTRY("3dInvFMRI main"); machdep();
   PRINT_VERSION("3dInvFMRI"); AUTHOR("Zhark");
   AFNI_logger("3dInvFMRI",argc,argv) ;

   /**--- scan command line ---**/

   iarg = 1 ;
   while( iarg < argc ){

     if( strcmp(argv[iarg],"-method") == 0 ){
       switch( argv[++iarg][0] ){
         default:
           WARNING_message("Ignoring illegal -method '%s'",argv[iarg]) ;
         break ;
         case 'C': method = METHOD_C ; break ;
         case 'K': method = METHOD_K ; break ;
       }
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-fir5") == 0 ){
       if( nmed > 0 ) WARNING_message("Ignoring -fir5 in favor of -median5") ;
       else           nfir = 5 ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-median5") == 0 ){
       if( nfir > 0 ) WARNING_message("Ignoring -median5 in favor of -fir5") ;
       else           nmed = 5 ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-alpha") == 0 ){
       alpha = (float)strtod(argv[++iarg],NULL) ;
       if( alpha <= 0.0f ){
         alpha = 0.0f ; WARNING_message("-alpha '%s' ignored!",argv[iarg]) ;
       }
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-data") == 0 || strcmp(argv[iarg],"-input") == 0 ){
       if( yset != NULL ) ERROR_exit("Can't input 2 3D+time datasets") ;
       yset = THD_open_dataset(argv[++iarg]) ;
       CHECK_OPEN_ERROR(yset,argv[iarg]) ;
       nt = DSET_NVALS(yset) ;
       if( nt < 2 ) ERROR_exit("Only 1 sub-brick in dataset %s",argv[iarg]) ;
       nxyz = DSET_NVOX(yset) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-map") == 0 ){
       if( aset != NULL ) ERROR_exit("Can't input 2 -map datasets") ;
       aset = THD_open_dataset(argv[++iarg]) ;
       CHECK_OPEN_ERROR(aset,argv[iarg]) ;
       nparam = DSET_NVALS(aset) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-mapwt") == 0 ){
       if( wset != NULL ) ERROR_exit("Can't input 2 -mapwt datasets") ;
       wset = THD_open_dataset(argv[++iarg]) ;
       CHECK_OPEN_ERROR(wset,argv[iarg]) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-mask") == 0 ){
       if( mset != NULL ) ERROR_exit("Can't input 2 -mask datasets") ;
       mset = THD_open_dataset(argv[++iarg]) ;
       CHECK_OPEN_ERROR(mset,argv[iarg]) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-polort") == 0 ){
       char *cpt ;
       polort = (int)strtod(argv[++iarg],&cpt) ;
       if( *cpt != '\0' ) WARNING_message("Illegal non-numeric value after -polort") ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-out") == 0 ){
       fname_out = strdup(argv[++iarg]) ;
       if( !THD_filename_ok(fname_out) )
         ERROR_exit("Bad -out filename '%s'",fname_out) ;
       iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-base") == 0 ){
       if( fimar == NULL ) INIT_IMARR(fimar) ;
       qim = mri_read_1D( argv[++iarg] ) ;
       if( qim == NULL ) ERROR_exit("Can't read 1D file %s",argv[iarg]) ;
       ADDTO_IMARR(fimar,qim) ;
       iarg++ ; continue ;
     }

     ERROR_exit("Unrecognized option '%s'",argv[iarg]) ;
   }

   /**--- finish up processing options ---**/

   if( yset == NULL ) ERROR_exit("No input 3D+time dataset?!") ;
   if( aset == NULL ) ERROR_exit("No input FMRI -map dataset?!") ;

   if( DSET_NVOX(aset) != nxyz )
     ERROR_exit("Grid mismatch between -data and -map") ;

   INFO_message("Loading dataset for Y") ;
   DSET_load(yset); CHECK_LOAD_ERROR(yset) ;
   INFO_message("Loading dataset for A") ;
   DSET_load(aset); CHECK_LOAD_ERROR(aset) ;

   if( wset != NULL ){
     if( DSET_NVOX(wset) != nxyz )
       ERROR_exit("Grid mismatch between -data and -mapwt") ;
     nwt = DSET_NVALS(wset) ;
     if( nwt > 1 && nwt != nparam )
       ERROR_exit("Wrong number of values=%d in -mapwt; should be 1 or %d",
                  nwt , nparam ) ;
     INFO_message("Loading dataset for mapwt") ;
     DSET_load(wset); CHECK_LOAD_ERROR(wset) ;
   }

   if( mset != NULL ){
     if( DSET_NVOX(mset) != nxyz )
       ERROR_exit("Grid mismatch between -data and -mask") ;
     INFO_message("Loading dataset for mask") ;
     DSET_load(mset); CHECK_LOAD_ERROR(mset) ;
     mask  = THD_makemask( mset , 0 , 1.0f,-1.0f ); DSET_delete(mset);
     nmask = THD_countmask( nxyz , mask ) ;
     if( nmask < 3 ){
       WARNING_message("Mask has %d voxels -- ignoring!",nmask) ;
       free(mask) ; mask = NULL ; nmask = 0 ;
     }
   }

   nvox = (nmask > 0) ? nmask : nxyz ;
   INFO_message("N = time series length  = %d",nt    ) ;
   INFO_message("M = number of voxels    = %d",nvox  ) ;
   INFO_message("p = number of params    = %d",nparam) ;

   /**--- set up baseline funcs in one array ---*/

   nqbase = (polort >= 0 ) ? polort+1 : 0 ;
   if( fimar != NULL ){
     for( kk=0 ; kk < IMARR_COUNT(fimar) ; kk++ ){
       qim = IMARR_SUBIMAGE(fimar,kk) ;
       if( qim != NULL && qim->nx != nt )
         WARNING_message("-base #%d length=%d; data length=%d",kk+1,qim->nx,nt) ;
       nqbase += qim->ny ;
     }
   }

   INFO_message("q = number of baselines = %d",nqbase) ;

#undef  F
#define F(i,j) flar[(i)+(j)*nt]   /* nt X nqbase */
   if( nqbase > 0 ){
     fim  = mri_new( nt , nqbase , MRI_float ) ;   /* F matrix */
     flar = MRI_FLOAT_PTR(fim) ;
     bb = 0 ;
     if( polort >= 0 ){                /** load polynomial baseline **/
       double a = 2.0/(nt-1.0) ;
       for( jj=0 ; jj <= polort ; jj++ ){
         for( ii=0 ; ii < nt ; ii++ )
           F(ii,jj) = (float)Plegendre( a*ii-1.0 , jj ) ;
       }
       bb = polort+1 ;
     }
#undef  Q
#define Q(i,j) qar[(i)+(j)*qim->nx]  /* qim->nx X qim->ny */

     if( fimar != NULL ){             /** load -base baseline columns **/
       for( kk=0 ; kk < IMARR_COUNT(fimar) ; kk++ ){
         qim = IMARR_SUBIMAGE(fimar,kk) ; qar = MRI_FLOAT_PTR(qim) ;
         for( jj=0 ; jj < qim->ny ; jj++ ){
           for( ii=0 ; ii < nt ; ii++ )
             F(ii,bb+jj) = (ii < qim->nx) ? Q(ii,jj) : 0.0f ;
         }
         bb += qim->ny ;
       }
       DESTROY_IMARR(fimar) ; fimar=NULL ;
     }

     /* remove mean from each column after first? */

     if( polort >= 0 && nqbase > 1 ){
       float sum ;
       for( jj=1 ; jj < nqbase ; jj++ ){
         sum = 0.0f ;
         for( ii=0 ; ii < nt ; ii++ ) sum += F(ii,jj) ;
         sum /= nt ;
         for( ii=0 ; ii < nt ; ii++ ) F(ii,jj) -= sum ;
       }
     }

     /* compute pseudo-inverse of baseline matrix,
        so we can project it out from the data time series */

     /*      -1          */
     /* (F'F)  F' matrix */

     INFO_message("Computing pseudo-inverse of baseline matrix F") ;
     pfim = mri_matrix_psinv(fim,NULL,0.0f) ; par = MRI_FLOAT_PTR(pfim) ;

#undef  P
#define P(i,j) par[(i)+(j)*nqbase]   /* nqbase X nt */

#if 0
     qim = mri_matrix_transpose(pfim) ;    /** save to disk? **/
     mri_write_1D( "Fpsinv.1D" , qim ) ;
     mri_free(qim) ;
#endif
   }

   /**--- set up map image into aim/aar = A matrix ---**/

#undef  GOOD
#define GOOD(i) (mask==NULL || mask[i])

#undef  A
#define A(i,j) aar[(i)+(j)*nvox]   /* nvox X nparam */

   INFO_message("Loading map matrix A") ;
   aim = mri_new( nvox , nparam , MRI_float ); aar = MRI_FLOAT_PTR(aim);
   for( jj=0 ; jj < nparam ; jj++ ){
     for( ii=kk=0 ; ii < nxyz ; ii++ ){
       if( GOOD(ii) ){ A(kk,jj) = THD_get_voxel(aset,ii,jj); kk++; }
   }}
   DSET_unload(aset) ;

   /**--- set up map weight into wim/war ---**/

#undef  WT
#define WT(i,j) war[(i)+(j)*nvox]   /* nvox X nparam */

   if( wset != NULL ){
     int numneg=0 , numpos=0 ;
     float fac ;

     INFO_message("Loading map weight matrix") ;
     wim = mri_new( nvox , nwt , MRI_float ) ; war = MRI_FLOAT_PTR(wim) ;
     for( jj=0 ; jj < nwt ; jj++ ){
       for( ii=kk=0 ; ii < nxyz ; ii++ ){
         if( GOOD(ii) ){
           WT(kk,jj) = THD_get_voxel(wset,ii,jj);
                if( WT(kk,jj) > 0.0f ){ numpos++; WT(kk,jj) = sqrt(WT(kk,jj)); }
           else if( WT(kk,jj) < 0.0f ){ numneg++; WT(kk,jj) = 0.0f;            }
           kk++;
         }
     }}
     DSET_unload(wset) ;
     if( numpos <= nparam )
       WARNING_message("Only %d positive weights found in -wtmap!",numpos) ;
     if( numneg > 0 )
       WARNING_message("%d negative weights found in -wtmap!",numneg) ;

     for( jj=0 ; jj < nwt ; jj++ ){
       fac = 0.0f ;
       for( kk=0 ; kk < nvox ; kk++ ) if( WT(kk,jj) > fac ) fac = WT(kk,jj) ;
       if( fac > 0.0f ){
         fac = 1.0f / fac ;
         for( kk=0 ; kk < nvox ; kk++ ) WT(kk,jj) *= fac ;
       }
     }
   }

   /**--- set up data image into yim/yar = Y matrix ---**/

#undef  Y
#define Y(i,j) yar[(i)+(j)*nt]   /* nt X nvox */

   INFO_message("Loading data matrix Y") ;
   yim = mri_new( nt , nvox , MRI_float ); yar = MRI_FLOAT_PTR(yim);
   for( ii=0 ; ii < nt ; ii++ ){
     for( jj=kk=0 ; jj < nxyz ; jj++ ){
       if( GOOD(jj) ){ Y(ii,kk) = THD_get_voxel(yset,jj,ii); kk++; }
   }}
   DSET_unload(yset) ;

   /**--- project baseline out of data image = Z matrix ---**/

   if( pfim != NULL ){
#undef  T
#define T(i,j) tar[(i)+(j)*nt]  /* nt X nvox */
     INFO_message("Projecting baseline out of Y") ;
     qim = mri_matrix_mult( pfim , yim ) ;   /* nqbase X nvox */
     tim = mri_matrix_mult(  fim , qim ) ;   /* nt X nvox */
     tar = MRI_FLOAT_PTR(tim) ;              /* Y projected onto baseline */
     for( jj=0 ; jj < nvox ; jj++ )
       for( ii=0 ; ii < nt ; ii++ ) Y(ii,jj) -= T(ii,jj) ;
     mri_free(tim); mri_free(qim); mri_free(pfim); mri_free(fim);
   }

   /***** At this point:
             matrix A is in aim,
             matrix Z is in yim.
          Solve for V into vim, using the chosen method *****/

   switch( method ){
     default: ERROR_exit("Illegal method code!  WTF?") ; /* Huh? */

     /*.....................................................................*/
     case METHOD_C:
       /**--- compute pseudo-inverse of A map ---**/

       INFO_message("Method C: Computing pseudo-inverse of A") ;
       if( wim != NULL ) WARNING_message("Ignoring -mapwt dataset") ;
       pfim = mri_matrix_psinv(aim,NULL,alpha) ;  /* nparam X nvox */
       if( pfim == NULL ) ERROR_exit("mri_matrix_psinv() fails") ;
       mri_free(aim) ;

       /**--- and apply to data to get results ---*/

       INFO_message("Computing result V") ;
       vim = mri_matrix_multranB( yim , pfim ) ; /* nt x nparam */
       mri_free(pfim) ; mri_free(yim) ;
     break ;

     /*.....................................................................*/
     case METHOD_K:
       /**--- compute pseudo-inverse of transposed Z ---*/

       INFO_message("Method K: Computing pseudo-inverse of Z'") ;
       if( nwt > 1 ){
         WARNING_message("Ignoring -mapwt dataset: more than 1 sub-brick") ;
         nwt = 0 ; mri_free(wim) ; wim = NULL ; war = NULL ;
       }

       if( nwt == 1 ){
         float fac ;
         for( kk=0 ; kk < nvox ; kk++ ){
           fac = war[kk] ;
           for( ii=0 ; ii < nt     ; ii++ ) Y(ii,kk) *= fac ;
           for( ii=0 ; ii < nparam ; ii++ ) A(kk,ii) *= fac ;
         }
       }

       tim  = mri_matrix_transpose(yim)        ; mri_free(yim) ;
       pfim = mri_matrix_psinv(tim,NULL,alpha) ; mri_free(tim) ;
       if( pfim == NULL ) ERROR_exit("mri_matrix_psinv() fails") ;

       INFO_message("Computing W") ;
       tim = mri_matrix_mult( pfim , aim ) ;
       mri_free(aim) ; mri_free(pfim) ;

       INFO_message("Computing result V") ;
       pfim = mri_matrix_psinv(tim,NULL,0.0f) ; mri_free(tim) ;
       vim  = mri_matrix_transpose(pfim)      ; mri_free(pfim);
     break ;

   } /* end of switch on method */

   if( wim != NULL ) mri_free(wim) ;

   /**--- smooth? ---**/

   if( nfir > 0 && vim->nx > nfir ){
     INFO_message("FIR-5-ing result") ;
     var = MRI_FLOAT_PTR(vim) ;
     for( jj=0 ; jj < vim->ny ; jj++ )
       linear_filter_reflect( nfir,firwt , vim->nx , var + (jj*vim->nx) ) ;
   }

   if( nmed > 0 && vim->nx > nmed ){
     INFO_message("Median-5-ing result") ;
     var = MRI_FLOAT_PTR(vim) ;
     for( jj=0 ; jj < vim->ny ; jj++ )
       median5_filter_reflect( vim->nx , var + (jj*vim->nx) ) ;
   }

   /**--- write results ---**/

   INFO_message("Writing result to '%s'",fname_out) ;
   mri_write_1D( fname_out , vim ) ;
   exit(0) ;
}
Example #22
0
void EDIT_add_bricklist( THD_3dim_dataset *dset ,
                         int nbr, int *tbr, float *fbr , void *sbr[] )
{
   int ibr , typ , nx,ny,nz , nvals,new_nvals ;
   THD_datablock *dblk ;
   MRI_IMAGE *qim ;
   char str[32] ;

ENTRY("EDIT_add_bricklist") ;

   /**-- Sanity Checks --**/

   if( ! ISVALID_3DIM_DATASET(dset) || nbr <= 0 )       EXRETURN; /* error! */
   if( dset->dblk->brick == NULL )                      EXRETURN; /* error! */
   if( dset->dblk->malloc_type != DATABLOCK_MEM_MALLOC )EXRETURN; /* error! */

   dblk  = dset->dblk ;
   nvals = dblk->nvals ;
   nx    = dblk->diskptr->dimsizes[0] ;
   ny    = dblk->diskptr->dimsizes[1] ;
   nz    = dblk->diskptr->dimsizes[2] ;

   /**-- reallocate the brick control information --**/

   new_nvals = nvals + nbr ;
   dblk->brick_bytes = (int64_t *) XtRealloc( (char *) dblk->brick_bytes ,
                                          sizeof(int64_t) * new_nvals ) ;

   dblk->brick_fac = (float *) XtRealloc( (char *) dblk->brick_fac ,
                                          sizeof(float) * new_nvals ) ;

   dblk->nvals = dblk->diskptr->nvals = new_nvals ;

   /** allocate new sub-brick images **/

   for( ibr=0 ; ibr < nbr ; ibr++ ){
      typ = (tbr != NULL ) ? tbr[ibr] : MRI_short ;
      qim = mri_new_vol_empty( nx,ny,nz , typ ) ;  /* image with no data */

      if( sbr != NULL && sbr[ibr] != NULL )        /* attach data to image */
         mri_fix_data_pointer( sbr[ibr] , qim ) ;

      ADDTO_IMARR( dblk->brick , qim ) ;           /* attach image to dset */

      dblk->brick_fac[nvals+ibr]   = (fbr != NULL) ? fbr[ibr] : 0.0 ;
      dblk->brick_bytes[nvals+ibr] = (int64_t)qim->pixel_size * (int64_t)qim->nvox ;
      dblk->total_bytes           += dblk->brick_bytes[ibr] ;
   }

   /** allocate new sub-brick auxiliary data: labels **/

   if( dblk->brick_lab == NULL )
      THD_init_datablock_labels( dblk ) ;
   else
      dblk->brick_lab = (char **) XtRealloc( (char *) dblk->brick_lab ,
                                             sizeof(char *) * new_nvals ) ;
   for( ibr=0 ; ibr < nbr ; ibr++ ){
      sprintf( str , "#%d" , nvals+ibr ) ;
      dblk->brick_lab[nvals+ibr] = NULL ;
      THD_store_datablock_label( dblk , nvals+ibr , str ) ;
   }

   /** keywords **/

   if( dblk->brick_keywords == NULL )
      THD_init_datablock_keywords( dblk ) ;
   else
      dblk->brick_keywords = (char **) XtRealloc( (char *) dblk->brick_keywords ,
                                                  sizeof(char *) * new_nvals ) ;
   for( ibr=0 ; ibr < nbr ; ibr++ ){
      dblk->brick_keywords[nvals+ibr] = NULL ;
      THD_store_datablock_keywords( dblk , nvals+ibr , NULL ) ;
   }

   /** stataux **/

   if( dblk->brick_statcode != NULL ){
      dblk->brick_statcode = (int *) XtRealloc( (char *) dblk->brick_statcode ,
                                                sizeof(int) * new_nvals        ) ;
      dblk->brick_stataux  = (float **) XtRealloc( (char *) dblk->brick_stataux ,
                                                   sizeof(float *) * new_nvals ) ;

      for( ibr=0 ; ibr < nbr ; ibr++ ){
         dblk->brick_statcode[nvals+ibr] = 0 ;
         dblk->brick_stataux[nvals+ibr]  = NULL ;
      }
   }

   /** fdrcurve **/

   if( dblk->brick_fdrcurve != NULL ){
     dblk->brick_fdrcurve = (floatvec **) realloc( (void *)dblk->brick_fdrcurve ,
                                                  sizeof(floatvec *) * new_nvals ) ;
     for( ibr=0 ; ibr < nbr ; ibr++ ) dblk->brick_fdrcurve[nvals+ibr] = NULL ;
   }

   if( dblk->brick_mdfcurve != NULL ){  /* 22 Oct 2008 */
     dblk->brick_mdfcurve = (floatvec **) realloc( (void *)dblk->brick_mdfcurve ,
                                                  sizeof(floatvec *) * new_nvals ) ;
     for( ibr=0 ; ibr < nbr ; ibr++ ) dblk->brick_mdfcurve[nvals+ibr] = NULL ;
   }

   EXRETURN;
}
Example #23
0
MRI_IMARR * THD_get_all_timeseries( char * dname )
{
   THD_string_array * flist , * rlist ;
   int ir , ll , ii ;
   char * fname , * tname ;
   float * far ;
   MRI_IMARR * outar ;
   MRI_IMAGE * outim , * flim ;

#ifdef NEWWAY
   char * pat ;
#endif

   unsigned long max_fsize ;  /* 20 Jul 2004: max 1D file size to load */

   max_fsize = (unsigned long) AFNI_numenv( "AFNI_MAX_1DSIZE" ) ;
   if( max_fsize == 0 ) max_fsize = 123*1024 ;

   /*----- sanity check and initialize -----*/

   if( dname == NULL || strlen(dname) == 0 ) return NULL ;
   INIT_IMARR( outar ) ;

   /*----- find all *.1D files -----*/

#ifdef NEWWAY
   ii  = strlen(dname) ;
   pat = (char *) malloc(sizeof(char)*(ii+8)) ;
   strcpy(pat,dname) ;
   if( pat[ii-1] != '/' ) strcat(pat,"/") ;
   strcat(pat,"*.1D*") ;
   flist = THD_get_wildcard_filenames( pat ) ;
   free(pat) ;
#else
   flist = THD_get_all_filenames( dname ) ;
#endif

   if( flist == NULL || flist->num <= 0 ){
      DESTROY_SARR(flist) ;
      DESTROY_IMARR(outar) ;
      return NULL ;
   }

   rlist = THD_extract_regular_files( flist ) ;
   DESTROY_SARR(flist) ;
   if( rlist == NULL || rlist->num <= 0 ){
      DESTROY_SARR(rlist) ;
      DESTROY_IMARR(outar) ;
      return NULL ;
   }

   for( ir=0 ; ir < rlist->num ; ir++ ){
      fname = rlist->ar[ir] ; if( fname == NULL ) continue ;

      ll = strlen(fname) - 3 ; if( ll < 1 ) continue ;

      if( strcmp(fname+ll,".1D")==0 ||
          strcmp(fname+ll,"1Dx")==0 ||
          strcmp(fname+ll,"1Dv")==0   ){

         if( THD_filesize(fname) > max_fsize ) continue ;  /* 20 Jul 2004 */

         flim = mri_read_1D( fname ) ;
         if( flim != NULL ){
            far = MRI_FLOAT_PTR(flim) ;
            for( ii=0 ; ii < flim->nvox ; ii++ )
               if( fabs(far[ii]) >= 33333.0 ) far[ii] = WAY_BIG ;

            tname = THD_trailname(fname,1) ;
            mri_add_name( tname , flim ) ;
            ADDTO_IMARR( outar , flim ) ;
         }
      }
   }

   DESTROY_SARR(rlist) ;

   if( IMARR_COUNT(outar) == 0 ) DESTROY_IMARR(outar) ;

   return outar ;
}
Example #24
0
int main( int argc , char * argv[] )
{
   int do_norm=0 , qdet=2 , have_freq=0 , do_automask=0 ;
   float dt=0.0f , fbot=0.0f,ftop=999999.9f , blur=0.0f ;
   MRI_IMARR *ortar=NULL ; MRI_IMAGE *ortim=NULL ;
   THD_3dim_dataset **ortset=NULL ; int nortset=0 ;
   THD_3dim_dataset *inset=NULL , *outset=NULL;
   char *prefix="RSFC" ;
   byte *mask=NULL ;
   int mask_nx=0,mask_ny=0,mask_nz=0,nmask , verb=1 , 
		nx,ny,nz,nvox , nfft=0 , kk ;
   float **vec , **ort=NULL ; int nort=0 , vv , nopt , ntime  ;
   MRI_vectim *mrv ;
   float pvrad=0.0f ; int nosat=0 ;
   int do_despike=0 ;

	// @@ non-BP variables
	float fbotALL=0.0f, ftopALL=999999.9f; // do full range version
	int NumDen = 0; // switch for doing numerator or denom
	THD_3dim_dataset *outsetALL=NULL ; 	
	int m, mm;
	float delf; // harmonics
	int ind_low,ind_high,N_ny, ctr;
	float sqnt,nt_fac;
	gsl_fft_real_wavetable *real1, *real2; // GSL stuff
	gsl_fft_real_workspace *work;
	double *series1, *series2;	
	double *xx1,*xx2;
	float numer,denom,val;
	float *alff=NULL,*malff=NULL,*falff=NULL,
         *rsfa=NULL,*mrsfa=NULL,*frsfa=NULL; // values
	float meanALFF=0.0f,meanRSFA=0.0f; // will be for mean in brain region
	THD_3dim_dataset *outsetALFF=NULL;
	THD_3dim_dataset *outsetmALFF=NULL;
	THD_3dim_dataset *outsetfALFF=NULL;
	THD_3dim_dataset *outsetRSFA=NULL;
	THD_3dim_dataset *outsetmRSFA=NULL;
	THD_3dim_dataset *outsetfRSFA=NULL;
	char out_lff[300];
	char out_alff[300];
	char out_malff[300];
	char out_falff[300];
	char out_rsfa[300];
	char out_mrsfa[300];
	char out_frsfa[300];
	char out_unBP[300];
	int SERIES_OUT = 1;
	int UNBP_OUT = 0; 
	int DO_RSFA = 1;
	int BP_LAST = 0; // option for only doing filter to LFFs at very end of proc
	float de_rsfa=0.0f,nu_rsfa=0.0f;
	double pow1=0.0,pow2=0.0;

   /*-- help? --*/

   if( argc < 2 || strcmp(argv[1],"-help") == 0 ){
		printf(
"\n  Program to calculate common resting state functional connectivity (RSFC)\n"
"  parameters (ALFF, mALFF, fALFF, RSFA, etc.) for resting state time\n"
"  series.  This program is **heavily** based on the existing\n"
"  3dBandPass by RW Cox, with the amendments to calculate RSFC\n"
"  parameters written by PA Taylor (July, 2012).\n"
"  This program is part of FATCAT (Taylor & Saad, 2013) in AFNI. Importantly,\n"
"  its functionality can be included in the `afni_proc.py' processing-script \n"
"  generator; see that program's help file for an example including RSFC\n"
"  and spectral parameter calculation via the `-regress_RSFC' option.\n"
"\n"
"* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n"
"\n"
"  All options of 3dBandPass may be used here (with a couple other\n"
"  parameter options, as well): essentially, the motivation of this\n"
"  program is to produce ALFF, etc. values of the actual RSFC time\n"
"  series that you calculate.  Therefore, all the 3dBandPass processing\n"
"  you normally do en route to making your final `resting state time\n"
"  series' is done here to generate your LFFs, from which the\n"
"  amplitudes in the LFF band are calculated at the end.  In order to\n"
"  calculate fALFF, the same initial time series are put through the\n"
"  same processing steps which you have chosen but *without* the\n"
"  bandpass part; the spectrum of this second time series is used to\n"
"  calculate the fALFF denominator.\n"
" \n"
"  For more information about each RSFC parameter, see, e.g.:   \n"
"  ALFF/mALFF -- Zang et al. (2007),\n"
"  fALFF --      Zou et al. (2008),\n"
"  RSFA --       Kannurpatti & Biswal (2008).\n"
"\n"
"* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n"
"\n"
" + USAGE: 3dRSFC [options] fbot ftop dataset\n"
"\n"
"* One function of this program is to prepare datasets for input\n"
"   to 3dSetupGroupInCorr.  Other uses are left to your imagination.\n"
"\n"
"* 'dataset' is a 3D+time sequence of volumes\n"
"   ++ This must be a single imaging run -- that is, no discontinuities\n"
"       in time from 3dTcat-ing multiple datasets together.\n"
"\n"
"* fbot = lowest frequency in the passband, in Hz\n"
"   ++ fbot can be 0 if you want to do a lowpass filter only;\n"
"       HOWEVER, the mean and Nyquist freq are always removed.\n"
"\n"
"* ftop = highest frequency in the passband (must be > fbot)\n"
"   ++ if ftop > Nyquist freq, then it's a highpass filter only.\n"
"\n"
"* Set fbot=0 and ftop=99999 to do an 'allpass' filter.\n"
"  ++ Except for removal of the 0 and Nyquist frequencies, that is.\n"
"\n"
"* You cannot construct a 'notch' filter with this program!\n"
"  ++ You could use 3dRSFC followed by 3dcalc to get the same effect.\n"
"  ++ If you are understand what you are doing, that is.\n"
"  ++ Of course, that is the AFNI way -- if you don't want to\n"
"     understand what you are doing, use Some other PrograM, and\n"
"     you can still get Fine StatisticaL maps.\n"
"\n"
"* 3dRSFC will fail if fbot and ftop are too close for comfort.\n"
"  ++ Which means closer than one frequency grid step df,\n"
"     where df = 1 / (nfft * dt) [of course]\n"
"\n"
"* The actual FFT length used will be printed, and may be larger\n"
"   than the input time series length for the sake of efficiency.\n"
"  ++ The program will use a power-of-2, possibly multiplied by\n"
"     a power of 3 and/or 5 (up to and including the 3rd power of\n"
"     each of these: 3, 9, 27, and 5, 25, 125).\n"
"\n"
"* Note that the results of combining 3dDetrend and 3dRSFC will\n"
"   depend on the order in which you run these programs.  That's why\n"
"   3dRSFC has the '-ort' and '-dsort' options, so that the\n"
"   time series filtering can be done properly, in one place.\n"
"\n"
"* The output dataset is stored in float format.\n"
"\n"
"* The order of processing steps is the following (most are optional), and\n"
"  for the LFFs, the bandpass is done between the specified fbot and ftop,\n"
"  while for the `whole spectrum' (i.e., fALFF denominator) the bandpass is:\n"
"  done only to exclude the time series mean and the Nyquist frequency:\n"
" (0) Check time series for initial transients [does not alter data]\n"
" (1) Despiking of each time series\n"
" (2) Removal of a constant+linear+quadratic trend in each time series\n"
" (3) Bandpass of data time series\n"
" (4) Bandpass of -ort time series, then detrending of data\n"
"      with respect to the -ort time series\n"
" (5) Bandpass and de-orting of the -dsort dataset,\n"
"      then detrending of the data with respect to -dsort\n"
" (6) Blurring inside the mask [might be slow]\n"
" (7) Local PV calculation     [WILL be slow!]\n"
" (8) L2 normalization         [will be fast.]\n"
" (9) Calculate spectrum and amplitudes, for RSFC parameters.\n"
"\n"
"* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n"
"--------\n"
"OPTIONS:\n"
"--------\n"
" -despike        = Despike each time series before other processing.\n"
"                   ++ Hopefully, you don't actually need to do this,\n"
"                      which is why it is optional.\n"
" -ort f.1D       = Also orthogonalize input to columns in f.1D\n"
"                   ++ Multiple '-ort' options are allowed.\n"
" -dsort fset     = Orthogonalize each voxel to the corresponding\n"
"                    voxel time series in dataset 'fset', which must\n"
"                    have the same spatial and temporal grid structure\n"
"                    as the main input dataset.\n"
"                   ++ At present, only one '-dsort' option is allowed.\n"
" -nodetrend      = Skip the quadratic detrending of the input that\n"
"                    occurs before the FFT-based bandpassing.\n"
"                   ++ You would only want to do this if the dataset\n"
"                      had been detrended already in some other program.\n"
" -dt dd          = set time step to 'dd' sec [default=from dataset header]\n"
" -nfft N         = set the FFT length to 'N' [must be a legal value]\n"
" -norm           = Make all output time series have L2 norm = 1\n"
"                   ++ i.e., sum of squares = 1\n"
" -mask mset      = Mask dataset\n"
" -automask       = Create a mask from the input dataset\n"
" -blur fff       = Blur (inside the mask only) with a filter\n"
"                    width (FWHM) of 'fff' millimeters.\n"
" -localPV rrr    = Replace each vector by the local Principal Vector\n"
"                    (AKA first singular vector) from a neighborhood\n"
"                    of radius 'rrr' millimiters.\n"
"                   ++ Note that the PV time series is L2 normalized.\n"
"                   ++ This option is mostly for Bob Cox to have fun with.\n"
"\n"
" -input dataset  = Alternative way to specify input dataset.\n"
" -band fbot ftop = Alternative way to specify passband frequencies.\n"
"\n"
" -prefix ppp     = Set prefix name of output dataset. Name of filtered time\n"
"                   series would be, e.g., ppp_LFF+orig.*, and the parameter\n"
"                   outputs are named with obvious suffices.\n"
" -quiet          = Turn off the fun and informative messages. (Why?)\n"
" -no_rs_out      = Don't output processed time series-- just output\n"
"                   parameters (not recommended, since the point of\n"
"                   calculating RSFC params here is to have them be quite\n"
"                   related to the time series themselves which are used for\n"
"                   further analysis)."
" -un_bp_out      = Output the un-bandpassed series as well (default is not \n"
"                   to).  Name would be, e.g., ppp_unBP+orig.* .\n"
"                   with suffix `_unBP'.\n"
" -no_rsfa        = If you don't want RSFA output (default is to do so).\n"
" -bp_at_end      = A (probably unnecessary) switch to have bandpassing be \n"
"                   the very last processing step that is done in the\n"
"                   sequence of steps listed above; at Step 3 above, only \n"
"                   the time series mean and nyquist are BP'ed out, and then\n"
"                   the LFF series is created only after Step 9.  NB: this \n"
"                   probably makes only very small changes for most\n"
"                   processing sequences (but maybe not, depending usage).\n"
"\n"
" -notrans        = Don't check for initial positive transients in the data:\n"
"  *OR*             ++ The test is a little slow, so skipping it is OK,\n"
" -nosat               if you KNOW the data time series are transient-free.\n"
"                   ++ Or set AFNI_SKIP_SATCHECK to YES.\n"
"                   ++ Initial transients won't be handled well by the\n"
"                      bandpassing algorithm, and in addition may seriously\n"
"                      contaminate any further processing, such as inter-\n"
"                      voxel correlations via InstaCorr.\n"
"                   ++ No other tests are made [yet] for non-stationary \n"
"                      behavior in the time series data.\n"
"\n"
"* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n"
"\n"
"  If you use this program, please reference the introductory/description\n"
"  paper for the FATCAT toolbox:\n"
"        Taylor PA, Saad ZS (2013).  FATCAT: (An Efficient) Functional\n"
"        And Tractographic Connectivity Analysis Toolbox. Brain \n"
"        Connectivity 3(5):523-535.\n"
"____________________________________________________________________________\n"
);
		PRINT_AFNI_OMP_USAGE(
" 3dRSFC" ,
" * At present, the only part of 3dRSFC that is parallelized is the\n"
"   '-blur' option, which processes each sub-brick independently.\n"
									) ;
		PRINT_COMPILE_DATE ; exit(0) ;
   }
	
   /*-- startup --*/
	
   mainENTRY("3dRSFC"); machdep();
   AFNI_logger("3dRSFC",argc,argv);
   PRINT_VERSION("3dRSFC (from 3dBandpass by RW Cox): version THETA"); 
	AUTHOR("PA Taylor");
	
   nosat =  AFNI_yesenv("AFNI_SKIP_SATCHECK") ;
	
   nopt = 1 ;
   while( nopt < argc && argv[nopt][0] == '-' ){

		if( strcmp(argv[nopt],"-despike") == 0 ){  /* 08 Oct 2010 */
			do_despike++ ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-nfft") == 0 ){
			int nnup ;
			if( ++nopt >= argc ) ERROR_exit("need an argument after -nfft!") ;
			nfft = (int)strtod(argv[nopt],NULL) ;
			nnup = csfft_nextup_even(nfft) ;
			if( nfft < 16 || nfft != nnup )
				ERROR_exit("value %d after -nfft is illegal! Next legal value = %d",nfft,nnup) ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-blur") == 0 ){
			if( ++nopt >= argc ) ERROR_exit("need an argument after -blur!") ;
			blur = strtod(argv[nopt],NULL) ;
			if( blur <= 0.0f ) WARNING_message("non-positive blur?!") ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-localPV") == 0 ){
			if( ++nopt >= argc ) ERROR_exit("need an argument after -localpv!") ;
			pvrad = strtod(argv[nopt],NULL) ;
			if( pvrad <= 0.0f ) WARNING_message("non-positive -localpv?!") ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-prefix") == 0 ){
			if( ++nopt >= argc ) ERROR_exit("need an argument after -prefix!") ;
			prefix = strdup(argv[nopt]) ;
			if( !THD_filename_ok(prefix) ) ERROR_exit("bad -prefix option!") ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-automask") == 0 ){
			if( mask != NULL ) ERROR_exit("Can't use -mask AND -automask!") ;
			do_automask = 1 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-mask") == 0 ){
			THD_3dim_dataset *mset ;
			if( ++nopt >= argc ) ERROR_exit("Need argument after '-mask'") ;
			if( mask != NULL || do_automask ) ERROR_exit("Can't have two mask inputs") ;
			mset = THD_open_dataset( argv[nopt] ) ;
			CHECK_OPEN_ERROR(mset,argv[nopt]) ;
			DSET_load(mset) ; CHECK_LOAD_ERROR(mset) ;
			mask_nx = DSET_NX(mset); mask_ny = DSET_NY(mset); mask_nz = DSET_NZ(mset);
			mask = THD_makemask( mset , 0 , 0.5f, 0.0f ) ; DSET_delete(mset) ;
			if( mask == NULL ) ERROR_exit("Can't make mask from dataset '%s'",argv[nopt]) ;
			nmask = THD_countmask( mask_nx*mask_ny*mask_nz , mask ) ;
			if( verb ) INFO_message("Number of voxels in mask = %d",nmask) ;
			if( nmask < 1 ) ERROR_exit("Mask is too small to process") ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-norm") == 0 ){
			do_norm = 1 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-quiet") == 0 ){
			verb = 0 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-no_rs_out") == 0 ){ // @@
			SERIES_OUT = 0 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-un_bp_out") == 0 ){ // @@
			UNBP_OUT = 1 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-no_rsfa") == 0 ){ // @@
			DO_RSFA = 0 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-bp_at_end") == 0 ){ // @@
			BP_LAST = 1 ; nopt++ ; continue ;
		}




		if( strcmp(argv[nopt],"-notrans") == 0 || strcmp(argv[nopt],"-nosat") == 0 ){
			nosat = 1 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-ort") == 0 ){
			if( ++nopt >= argc ) ERROR_exit("need an argument after -ort!") ;
			if( ortar == NULL ) INIT_IMARR(ortar) ;
			ortim = mri_read_1D( argv[nopt] ) ;
			if( ortim == NULL ) ERROR_exit("can't read from -ort '%s'",argv[nopt]) ;
			mri_add_name(argv[nopt],ortim) ;
			ADDTO_IMARR(ortar,ortim) ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-dsort") == 0 ){
			THD_3dim_dataset *qset ;
			if( ++nopt >= argc ) ERROR_exit("need an argument after -dsort!") ;
			if( nortset > 0 ) ERROR_exit("only 1 -dsort option is allowed!") ;
			qset = THD_open_dataset(argv[nopt]) ;
			CHECK_OPEN_ERROR(qset,argv[nopt]) ;
			ortset = (THD_3dim_dataset **)realloc(ortset,
															  sizeof(THD_3dim_dataset *)*(nortset+1)) ;
			ortset[nortset++] = qset ;
			nopt++ ; continue ;
		}

		if( strncmp(argv[nopt],"-nodetrend",6) == 0 ){
			qdet = 0 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-dt") == 0 ){
			if( ++nopt >= argc ) ERROR_exit("need an argument after -dt!") ;
			dt = (float)strtod(argv[nopt],NULL) ;
			if( dt <= 0.0f ) WARNING_message("value after -dt illegal!") ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-input") == 0 ){
			if( inset != NULL ) ERROR_exit("Can't have 2 -input options!") ;
			if( ++nopt >= argc ) ERROR_exit("need an argument after -input!") ;
			inset = THD_open_dataset(argv[nopt]) ;
			CHECK_OPEN_ERROR(inset,argv[nopt]) ; 

			nopt++ ; continue ;
		}

		if( strncmp(argv[nopt],"-band",5) == 0 ){
			if( ++nopt >= argc-1 ) ERROR_exit("need 2 arguments after -band!") ;
			if( have_freq ) WARNING_message("second -band option replaces first one!") ;
			fbot = strtod(argv[nopt++],NULL) ;
			ftop = strtod(argv[nopt++],NULL) ;
			have_freq = 1 ; continue ;
		}

		ERROR_exit("Unknown option: '%s'",argv[nopt]) ;
   }

   /** check inputs for reasonablositiness **/

   if( !have_freq ){
		if( nopt+1 >= argc )
			ERROR_exit("Need frequencies on command line after options!") ;
		fbot = (float)strtod(argv[nopt++],NULL) ;
		ftop = (float)strtod(argv[nopt++],NULL) ;
   }

   if( inset == NULL ){
		if( nopt >= argc )
			ERROR_exit("Need input dataset name on command line after options!") ;
		inset = THD_open_dataset(argv[nopt]) ;
		CHECK_OPEN_ERROR(inset,argv[nopt]) ;	 

		nopt++ ;
   }
   DSET_UNMSEC(inset) ;

   if( fbot < 0.0f  ) ERROR_exit("fbot value can't be negative!") ;
   if( ftop <= fbot ) ERROR_exit("ftop value %g must be greater than fbot value %g!",ftop,fbot) ;

   ntime = DSET_NVALS(inset) ;
   if( ntime < 9 ) ERROR_exit("Input dataset is too short!") ;

   if( nfft <= 0 ){
		nfft = csfft_nextup_even(ntime) ;
		if( verb ) INFO_message("Data length = %d  FFT length = %d",ntime,nfft) ;
		(void)THD_bandpass_set_nfft(nfft) ;
   } else if( nfft < ntime ){
		ERROR_exit("-nfft %d is less than data length = %d",nfft,ntime) ;
   } else {
		kk = THD_bandpass_set_nfft(nfft) ;
		if( kk != nfft && verb )
			INFO_message("Data length = %d  FFT length = %d",ntime,kk) ;
   }

   if( dt <= 0.0f ){
		dt = DSET_TR(inset) ;
		if( dt <= 0.0f ){
			WARNING_message("Setting dt=1.0 since input dataset lacks a time axis!") ;
			dt = 1.0f ;
		}
   }
   ftopALL = 1./dt ;// Aug,2016: should solve problem of a too-large
                    // value for THD_bandpass_vectors(), while still
                    // being >f_{Nyquist}

   if( !THD_bandpass_OK(ntime,dt,fbot,ftop,1) ) ERROR_exit("Can't continue!") ;

   nx = DSET_NX(inset); ny = DSET_NY(inset); nz = DSET_NZ(inset); nvox = nx*ny*nz;

   /* check mask, or create it */

   if( verb ) INFO_message("Loading input dataset time series" ) ;
   DSET_load(inset) ;

   if( mask != NULL ){
		if( mask_nx != nx || mask_ny != ny || mask_nz != nz )
			ERROR_exit("-mask dataset grid doesn't match input dataset") ;

   } else if( do_automask ){
		mask = THD_automask( inset ) ;
		if( mask == NULL )
			ERROR_message("Can't create -automask from input dataset?") ;
		nmask = THD_countmask( DSET_NVOX(inset) , mask ) ;
		if( verb ) INFO_message("Number of voxels in automask = %d",nmask);
		if( nmask < 1 ) ERROR_exit("Automask is too small to process") ;

   } else {
		mask = (byte *)malloc(sizeof(byte)*nvox) ; nmask = nvox ;
		memset(mask,1,sizeof(byte)*nvox) ;
		// if( verb ) // @@ alert if aaaalllllll vox are going to be analyzed!
		INFO_message("No mask ==> processing all %d voxels",nvox);
   }

   /* A simple check of dataset quality [08 Feb 2010] */

   if( !nosat ){
		float val ;
		INFO_message(
						 "Checking dataset for initial transients [use '-notrans' to skip this test]") ;
		val = THD_saturation_check(inset,mask,0,0) ; kk = (int)(val+0.54321f) ;
		if( kk > 0 )
			ININFO_message(
								"Looks like there %s %d non-steady-state initial time point%s :-(" ,
								((kk==1) ? "is" : "are") , kk , ((kk==1) ? " " : "s") ) ;
		else if( val > 0.3210f )  /* don't ask where this threshold comes from! */
			ININFO_message(
								"MAYBE there's an initial positive transient of 1 point, but it's hard to tell\n") ;
		else
			ININFO_message("No widespread initial positive transient detected :-)") ;
   }

   /* check -dsort inputs for match to inset */

   for( kk=0 ; kk < nortset ; kk++ ){
		if( DSET_NX(ortset[kk])    != nx ||
			 DSET_NY(ortset[kk])    != ny ||
			 DSET_NZ(ortset[kk])    != nz ||
			 DSET_NVALS(ortset[kk]) != ntime )
			ERROR_exit("-dsort %s doesn't match input dataset grid" ,
						  DSET_BRIKNAME(ortset[kk]) ) ;
   }

   /* convert input dataset to a vectim, which is more fun */

	// @@ convert BP'ing ftop/bot into indices for the DFT (below)
	delf = 1.0/(ntime*dt); 
	ind_low = (int) rint(fbot/delf);
	ind_high = (int) rint(ftop/delf);
	if( ntime % 2 ) // nyquist number
		N_ny = (ntime-1)/2;
	else
		N_ny = ntime/2;
	sqnt = sqrt(ntime);
	nt_fac = sqrt(ntime*(ntime-1));

	// @@ if BP_LAST==0:
	// now we go through twice, doing LFF bandpass for NumDen==0 and
	// `full spectrum' processing for NumDen==1.
	// if BP_LAST==1:
	// now we go through once, doing only `full spectrum' processing
	for( NumDen=0 ; NumDen<2 ; NumDen++) {
		//if( NumDen==1 ){ // full spectrum
		//	fbot = fbotALL;
		//	ftop = ftopALL;
		//}
		
		// essentially, just doesn't BP here, and the perfect filtering at end
		// is used for both still; this makes the final output spectrum
		// contain only frequencies in range of 0.01-0.08
		if( BP_LAST==1 )
			INFO_message("Only doing filtering to LFFs at end!");
		
		
		mrv = THD_dset_to_vectim( inset , mask , 0 ) ;
		if( mrv == NULL ) ERROR_exit("Can't load time series data!?") ;
		if( NumDen==1 )
			DSET_unload(inset) ; // @@ only unload on 2nd pass

		/* similarly for the ort vectors */

		if( ortar != NULL ){
			for( kk=0 ; kk < IMARR_COUNT(ortar) ; kk++ ){
				ortim = IMARR_SUBIM(ortar,kk) ;
				if( ortim->nx < ntime )
					ERROR_exit("-ort file %s is shorter than input dataset time series",
								  ortim->name ) ;
				ort  = (float **)realloc( ort , sizeof(float *)*(nort+ortim->ny) ) ;
				for( vv=0 ; vv < ortim->ny ; vv++ )
					ort[nort++] = MRI_FLOAT_PTR(ortim) + ortim->nx * vv ;
			}
		}

		/* all the real work now */

		if( do_despike ){
			int_pair nsp ;
			if( verb ) INFO_message("Testing data time series for spikes") ;
			nsp = THD_vectim_despike9( mrv ) ;
			if( verb ) ININFO_message(" -- Squashed %d spikes from %d voxels",nsp.j,nsp.i) ;
		}

		if( verb ) INFO_message("Bandpassing data time series") ;

		if( (BP_LAST==0) && (NumDen==0) )
			(void)THD_bandpass_vectim( mrv , dt,fbot,ftop , qdet , nort,ort ) ;
		else
			(void)THD_bandpass_vectim( mrv , dt,fbotALL,ftopALL, qdet,nort,ort ) ;

		/* OK, maybe a little more work */

		if( nortset == 1 ){
			MRI_vectim *orv ;
			orv = THD_dset_to_vectim( ortset[0] , mask , 0 ) ;
			if( orv == NULL ){
				ERROR_message("Can't load -dsort %s",DSET_BRIKNAME(ortset[0])) ;
			} else {
				float *dp , *mvv , *ovv , ff ;
				if( verb ) INFO_message("Orthogonalizing to bandpassed -dsort") ;
				//(void)THD_bandpass_vectim( orv , dt,fbot,ftop , qdet , nort,ort ) ; //@@
				if( (BP_LAST==0) && (NumDen==0) )
					(void)THD_bandpass_vectim(orv,dt,fbot,ftop,qdet,nort,ort);
				else
					(void)THD_bandpass_vectim(orv,dt,fbotALL,ftopALL,qdet,nort,ort);

				THD_vectim_normalize( orv ) ;
				dp = malloc(sizeof(float)*mrv->nvec) ;
				THD_vectim_vectim_dot( mrv , orv , dp ) ;
				for( vv=0 ; vv < mrv->nvec ; vv++ ){
					ff = dp[vv] ;
					if( ff != 0.0f ){
						mvv = VECTIM_PTR(mrv,vv) ; ovv = VECTIM_PTR(orv,vv) ;
						for( kk=0 ; kk < ntime ; kk++ ) mvv[kk] -= ff*ovv[kk] ;
					}
				}
				VECTIM_destroy(orv) ; free(dp) ;
			}
		}

		if( blur > 0.0f ){
			if( verb )
				INFO_message("Blurring time series data spatially; FWHM=%.2f",blur) ;
			mri_blur3D_vectim( mrv , blur ) ;
		}
		if( pvrad > 0.0f ){
			if( verb )
				INFO_message("Local PV-ing time series data spatially; radius=%.2f",pvrad) ;
			THD_vectim_normalize( mrv ) ;
			THD_vectim_localpv( mrv , pvrad ) ;
		}
		if( do_norm && pvrad <= 0.0f ){
			if( verb ) INFO_message("L2 normalizing time series data") ;
			THD_vectim_normalize( mrv ) ;
		}

		/* create output dataset, populate it, write it, then quit */
		if( (NumDen==0) ) { // @@ BP'ed version;  will do filt if BP_LAST

			if(BP_LAST) // do bandpass here for BP_LAST
				(void)THD_bandpass_vectim(mrv,dt,fbot,ftop,qdet,0,NULL);

			if( verb ) INFO_message("Creating output dataset in memory, then writing it") ;
			outset = EDIT_empty_copy(inset) ;
			if(SERIES_OUT){
				sprintf(out_lff,"%s_LFF",prefix); 
				EDIT_dset_items( outset , ADN_prefix,out_lff , ADN_none ) ;
				tross_Copy_History( inset , outset ) ;
				tross_Make_History( "3dBandpass" , argc,argv , outset ) ;
			}
			for( vv=0 ; vv < ntime ; vv++ )
				EDIT_substitute_brick( outset , vv , MRI_float , NULL ) ;
		
#if 1
			THD_vectim_to_dset( mrv , outset ) ;
#else
			AFNI_OMP_START ;
#pragma omp parallel
			{ float *far , *var ; int *ivec=mrv->ivec ; int vv,kk ;
#pragma omp for
				for( vv=0 ; vv < ntime ; vv++ ){
					far = DSET_BRICK_ARRAY(outset,vv) ; var = mrv->fvec + vv ;
					for( kk=0 ; kk < nmask ; kk++ ) far[ivec[kk]] = var[kk*ntime] ;
				}
			}
			AFNI_OMP_END ;
#endif
			VECTIM_destroy(mrv) ;
			if(SERIES_OUT){ // @@
				DSET_write(outset) ; if( verb ) WROTE_DSET(outset) ;
			}
		}
		else{ // @@ non-BP'ed version
			if( verb ) INFO_message("Creating output dataset 2 in memory") ;

			// do this here because LFF version was also BP'ed at end.
			if(BP_LAST) // do bandpass here for BP_LAST
				(void)THD_bandpass_vectim(mrv,dt,fbotALL,ftopALL,qdet,0,NULL);

			outsetALL = EDIT_empty_copy(inset) ;
			if(UNBP_OUT){ 
				sprintf(out_unBP,"%s_unBP",prefix); 
				EDIT_dset_items( outsetALL, ADN_prefix, out_unBP, ADN_none );
				tross_Copy_History( inset , outsetALL ) ;
				tross_Make_History( "3dRSFC" , argc,argv , outsetALL ) ;
			}
			for( vv=0 ; vv < ntime ; vv++ )
				EDIT_substitute_brick( outsetALL , vv , MRI_float , NULL ) ;
		
#if 1
			THD_vectim_to_dset( mrv , outsetALL ) ;
#else
			AFNI_OMP_START ;
#pragma omp parallel
			{ float *far , *var ; int *ivec=mrv->ivec ; int vv,kk ;
#pragma omp for
				for( vv=0 ; vv < ntime ; vv++ ){
					far = DSET_BRICK_ARRAY(outsetALL,vv) ; var = mrv->fvec + vv ;
					for( kk=0 ; kk < nmask ; kk++ ) far[ivec[kk]] = var[kk*ntime] ;
				}
			}
			AFNI_OMP_END ;
#endif
			VECTIM_destroy(mrv) ;
			if(UNBP_OUT){ 
				DSET_write(outsetALL) ; if( verb ) WROTE_DSET(outsetALL) ;
			}
		}
	}// end of NumDen loop


	// @@
	INFO_message("Starting the (f)ALaFFel calcs") ;

	// allocations
	series1 = (double *)calloc(ntime,sizeof(double)); 
	series2 = (double *)calloc(ntime,sizeof(double)); 
	xx1 = (double *)calloc(2*ntime,sizeof(double)); 
	xx2 = (double *)calloc(2*ntime,sizeof(double)); 
	alff = (float *)calloc(nvox,sizeof(float)); 
	malff = (float *)calloc(nvox,sizeof(float)); 
	falff = (float *)calloc(nvox,sizeof(float)); 

	if( (series1 == NULL) || (series2 == NULL) 
		 || (xx1 == NULL) || (xx2 == NULL) 
		 || (alff == NULL) || (malff == NULL) || (falff == NULL)) { 
		fprintf(stderr, "\n\n MemAlloc failure.\n\n");
		exit(122);
	}
	if(DO_RSFA) {
		rsfa = (float *)calloc(nvox,sizeof(float)); 
		mrsfa = (float *)calloc(nvox,sizeof(float)); 
		frsfa = (float *)calloc(nvox,sizeof(float)); 
		if( (rsfa == NULL) || (mrsfa == NULL) || (frsfa == NULL)) { 
			fprintf(stderr, "\n\n MemAlloc failure.\n\n");
			exit(123);
		}	
	}
	
	
	work = gsl_fft_real_workspace_alloc (ntime);
	real1 = gsl_fft_real_wavetable_alloc (ntime);
	real2 = gsl_fft_real_wavetable_alloc (ntime);
	gsl_complex_packed_array compl_freqs1 = xx1;
	gsl_complex_packed_array compl_freqs2 = xx2;




	// *********************************************************************
	// *********************************************************************
	// **************    Falafelling = ALFF/fALFF calcs    *****************
	// *********************************************************************
	// *********************************************************************

	// Be now have the BP'ed data set (outset) and the non-BP'ed one
	// (outsetALL).  now we'll FFT both, get amplitudes in appropriate
	// ranges, and calculate:  ALFF, mALFF, fALFF,

	ctr = 0;
	for( kk=0; kk<nvox ; kk++) {
		if(mask[kk]) {
			
			// BP one, and unBP one, either for BP_LAST or !BP_LAST
			for( m=0 ; m<ntime ; m++ ) {
				series1[m] = THD_get_voxel(outset,kk,m);
				series2[m] = THD_get_voxel(outsetALL,kk,m);
			}
			
			
			mm = gsl_fft_real_transform(series1, 1, ntime, real1, work);
			mm = gsl_fft_halfcomplex_unpack(series1, compl_freqs1, 1, ntime);
			mm = gsl_fft_real_transform(series2, 1, ntime, real2, work);
			mm = gsl_fft_halfcomplex_unpack(series2, compl_freqs2, 1, ntime);

			numer = 0.0f; 
			denom = 0.0f;
			de_rsfa = 0.0f;
			nu_rsfa = 0.0f;
			for( m=1 ; m<N_ny ; m++ ) {
				mm = 2*m;
				pow2 = compl_freqs2[mm]*compl_freqs2[mm] +
					compl_freqs2[mm+1]*compl_freqs2[mm+1]; // power
				//pow2*=2;// factor of 2 since ampls are even funcs
				denom+= (float) sqrt(pow2); // amplitude 
				de_rsfa+= (float) pow2;
				
				if( ( m>=ind_low ) && ( m<=ind_high ) ){
					pow1 = compl_freqs1[mm]*compl_freqs1[mm]+
						compl_freqs1[mm+1]*compl_freqs1[mm+1];
					//pow1*=2;
					numer+= (float) sqrt(pow1);
					nu_rsfa+= (float) pow1;
				}
			}

			if( denom>0.000001 )
			  falff[kk] = numer/denom;
			else
			  falff[kk] = 0.;
			alff[kk] = 2*numer/sqnt;// factor of 2 since ampl is even funct
			meanALFF+= alff[kk];

			if(DO_RSFA){
			  nu_rsfa = sqrt(2*nu_rsfa); // factor of 2 since ampls 
			  de_rsfa = sqrt(2*de_rsfa); // are even funcs
			  if( de_rsfa>0.000001 )
			    frsfa[kk] = nu_rsfa/de_rsfa;
			  else
			    frsfa[kk]=0.;
			  rsfa[kk] = nu_rsfa/nt_fac;
			  meanRSFA+= rsfa[kk];
			}
			
			ctr+=1;
		}
	}
	meanALFF/= ctr;
	meanRSFA/= ctr;

	gsl_fft_real_wavetable_free(real1);
	gsl_fft_real_wavetable_free(real2);
	gsl_fft_real_workspace_free(work);

	// ALFFs divided by mean of brain value
	for( kk=0 ; kk<nvox ; kk++ ) 
		if(mask[kk]){
			malff[kk] = alff[kk]/meanALFF;
			if(DO_RSFA)
				mrsfa[kk] = rsfa[kk]/meanRSFA;
		}
	// **************************************************************
	// **************************************************************
	//                 Store and output
	// **************************************************************
	// **************************************************************
	
	outsetALFF = EDIT_empty_copy( inset ) ; 
	sprintf(out_alff,"%s_ALFF",prefix); 
	EDIT_dset_items( outsetALFF,
                    ADN_nvals, 1,
						  ADN_datum_all , MRI_float , 
						  ADN_prefix    , out_alff,
						  ADN_none ) ;
	if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetALFF)) )
		ERROR_exit("Can't overwrite existing dataset '%s'",
					  DSET_HEADNAME(outsetALFF));
	EDIT_substitute_brick(outsetALFF, 0, MRI_float, alff); 
	alff=NULL;
	THD_load_statistics(outsetALFF);
	tross_Make_History("3dRSFC", argc, argv, outsetALFF);
	THD_write_3dim_dataset(NULL, NULL, outsetALFF, True);

	outsetfALFF = EDIT_empty_copy( inset ) ;
	sprintf(out_falff,"%s_fALFF",prefix); 
	EDIT_dset_items( outsetfALFF,
                    ADN_nvals, 1,
						  ADN_datum_all , MRI_float , 
						  ADN_prefix    , out_falff,
						  ADN_none ) ;
	if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetfALFF)) )
		ERROR_exit("Can't overwrite existing dataset '%s'",
					  DSET_HEADNAME(outsetfALFF));
	EDIT_substitute_brick(outsetfALFF, 0, MRI_float, falff); 
	falff=NULL;
	THD_load_statistics(outsetfALFF);
	tross_Make_History("3dRSFC", argc, argv, outsetfALFF);
	THD_write_3dim_dataset(NULL, NULL, outsetfALFF, True);



	outsetmALFF = EDIT_empty_copy( inset ) ;
	sprintf(out_malff,"%s_mALFF",prefix); 
	EDIT_dset_items( outsetmALFF,
                    ADN_nvals, 1,
                    ADN_datum_all , MRI_float , 
						  ADN_prefix    , out_malff,
						  ADN_none ) ;
	if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetmALFF)) )
		ERROR_exit("Can't overwrite existing dataset '%s'",
					  DSET_HEADNAME(outsetmALFF));
	EDIT_substitute_brick(outsetmALFF, 0, MRI_float, malff); 
	malff=NULL;
	THD_load_statistics(outsetmALFF);
	tross_Make_History("3dRSFC", argc, argv, outsetmALFF);
	THD_write_3dim_dataset(NULL, NULL, outsetmALFF, True);

	if(DO_RSFA){
     outsetRSFA = EDIT_empty_copy( inset ) ;
		sprintf(out_rsfa,"%s_RSFA",prefix); 
		EDIT_dset_items( outsetRSFA,
                       ADN_nvals, 1,
                       ADN_datum_all , MRI_float , 
							  ADN_prefix    , out_rsfa,
							  ADN_none ) ;
		if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetRSFA)) )
			ERROR_exit("Can't overwrite existing dataset '%s'",
						  DSET_HEADNAME(outsetRSFA));
		EDIT_substitute_brick(outsetRSFA, 0, MRI_float, rsfa); 
		rsfa=NULL;
		THD_load_statistics(outsetRSFA);
		tross_Make_History("3dRSFC", argc, argv, outsetRSFA);
		THD_write_3dim_dataset(NULL, NULL, outsetRSFA, True);
		
      outsetfRSFA = EDIT_empty_copy( inset ) ;
		sprintf(out_frsfa,"%s_fRSFA",prefix); 
		EDIT_dset_items( outsetfRSFA,
                       ADN_nvals, 1,
                       ADN_datum_all , MRI_float , 
							  ADN_prefix    , out_frsfa,
							  ADN_none ) ;
		if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetfRSFA)) )
			ERROR_exit("Can't overwrite existing dataset '%s'",
						  DSET_HEADNAME(outsetfRSFA));
		EDIT_substitute_brick(outsetfRSFA, 0, MRI_float, frsfa); 
		frsfa=NULL;
		THD_load_statistics(outsetfRSFA);
		tross_Make_History("3dRSFC", argc, argv, outsetfRSFA);
		THD_write_3dim_dataset(NULL, NULL, outsetfRSFA, True);
		
		outsetmRSFA = EDIT_empty_copy( inset ) ; 
		sprintf(out_mrsfa,"%s_mRSFA",prefix); 
		EDIT_dset_items( outsetmRSFA,
                       ADN_nvals, 1,
                       ADN_datum_all , MRI_float , 
							  ADN_prefix    , out_mrsfa,
							  ADN_none ) ;
		if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetmRSFA)) )
			ERROR_exit("Can't overwrite existing dataset '%s'",
						  DSET_HEADNAME(outsetmRSFA));
		EDIT_substitute_brick(outsetmRSFA, 0, MRI_float, mrsfa); 
		mrsfa=NULL;
		THD_load_statistics(outsetmRSFA);
		tross_Make_History("3dRSFC", argc, argv, outsetmRSFA);
		THD_write_3dim_dataset(NULL, NULL, outsetmRSFA, True);
	}



	// ************************************************************
	// ************************************************************
	//                    Freeing
	// ************************************************************
	// ************************************************************

	DSET_delete(inset);
	DSET_delete(outsetALL);
	DSET_delete(outset);
	DSET_delete(outsetALFF);
	DSET_delete(outsetmALFF);
	DSET_delete(outsetfALFF);
	DSET_delete(outsetRSFA);
	DSET_delete(outsetmRSFA);
	DSET_delete(outsetfRSFA);

	free(inset);
	free(outsetALL);
	free(outset);
	free(outsetALFF);
	free(outsetmALFF);
	free(outsetfALFF);
	free(outsetRSFA);
	free(outsetmRSFA);
	free(outsetfRSFA);

	free(rsfa);
	free(mrsfa);
	free(frsfa);
	free(alff);
	free(malff);
	free(falff);
	free(mask);
	free(series1);
	free(series2);
	free(xx1);
	free(xx2);

	exit(0) ;
}
Example #25
0
int main( int argc , char *argv[] )
{
   int iarg , ii,jj,kk,mm , nvec , do_one=0 , nx=0,ny , ff, doterse = 0 ;
   MRI_IMAGE *tim ;
   MRI_IMARR *tar ;
   double sum , *eval , *amat , **tvec , *bmat , *svec ;
   float *far ;
   int demean=0 , docov=0 ;
   char *matname ;
   int okzero = 0;

   mainENTRY("1ddot main"); machdep();
   /* options */

   iarg = 1 ; nvec = 0 ;
   while( iarg < argc && argv[iarg][0] == '-' ){

     if (strcmp(argv[iarg],"-help") == 0 || strcmp(argv[iarg],"-h") == 0){
       usage_1ddot(strlen(argv[iarg])>3 ? 2:1);
       exit(0);
     }

     if( strcmp(argv[iarg],"-one") == 0 ){
       demean = 0 ; do_one = 1 ; iarg++ ; continue ;
     }

     if( strcmp(argv[iarg],"-okzero") == 0 ){
       okzero = 1 ; iarg++ ; continue ;
     }

     if( strncmp(argv[iarg],"-dem",4) == 0 ){
       demean = 1 ; do_one = 0 ; iarg++ ; continue ;
     }

     if( strncmp(argv[iarg],"-cov",4) == 0 ){
       docov = 1 ; iarg++ ; continue ;
     }

     if( strncmp(argv[iarg],"-inn",4) == 0 ){
       docov = 2 ; iarg++ ; continue ;
     }

     if( strcasecmp(argv[iarg],"-rank")     == 0 ||
         strcasecmp(argv[iarg],"-spearman") == 0   ){
       do_one = 0; docov = 3; demean = 0; doterse = 1; iarg++; continue;
     }

     if( strncmp(argv[iarg],"-terse",4) == 0 ){
       doterse = 1 ; iarg++ ; continue ;
     }

     fprintf(stderr,"** Unknown option: %s\n",argv[iarg]);
     suggest_best_prog_option(argv[0], argv[iarg]);
     exit(1);
   }

   if( argc < 2 ){ usage_1ddot(1); exit(0) ; }

   if( iarg == argc ) ERROR_exit("No 1D files on command line!?") ;

   /* input 1D files */

   ff = iarg ;
   INIT_IMARR(tar) ; if( do_one ) nvec = 1 ;
   for( ; iarg < argc ; iarg++ ){
     tim = mri_read_1D( argv[iarg] ) ;
     if( tim == NULL ){
       fprintf(stderr,"** Can't read 1D file %s\n",argv[iarg]); exit(1);
     }
     if( nx == 0 ){
       nx = tim->nx ;
     } else if( tim->nx != nx ){
       fprintf(stderr,"** 1D file %s doesn't match first file in length!\n",
               argv[iarg]); exit(1);
     }
     nvec += tim->ny ;
     ADDTO_IMARR(tar,tim) ;
   }

   if (!doterse) {
      printf("\n") ;
      printf("++ 1ddot input vectors:\n") ;
   }
   jj = 0 ;
   if( do_one ){
     if (!doterse) printf("00..00: all ones\n") ;
     jj = 1 ;
   }
   for( mm=0 ; mm < IMARR_COUNT(tar) ; mm++ ){
     tim = IMARR_SUBIM(tar,mm) ;
     if (!doterse) printf("%02d..%02d: %s\n", jj,jj+tim->ny-1, argv[ff+mm] ) ;
     jj += tim->ny ;
   }

   /* create vectors from 1D files */

   tvec = (double **) malloc( sizeof(double *)*nvec ) ;
   svec = (double * ) malloc( sizeof(double  )*nvec ) ;
   for( jj=0 ; jj < nvec ; jj++ )
     tvec[jj] = (double *) malloc( sizeof(double)*nx ) ;

   kk = 0 ;
   if( do_one ){
     svec[0] = 1.0 / sqrt((double)nx) ;
     for( ii=0 ; ii < nx ; ii++ ) tvec[0][ii] = 1.0 ;
     kk = 1 ;
   }

   for( mm=0 ; mm < IMARR_COUNT(tar) ; mm++ ){
     tim = IMARR_SUBIM(tar,mm) ;
     far = MRI_FLOAT_PTR(tim) ;
     for( jj=0 ; jj < tim->ny ; jj++,kk++ ){
       for( ii=0 ; ii < nx ; ii++ ) tvec[kk][ii] = far[ii+jj*nx] ;
       if( demean ){
         sum = 0.0 ;
         for( ii=0 ; ii < nx ; ii++ ) sum += tvec[kk][ii] ;
         sum /= nx ;
         for( ii=0 ; ii < nx ; ii++ ) tvec[kk][ii] -= sum ;
       }
       sum = 0.0 ;
       for( ii=0 ; ii < nx ; ii++ ) sum += tvec[kk][ii] * tvec[kk][ii] ;
       if( sum == 0.0 ) {
         if (okzero) svec[kk] = 0.0;
         else ERROR_exit("Input column %02d is all zero!",kk) ;
       } else {
         svec[kk] = 1.0 / sqrt(sum) ;
       }
     }
   }
   DESTROY_IMARR(tar) ;

   /* normalize vectors? (for ordinary correlation) */

   if( !docov ){
     for( kk=0 ; kk < nvec ; kk++ ){
       sum = svec[kk] ;
       for( ii=0 ; ii < nx ; ii++ ) tvec[kk][ii] *= sum ;
     }
   }

   switch(docov){
     default:
     case 3:  matname = "Spearman"     ; break ;
     case 2:  matname = "InnerProduct" ; break ;
     case 1:  matname = "Covariance"   ; break ;
     case 0:  matname = "Correlation"  ; break ;
   }

   /* create matrix from dot product of vectors */

   amat = (double *) calloc( sizeof(double) , nvec*nvec ) ;

   if( docov != 3 ){
     for( kk=0 ; kk < nvec ; kk++ ){
       for( jj=0 ; jj <= kk ; jj++ ){
         sum = 0.0 ;
         for( ii=0 ; ii < nx ; ii++ ) sum += tvec[jj][ii] * tvec[kk][ii] ;
         amat[jj+nvec*kk] = sum ;
         if( jj < kk ) amat[kk+nvec*jj] = sum ;
       }
     }
   } else {  /* Spearman */
     for( kk=0 ; kk < nvec ; kk++ ){
       for( jj=0 ; jj <= kk ; jj++ ){
         amat[jj+nvec*kk] = THD_spearman_corr_dble( nx , tvec[jj] , tvec[kk] ) ;
         if( jj < kk ) amat[kk+nvec*jj] = amat[jj+nvec*kk] ;
       }
     }
   }

   /* normalize */
   if (docov==1) {
      for( kk=0 ; kk < nvec ; kk++ ){
         for( jj=0 ; jj <= kk ; jj++ ){
            sum = amat[jj+nvec*kk] / (double) (nx-1);
            amat[jj+nvec*kk] = sum;
            if( jj < kk ) amat[kk+nvec*jj] = sum ;
         }
      }
   }

   /* print matrix out */

   if (!doterse) {
      printf("\n"
             "++ %s Matrix:\n   ",matname) ;
      for( jj=0 ; jj < nvec ; jj++ ) printf("    %02d    ",jj) ;
      printf("\n   ") ;
      for( jj=0 ; jj < nvec ; jj++ ) printf(" ---------") ;
      printf("\n") ;
   }
   for( kk=0 ; kk < nvec ; kk++ ){
     if (!doterse) printf("%02d:",kk) ;
     for( jj=0 ; jj < nvec ; jj++ ) printf(" %9.5f",amat[jj+kk*nvec]) ;
     printf("\n") ;
   }

   if (doterse) exit(0) ; /* au revoir */

   /* compute eigendecomposition */

   eval = (double *) malloc( sizeof(double)*nvec ) ;
   symeig_double( nvec , amat , eval ) ;

   printf("\n"
          "++ Eigensolution of %s Matrix:\n   " , matname ) ;
   for( jj=0 ; jj < nvec ; jj++ ) printf(" %9.5f",eval[jj]) ;
   printf("\n   ") ;
   for( jj=0 ; jj < nvec ; jj++ ) printf(" ---------") ;
   printf("\n") ;
   for( kk=0 ; kk < nvec ; kk++ ){
     printf("%02d:",kk) ;
     for( jj=0 ; jj < nvec ; jj++ ) printf(" %9.5f",amat[kk+jj*nvec]) ;
     printf("\n") ;
   }

   /* compute matrix inverse */
   if ( eval[0]/eval[nvec-1] < 1.0e-10) {
      printf("\n"
             "-- WARNING: Matrix is near singular,\n"
             "            rubbish likely for inverses ahead.\n");
   }
   for( jj=0 ; jj < nvec ; jj++ ) eval[jj] = 1.0 / eval[jj] ;

   bmat = (double *) calloc( sizeof(double) , nvec*nvec ) ;

   for( ii=0 ; ii < nvec ; ii++ ){
     for( jj=0 ; jj < nvec ; jj++ ){
       sum = 0.0 ;
       for( kk=0 ; kk < nvec ; kk++ )
         sum += amat[ii+kk*nvec] * amat[jj+kk*nvec] * eval[kk] ;
       bmat[ii+jj*nvec] = sum ;
     }
   }

   printf("\n") ;
   printf("++ %s Matrix Inverse:\n   " , matname ) ;
   for( jj=0 ; jj < nvec ; jj++ ) printf("    %02d    ",jj) ;
   printf("\n   ") ;
   for( jj=0 ; jj < nvec ; jj++ ) printf(" ---------") ;
   printf("\n") ;
   for( kk=0 ; kk < nvec ; kk++ ){
     printf("%02d:",kk) ;
     for( jj=0 ; jj < nvec ; jj++ ) printf(" %9.5f",bmat[jj+kk*nvec]) ;
     printf("\n") ;
   }

   /* square roots of diagonals of the above */

   printf("\n") ;
   printf("++ %s sqrt(diagonal)\n   ",matname) ;
   for( jj=0 ; jj < nvec ; jj++ ) printf(" %9.5f",sqrt(bmat[jj+jj*nvec])) ;
   printf("\n") ;

   /* normalize matrix inverse */

   for( ii=0 ; ii < nvec ; ii++ ){
     for( jj=0 ; jj < nvec ; jj++ ){
       sum = bmat[ii+ii*nvec] * bmat[jj+jj*nvec] ;
       if( sum > 0.0 )
         amat[ii+jj*nvec] = bmat[ii+jj*nvec] / sqrt(sum) ;
       else
         amat[ii+jj*nvec] = 0.0 ;
     }
   }

   printf("\n") ;
   printf("++ %s Matrix Inverse Normalized:\n   " , matname ) ;
   for( jj=0 ; jj < nvec ; jj++ ) printf("    %02d    ",jj) ;
   printf("\n   ") ;
   for( jj=0 ; jj < nvec ; jj++ ) printf(" ---------") ;
   printf("\n") ;
   for( kk=0 ; kk < nvec ; kk++ ){
     printf("%02d:",kk) ;
     for( jj=0 ; jj < nvec ; jj++ ) printf(" %9.5f",amat[jj+kk*nvec]) ;
     printf("\n") ;
   }

   /* done */

   exit(0) ;
}