void amdtest (cholmod_sparse *A) { double Control [AMD_CONTROL], Info [AMD_INFO], alpha ; Int *P, *Cp, *Ci, *Sp, *Si, *Bp, *Bi, *Ep, *Ei, *Fp, *Fi, *Len, *Nv, *Next, *Head, *Elen, *Deg, *Wi, *W, *Flag ; cholmod_sparse *C, *B, *S, *E, *F ; Int i, j, n, nrow, ncol, ok, cnz, bnz, p, trial, sorted ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ printf ("\nAMD test\n") ; if (A == NULL) { return ; } if (A->stype) { B = CHOLMOD(copy) (A, 0, 0, cm) ; } else { B = CHOLMOD(aat) (A, NULL, 0, 0, cm) ; } if (A->nrow != A->ncol) { F = CHOLMOD(copy_sparse) (B, cm) ; OK (F->nrow == F->ncol) ; CHOLMOD(sort) (F, cm) ; } else { /* A is square and unsymmetric, and may have entries in A+A' that * are not in A */ F = CHOLMOD(copy_sparse) (A, cm) ; CHOLMOD(sort) (F, cm) ; } C = CHOLMOD(copy_sparse) (B, cm) ; nrow = C->nrow ; ncol = C->ncol ; n = nrow ; OK (nrow == ncol) ; Cp = C->p ; Ci = C->i ; Bp = B->p ; Bi = B->i ; /* ---------------------------------------------------------------------- */ /* S = sorted form of B, using AMD_preprocess */ /* ---------------------------------------------------------------------- */ cnz = CHOLMOD(nnz) (C, cm) ; S = CHOLMOD(allocate_sparse) (n, n, cnz, TRUE, TRUE, 0, CHOLMOD_PATTERN, cm); Sp = S->p ; Si = S->i ; W = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Flag = CHOLMOD(malloc) (n, sizeof (Int), cm) ; AMD_preprocess (n, Bp, Bi, Sp, Si, W, Flag) ; /* ---------------------------------------------------------------------- */ /* allocate workspace for amd */ /* ---------------------------------------------------------------------- */ P = CHOLMOD(malloc) (n+1, sizeof (Int), cm) ; Len = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Nv = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Next = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Head = CHOLMOD(malloc) (n+1, sizeof (Int), cm) ; Elen = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Deg = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Wi = CHOLMOD(malloc) (n, sizeof (Int), cm) ; /* ---------------------------------------------------------------------- */ for (sorted = 0 ; sorted <= 1 ; sorted++) { if (sorted) CHOLMOD(sort) (C, cm) ; Cp = C->p ; Ci = C->i ; /* ------------------------------------------------------------------ */ /* order C with AMD_order */ /* ------------------------------------------------------------------ */ AMD_defaults (Control) ; AMD_defaults (NULL) ; AMD_control (Control) ; AMD_control (NULL) ; AMD_info (NULL) ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; printf ("amd return value: "ID"\n", ok) ; AMD_info (Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD permutation", cm)) ; /* no dense rows/cols */ alpha = Control [AMD_DENSE] ; Control [AMD_DENSE] = -1 ; AMD_control (Control) ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; printf ("amd return value: "ID"\n", ok) ; AMD_info (Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD permutation (alpha=-1)", cm)) ; /* many dense rows/cols */ Control [AMD_DENSE] = 0 ; AMD_control (Control) ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; printf ("amd return value: "ID"\n", ok) ; AMD_info (Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD permutation (alpha=0)", cm)) ; Control [AMD_DENSE] = alpha ; /* no aggressive absorption */ Control [AMD_AGGRESSIVE] = FALSE ; AMD_control (Control) ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; printf ("amd return value: "ID"\n", ok) ; AMD_info (Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD permutation (no agg) ", cm)) ; Control [AMD_AGGRESSIVE] = TRUE ; /* ------------------------------------------------------------------ */ /* order F with AMD_order */ /* ------------------------------------------------------------------ */ Fp = F->p ; Fi = F->i ; ok = AMD_order (n, Fp, Fi, P, Control, Info) ; printf ("amd return value: "ID"\n", ok) ; AMD_info (Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "F: AMD permutation", cm)) ; /* ------------------------------------------------------------------ */ /* order S with AMD_order */ /* ------------------------------------------------------------------ */ ok = AMD_order (n, Sp, Si, P, Control, Info) ; printf ("amd return value: "ID"\n", ok) ; AMD_info (Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD permutation", cm)) ; /* ------------------------------------------------------------------ */ /* order E with AMD_2, which destroys its contents */ /* ------------------------------------------------------------------ */ E = CHOLMOD(copy) (B, 0, -1, cm) ; /* remove diagonal entries */ bnz = CHOLMOD(nnz) (E, cm) ; /* add the bare minimum extra space to E */ ok = CHOLMOD(reallocate_sparse) (bnz + n, E, cm) ; OK (ok) ; Ep = E->p ; Ei = E->i ; for (j = 0 ; j < n ; j++) { Len [j] = Ep [j+1] - Ep [j] ; } printf ("calling AMD_2:\n") ; if (n > 0) { AMD_2 (n, Ep, Ei, Len, E->nzmax, Ep [n], Nv, Next, P, Head, Elen, Deg, Wi, Control, Info) ; AMD_info (Info) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD2 permutation", cm)) ; } /* ------------------------------------------------------------------ */ /* error tests */ /* ------------------------------------------------------------------ */ ok = AMD_order (n, Cp, Ci, P, Control, Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; ok = AMD_order (-1, Cp, Ci, P, Control, Info) ; OK (ok == AMD_INVALID); ok = AMD_order (0, Cp, Ci, P, Control, Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; ok = AMD_order (n, NULL, Ci, P, Control, Info) ; OK (ok == AMD_INVALID); ok = AMD_order (n, Cp, NULL, P, Control, Info) ; OK (ok == AMD_INVALID); ok = AMD_order (n, Cp, Ci, NULL, Control, Info) ; OK (ok == AMD_INVALID); if (n > 0) { printf ("AMD error tests:\n") ; p = Cp [n] ; Cp [n] = -1 ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; OK (ok == AMD_INVALID) ; if (Size_max/2 == Int_max) { Cp [n] = Int_max ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; printf ("AMD status is "ID"\n", ok) ; OK (ok == AMD_OUT_OF_MEMORY) ; } Cp [n] = p ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; if (Cp [n] > 0) { printf ("Mangle column zero:\n") ; i = Ci [0] ; Ci [0] = -1 ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; AMD_info (Info) ; OK (ok == AMD_INVALID) ; Ci [0] = i ; } } ok = AMD_valid (n, n, Sp, Si) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; ok = AMD_valid (-1, n, Sp, Si) ; OK (ok == AMD_INVALID) ; ok = AMD_valid (n, -1, Sp, Si) ; OK (ok == AMD_INVALID) ; ok = AMD_valid (n, n, NULL, Si) ; OK (ok == AMD_INVALID) ; ok = AMD_valid (n, n, Sp, NULL) ; OK (ok == AMD_INVALID) ; if (n > 0 && Sp [n] > 0) { p = Sp [n] ; Sp [n] = -1 ; ok = AMD_valid (n, n, Sp, Si) ; OK (ok == AMD_INVALID) ; Sp [n] = p ; p = Sp [0] ; Sp [0] = -1 ; ok = AMD_valid (n, n, Sp, Si) ; OK (ok == AMD_INVALID) ; Sp [0] = p ; p = Sp [1] ; Sp [1] = -1 ; ok = AMD_valid (n, n, Sp, Si) ; OK (ok == AMD_INVALID) ; Sp [1] = p ; i = Si [0] ; Si [0] = -1 ; ok = AMD_valid (n, n, Sp, Si) ; OK (ok == AMD_INVALID) ; Si [0] = i ; } ok = AMD_valid (n, n, Sp, Si) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; AMD_preprocess (n, Bp, Bi, Sp, Si, W, Flag) ; ok = AMD_valid (n, n, Sp, Si) ; OK (ok == AMD_OK) ; if (n > 0 && Bp [n] > 0) { p = Bp [n] ; Bp [n] = -1 ; ok = AMD_valid (n, n, Bp, Bi) ; OK (ok == AMD_INVALID) ; Bp [n] = p ; p = Bp [1] ; Bp [1] = -1 ; ok = AMD_valid (n, n, Bp, Bi) ; OK (ok == AMD_INVALID) ; Bp [1] = p ; i = Bi [0] ; Bi [0] = -1 ; ok = AMD_valid (n, n, Bp, Bi) ; OK (ok == AMD_INVALID) ; Bi [0] = i ; } AMD_preprocess (n, Bp, Bi, Sp, Si, W, Flag) ; Info [AMD_STATUS] = 777 ; AMD_info (Info) ; /* ------------------------------------------------------------------ */ /* memory tests */ /* ------------------------------------------------------------------ */ if (n > 0) { amd_malloc = cm->malloc_memory ; amd_free = cm->free_memory ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; test_memory_handler ( ) ; amd_malloc = cm->malloc_memory ; amd_free = cm->free_memory ; for (trial = 0 ; trial < 6 ; trial++) { my_tries = trial ; printf ("AMD memory trial "ID"\n", trial) ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; AMD_info (Info) ; OK (ok == AMD_OUT_OF_MEMORY || (sorted ? (ok == AMD_OK) : (ok >= AMD_OK))) ; } normal_memory_handler ( ) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD2 permutation", cm)) ; amd_malloc = cm->malloc_memory ; amd_free = cm->free_memory ; } CHOLMOD(free_sparse) (&E, cm) ; } /* ---------------------------------------------------------------------- */ /* free everything */ /* ---------------------------------------------------------------------- */ CHOLMOD(free) (n, sizeof (Int), Len, cm) ; CHOLMOD(free) (n, sizeof (Int), Nv, cm) ; CHOLMOD(free) (n, sizeof (Int), Next, cm) ; CHOLMOD(free) (n+1, sizeof (Int), Head, cm) ; CHOLMOD(free) (n, sizeof (Int), Elen, cm) ; CHOLMOD(free) (n, sizeof (Int), Deg, cm) ; CHOLMOD(free) (n, sizeof (Int), Wi, cm) ; CHOLMOD(free) (n+1, sizeof (Int), P, cm) ; CHOLMOD(free) (n, sizeof (Int), W, cm) ; CHOLMOD(free) (n, sizeof (Int), Flag, cm) ; CHOLMOD(free_sparse) (&S, cm) ; CHOLMOD(free_sparse) (&B, cm) ; CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&F, cm) ; }
GLOBAL void AMD_1 ( Int n, /* n > 0 */ const Int Ap [ ], /* input of size n+1, not modified */ const Int Ai [ ], /* input of size nz = Ap [n], not modified */ Int P [ ], /* size n output permutation */ Int Pinv [ ], /* size n output inverse permutation */ Int Len [ ], /* size n input, undefined on output */ Int slen, /* slen >= sum (Len [0..n-1]) + 7n, * ideally slen = 1.2 * sum (Len) + 8n */ Int S [ ], /* size slen workspace */ double Control [ ], /* input array of size AMD_CONTROL */ double Info [ ] /* output array of size AMD_INFO */ ) { Int i, j, k, p, pfree, iwlen, pj, p1, p2, pj2, *Iw, *Pe, *Nv, *Head, *Elen, *Degree, *s, *W, *Sp, *Tp ; /* --------------------------------------------------------------------- */ /* construct the matrix for AMD_2 */ /* --------------------------------------------------------------------- */ ASSERT (n > 0) ; iwlen = slen - 6*n ; s = S ; Pe = s ; s += n ; Nv = s ; s += n ; Head = s ; s += n ; Elen = s ; s += n ; Degree = s ; s += n ; W = s ; s += n ; Iw = s ; s += iwlen ; ASSERT (AMD_valid (n, n, Ap, Ai)) ; /* construct the pointers for A+A' */ Sp = Nv ; /* use Nv and W as workspace for Sp and Tp [ */ Tp = W ; pfree = 0 ; for (j = 0 ; j < n ; j++) { Pe [j] = pfree ; Sp [j] = pfree ; pfree += Len [j] ; } /* Note that this restriction on iwlen is slightly more restrictive than * what is strictly required in AMD_2. AMD_2 can operate with no elbow * room at all, but it will be very slow. For better performance, at * least size-n elbow room is enforced. */ ASSERT (iwlen >= pfree + n) ; #ifndef NDEBUG for (p = 0 ; p < iwlen ; p++) Iw [p] = EMPTY ; #endif for (k = 0 ; k < n ; k++) { AMD_DEBUG1 (("Construct row/column k= "ID" of A+A'\n", k)) ; p1 = Ap [k] ; p2 = Ap [k+1] ; /* construct A+A' */ for (p = p1 ; p < p2 ; ) { /* scan the upper triangular part of A */ j = Ai [p] ; ASSERT (j >= 0 && j < n) ; if (j < k) { /* entry A (j,k) in the strictly upper triangular part */ ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; ASSERT (Sp [k] < (k == n-1 ? pfree : Pe [k+1])) ; Iw [Sp [j]++] = k ; Iw [Sp [k]++] = j ; p++ ; } else if (j == k) { /* skip the diagonal */ p++ ; break ; } else /* j > k */ { /* first entry below the diagonal */ break ; } /* scan lower triangular part of A, in column j until reaching * row k. Start where last scan left off. */ ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ; pj2 = Ap [j+1] ; for (pj = Tp [j] ; pj < pj2 ; ) { i = Ai [pj] ; ASSERT (i >= 0 && i < n) ; if (i < k) { /* A (i,j) is only in the lower part, not in upper */ ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; Iw [Sp [i]++] = j ; Iw [Sp [j]++] = i ; pj++ ; } else if (i == k) { /* entry A (k,j) in lower part and A (j,k) in upper */ pj++ ; break ; } else /* i > k */ { /* consider this entry later, when k advances to i */ break ; } } Tp [j] = pj ; } Tp [k] = p ; } /* clean up, for remaining mismatched entries */ for (j = 0 ; j < n ; j++) { for (pj = Tp [j] ; pj < Ap [j+1] ; pj++) { i = Ai [pj] ; ASSERT (i >= 0 && i < n) ; /* A (i,j) is only in the lower part, not in upper */ ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; Iw [Sp [i]++] = j ; Iw [Sp [j]++] = i ; } } #ifndef NDEBUG for (j = 0 ; j < n-1 ; j++) ASSERT (Sp [j] == Pe [j+1]) ; ASSERT (Sp [n-1] == pfree) ; #endif /* Tp and Sp no longer needed ] */ /* --------------------------------------------------------------------- */ /* order the matrix */ /* --------------------------------------------------------------------- */ AMD_2 (n, Pe, Iw, Len, iwlen, pfree, Nv, Pinv, P, Head, Elen, Degree, W, Control, Info) ; }