Example #1
0
//----------------------------------------------------------------------
//
//	ProcessSchedule
//
//	Schedule the next process to run.  If there are no processes to
//	run, exit.  This means that there should be an idle loop process
//	if you want to allow the system to "run" when there's no real
//	work to be done.
//
//	NOTE: the scheduler should only be called from a trap or interrupt
//	handler.  This way, interrupts are disabled.  Also, it must be
//	called consistently, and because it might be called from an interrupt
//	handler (the timer interrupt), it must ALWAYS be called from a trap
//	or interrupt handler.
//
//	Note that this procedure doesn't actually START the next process.
//	It only changes the currentPCB and other variables so the next
//	return from interrupt will restore a different context from that
//	which was saved.
//
//----------------------------------------------------------------------
void ProcessSchedule () {
  PCB *pcb=NULL;
  int i=0;
  Link *l=NULL;
  uint32 intrvals = 0;

  intrvals = DisableIntrs();

  // The OS exits if there's no runnable process.  This is a feature, not a
  // bug.  An easy solution to allowing no runnable "user" processes is to
  // have an "idle" process that's simply an infinite loop.
  if (AQueueEmpty(&runQueue)) {
    if (!AQueueEmpty(&waitQueue)) {
      printf("FATAL ERROR: no runnable processes, but there are sleeping processes waiting!\n");
      l = AQueueFirst(&waitQueue);
      while (l != NULL) {
        pcb = AQueueObject(l);
        printf("Sleeping process %d: ", i++); printf("PID = %d\n", (int)(pcb - pcbs));
        l = AQueueNext(l);
      }
      exitsim();
    }
    printf ("No runnable processes - exiting!\n");
    exitsim ();	// NEVER RETURNS
  }

  // Move the front of the queue to the end if currentPCB is not on sleep queue.  
  // The running process was the one in front.
  if (currentPCB->flags & PROCESS_STATUS_RUNNABLE) {
    AQueueMoveAfter(&runQueue, AQueueLast(&runQueue), AQueueFirst(&runQueue));
  }

  // Now, run the one at the head of the queue.
  pcb = (PCB *)AQueueObject(AQueueFirst(&runQueue));
  currentPCB = pcb;
  dbprintf ('p',"About to switch to PCB 0x%x,flags=0x%x @ 0x%x\n",
	    (int)pcb, pcb->flags, (int)(pcb->sysStackPtr[PROCESS_STACK_IAR]));

  // Clean up zombie processes here.  This is done at interrupt time
  // because it can't be done while the process might still be running
  while (!AQueueEmpty(&zombieQueue)) {
    pcb = (PCB *)AQueueObject(AQueueFirst(&zombieQueue));
    dbprintf ('p', "Freeing zombie PCB 0x%x.\n", (int)pcb);
    if (AQueueRemove(&(pcb->l)) != QUEUE_SUCCESS) {
      printf("FATAL ERROR: could not remove zombie process from zombieQueue in ProcessSchedule!\n");
      exitsim();
    }
    ProcessFreeResources(pcb);
  }

  RestoreIntrs(intrvals);
}
//---------------------------------------------------------------------------
//	CondHandleSignal
//
//	This call wakes up exactly one process waiting on the condition
//	variable, if at least one is waiting. If there are no processes
//	waiting on the condition variable, it does nothing. In either case,
//	the calling process must have acquired the lock associated with
//	condition variable for this call to succeed, in which case it returns
//	0. If the calling process does not own the lock, it returns 1,
//	indicating that the call was not successful. This function should be
//	written in such a way that the calling process should retain the
//	acquired lock even after the call completion (in other words, it
//	should not release the lock it has already acquired before the call).
//
//	Note that the process woken up by this call tries to acquire the lock
//	associated with the condition variable as soon as it wakes up. Thus,
//	for such a process to run, the process invoking CondHandleSignal
//	must explicitly release the lock after the call is complete.
//---------------------------------------------------------------------------
int CondSignal(Cond *c) {
  Link *l;
  int intrs;
  PCB *pcb;

  if (!c) return SYNC_FAIL;

  intrs = DisableIntrs ();
  dbprintf ('s', "CondSignal: Proc %d signalling cond %d.\n", GetCurrentPid(), (int)(c-conds));

  if (c->lock->pid != GetCurrentPid()) {
    dbprintf('s', "CondSignal: Proc %d does not own cond %d.\n", GetCurrentPid(), (int)(c-conds));
    return SYNC_FAIL;
  }
  if (!AQueueEmpty(&c->waiting)) { // there is a process to wake up
    l = AQueueFirst(&c->waiting);
    pcb = (PCB *)AQueueObject(l);
    if (AQueueRemove(&l) != QUEUE_SUCCESS) { 
      printf("FATAL ERROR: could not remove link from cond queue in CondSignal!\n");
      exitsim();
    }
    dbprintf ('s', "CondSignal: Waking up PID %d, it still needs to acquire lock.\n", GetPidFromAddress(pcb));
    ProcessWakeup (pcb);
  } else {
    dbprintf('s', "CondSignal: Proc %d signalled, but no processes were waiting.\n", GetCurrentPid());
  }
  RestoreIntrs (intrs);
  return SYNC_SUCCESS;
}
//---------------------------------------------------------------------------
//	LockHandleRelease
//
//	This procedure releases the unique lock described by the handle. It
//	first checks whether the lock is a valid lock. If not, it returns SYNC_FAIL.
//	If the lock is a valid lock, it should check whether the calling
//	process actually holds the lock. If not it returns SYNC_FAIL. Otherwise it
//	releases the lock, and returns SYNC_SUCCESS.
//---------------------------------------------------------------------------
int LockRelease(Lock *k) {
  Link *l;
  int	intrs;
  PCB *pcb;

  if (!k) return SYNC_FAIL;

  intrs = DisableIntrs ();
  dbprintf ('s', "LockRelease: Proc %d releasing lock %d.\n", GetCurrentPid(), (int)(k-locks));

  if (k->pid != GetCurrentPid()) {
    dbprintf('s', "LockRelease: Proc %d does not own lock %d.\n", GetCurrentPid(), (int)(k-locks));
    return SYNC_FAIL;
  }
  k->pid = -1;
  if (!AQueueEmpty(&k->waiting)) { // there is a process to wake up
    l = AQueueFirst(&k->waiting);
    pcb = (PCB *)AQueueObject(l);
    if (AQueueRemove(&l) != QUEUE_SUCCESS) { 
      printf("FATAL ERROR: could not remove link from lock queue in LockRelease!\n");
      exitsim();
    }
    dbprintf ('s', "LockRelease: Waking up PID %d, assigning lock.\n", (int)(GetPidFromAddress(pcb)));
    k->pid = GetPidFromAddress(pcb);
    ProcessWakeup (pcb);
  }
  RestoreIntrs (intrs);
  return SYNC_SUCCESS;
}
//----------------------------------------------------------------------
//
//	SemSignal
//
//	Signal on a semaphore.  Again, details are in Section 6.4 of
//	_OSC_.
//
//----------------------------------------------------------------------
int SemSignal (Sem *sem) {
  Link *l;
  int	intrs;
  PCB *pcb;

  if (!sem) return SYNC_FAIL;

  intrs = DisableIntrs ();
  dbprintf ('s', "SemSignal: Process %d Signalling on sem %d, count=%d.\n", GetCurrentPid(), (int)(sem-sems), sem->count);
  // Increment internal counter before checking value
  sem->count++;
  if (sem->count > 0) { // check if there is a process to wake up
    if (!AQueueEmpty(&sem->waiting)) { // there is a process to wake up
      l = AQueueFirst(&sem->waiting);
      pcb = (PCB *)AQueueObject(l);
      if (AQueueRemove(&l) != QUEUE_SUCCESS) { 
        printf("FATAL ERROR: could not remove link from semaphore queue in SemSignal!\n");
        exitsim();
      }
      dbprintf ('s', "SemSignal: Waking up PID %d.\n", (int)(GetPidFromAddress(pcb)));
      ProcessWakeup (pcb);
      // Decrement counter on behalf of woken up PCB
      sem->count--;
    }
  }
  RestoreIntrs (intrs);
  return SYNC_SUCCESS;
}
Example #5
0
//-------------------------------------------------------
//
// int MboxClose(mbox_t);
//
// Close the mailbox for use to the current process.
// If the number of processes using the given mailbox
// is zero, then disable the mailbox structure and
// return it to the set of available mboxes.
//
// Returns MBOX_FAIL on failure.
// Returns MBOX_SUCCESS on success.
//
//-------------------------------------------------------
int MboxClose(mbox_t handle) {
    int i;
    int length;
    Link *l;

    if(!&mboxs[handle]) return MBOX_FAIL;

    if(!AQueueEmpty(&mboxs[handle].pids)){

        length = AQueueLength(&mboxs[handle].pids); 
        
        l = AQueueFirst(&mboxs[handle].pids);

        for(i=0; i < length; i++){
            if((int)AQueueObject(l) == GetCurrentPid()){
                AQueueRemove(&l);
                break;
            }

            l = AQueueNext(l);
        }

    }

    if(AQueueEmpty(&mboxs[handle].pids)){
        while(!AQueueEmpty(&mboxs[handle].messages)){
            l = AQueueFirst(&mboxs[handle].messages);
            AQueueRemove(&l);
        }

        mboxs[handle].inuse = 0;
    }

    return MBOX_SUCCESS;

}
//---------------------------------------------------------------------------
//	CondHandleBroadcast
//
//	This function is very similar to CondHandleSignal. But instead of
//	waking only one process, it wakes up all the processes waiting on the
//	condition variable. For this call to succeed, the calling process must
//	have acquired the lock associated with the condition variable. This
//	function should be written in such a way that the calling process
//	should retain the lock even after call completion.
//
//	Note that the process woken up by this call tries to acquire the lock
//	associated with the condition variable as soon as it wakes up. Thus,
//	for such a process to run, the process invoking CondHandleBroadcast
//	must explicitly release the lock after the call completion.
//---------------------------------------------------------------------------
int CondBroadcast(Cond *c) {
  if (!c) return SYNC_FAIL;
 
  if (c->lock->pid != GetCurrentPid()) {
    dbprintf('s', "CondBroadcast: Proc %d tried to broadcast, but it doesn't own cond %d\n", GetCurrentPid(), (int)(c-conds));
    return SYNC_FAIL;
  }

  while (!AQueueEmpty(&c->waiting)) {
    if (CondSignal(c) != SYNC_SUCCESS) {
      dbprintf('s', "CondBroadcast: Proc %d failed in signalling cond %d\n", GetCurrentPid(), (int)(c-conds));
      return SYNC_FAIL;
    }
  }
  dbprintf('s', "CondBroadcast: Proc %d successful broadcast on cond %d, still needs to release lock\n", 
                 GetCurrentPid(), (int)(c-conds));
  return SYNC_SUCCESS;
}
//////////////////////////////////////////////////////////////////
// Inserts link "l" before link "before" in queue "q"
//////////////////////////////////////////////////////////////////
int AQueueInsertBefore(Queue *q, Link *before, Link *l) {
  if (!l) return QUEUE_FAIL;
  if (!q) return QUEUE_FAIL;
  
  if (before) { //  If before is not NULL, then before must be on the queue q
    if (before->queue != q) return QUEUE_FAIL;
  } else { // Otherwise before is NULL, so the list has to be empty
    if (AQueueFirst(q) != NULL) return QUEUE_FAIL;
    if (AQueueLast(q) != NULL) return QUEUE_FAIL;
    if (!AQueueEmpty(q)) return QUEUE_FAIL;
  }
  
  // Save the queue inside the link for simplicity
  l->queue = q;

  // Set next and previous on the link itself
  l->next = before;
  if (before) l->prev = before->prev;
  else        l->prev = NULL;

  // Fix the list around l
  if (before) before->prev = l;
  if (l->prev) l->prev->next = l;

  // Update the queue accordingly for this new node
  if (!before) {
    q->first = l;
    q->last = l;
    q->nitems = 1;
  } else {
    // Note: don't need to worry about if "before" was last item, because 
    // we're inserting before it, not after it
    if (q->first == before) q->first = l;
    q->nitems++;
  }
  return QUEUE_SUCCESS;
}
/////////////////////////////////////////////////////////////////
// Inserts link "l" after link "after" in queue "q"
/////////////////////////////////////////////////////////////////
int AQueueInsertAfter (Queue *q, Link *after, Link *l) {
  if (!l) return QUEUE_FAIL;
  if (!q) return QUEUE_FAIL;
 
  if (after) { //  If after is not NULL, then after must be on the queue q
    if (after->queue != q) return QUEUE_FAIL;
  } else { // Otherwise after is NULL, so the list has to be empty
    if (q->first != NULL) return QUEUE_FAIL;
    if (q->last != NULL) return QUEUE_FAIL;
    if (!AQueueEmpty(q)) return QUEUE_FAIL;
  }
  
  // Save the queue inside the link for simplicity
  l->queue = q;

  // Set next and previous on the link itself
  l->prev = after;
  if (after) l->next = after->next;
  else       l->next = NULL;

  // Fix the list around l
  if (after) after->next = l;
  if (l->next) l->next->prev = l;

  // Update the queue accordingly for this new node
  if (!after) {
    q->first = l;
    q->last = l;
    q->nitems = 1;
  } else {
    // Note: don't need to worry about if "after" was first item, because 
    // we're inserting after it, not before it
    if (q->last == after) q->last = l;
    q->nitems++;
  }
  return QUEUE_SUCCESS;
}
///////////////////////////////////////////////////////
// Gets an empty link structure from the global queue
// of empty links.
///////////////////////////////////////////////////////
Link *AQueueAllocLink (void *obj_to_store) {
  extern Queue	freeLinks;
  Link	*l=NULL;

  dbprintf('q', "AQueueAllocLink: allocating link\n");
  if (AQueueEmpty(&freeLinks)) {
    dbprintf('q', "AQueueAllocLink: no free links!\n");
    return NULL;
  }
  l = AQueueFirst(&freeLinks);
  if (!l) {
    dbprintf('q', "AQueueAllocLink: first link in freeLinks is NULL!\n");
    return NULL;
  }

  // Can't use QueueRemove because it puts the link back onto
  // the list of free links.  Therefore, we must remove it
  // manually.
  
  // First fix freeLinks structure
  if (freeLinks.first == l) freeLinks.first = l->next;
  if (freeLinks.last == l) freeLinks.last = l->prev;
  freeLinks.nitems--;

  // Next, fix list around l
  if (l->prev) l->prev->next = l->next;
  if (l->next) l->next->prev = l->prev;

  // Finally, reset l's internal pointers to NULL for safety
  l->next = NULL;
  l->prev = NULL;
  l->queue = NULL;
  l->object = obj_to_store;

  return l;
}
Example #10
0
//----------------------------------------------------------------------
//
//	ProcessFork
//
//	Create a new process and make it runnable.  This involves the
//	following steps:
//	* Allocate resources for the process (PCB, memory, etc.)
//	* Initialize the resources
//	* Place the PCB on the runnable queue
//
//	NOTE: This code has been tested for system processes, but not
//	for user processes.
//
//----------------------------------------------------------------------
int ProcessFork (VoidFunc func, uint32 param, char *name, int isUser) {
  int i,j;                   // Loop index variable
  int fd, n;               // Used for reading code from files.
  int start, codeS, codeL; // Used for reading code from files.
  int dataS, dataL;        // Used for reading code from files.
  int addr = 0;            // Used for reading code from files.
  unsigned char buf[100];  // Used for reading code from files.
  uint32 *stackframe;      // Stores address of current stack frame.
  PCB *pcb;                // Holds pcb while we build it for this process.
  int intrs;               // Stores previous interrupt settings.
  uint32  initial_user_params[MAX_ARGS+2]; // Initial memory for user parameters (argc, argv)
                                           // initial_user_params[0] = argc
                                           // initial_user_params[1] = argv, points to initial_user_params[2]
                                           // initial_user_params[2] = address of string for argv[0]
                                           // initial_user_params[3] = address of string for argv[1]
                                           //                           ...
  uint32 argc=0;           // running counter for number of arguments
  uint32 offset;           // Used in parsing command line argument strings, holds offset (in bytes) from 
                           // beginning of the string to the current argument.
  uint32 initial_user_params_bytes;  // total number of bytes in initial user parameters array

  int newpage;
  int index;
  int *p;


  intrs = DisableIntrs ();
  dbprintf ('I', "ProcessFork-Old interrupt value was 0x%x.\n", intrs);
  dbprintf ('p', "ProcessFork-Entering ProcessFork args=0x%x 0x%x %s %d\n", (int)func,
	    param, name, isUser);
  // Get a free PCB for the new process
  if (AQueueEmpty(&freepcbs)) {
    printf ("ProcessFork-FATAL error: no free processes!\n");
    exitsim ();	// NEVER RETURNS!
  }
  pcb = (PCB *)AQueueObject(AQueueFirst (&freepcbs));
  dbprintf ('p', "ProcessFork-Got a link @ 0x%x\n", (int)(pcb->l));
  if (AQueueRemove (&(pcb->l)) != QUEUE_SUCCESS) {
    printf("ProcessFork-FATAL ERROR: could not remove link from freepcbsQueue in ProcessFork!\n");
    exitsim();
  }
  // This prevents someone else from grabbing this process
  ProcessSetStatus (pcb, PROCESS_STATUS_RUNNABLE);

  // At this point, the PCB is allocated and nobody else can get it.
  // However, it's not in the run queue, so it won't be run.  Thus, we
  // can turn on interrupts here.
  RestoreIntrs (intrs);

  // Copy the process name into the PCB.
  dstrcpy(pcb->name, name);

  //----------------------------------------------------------------------
  // This section initializes the memory for this process
  //----------------------------------------------------------------------
  // Allocate 1 page for system stack, 1 page for user stack (at top of
  // virtual address space), and 4 pages for user code and global data.

  //---------------------------------------------------------
  // STUDENT: allocate pages for a new process here.  The
  // code below assumes that you set the "stackframe" variable
  // equal to the last 4-byte-aligned address in physical page
  // for the system stack.
  //---------------------------------------------------------

  ////////////////////////////////////////////////////////////////
  // JSM, allocate 6 physical pages for new process

  // First, get L2 Page Table for index 0 of L1 Page Table
  index = MemoryAllocateL2PT();
	if (index == -1)
	{
		printf ("ProcessFork-FATAL: couldn't allocate L2 Page Table for index 0 of L1 Page Table - no free page tables!\n");
		exitsim ();	// NEVER RETURNS!
	}
  // Assign L1 entry to address of start of L2 Page Table
	pcb->pagetable[0] = (uint32)&level2_pt_block[index];

	p = (uint32 *)pcb->pagetable[0];//L2

  // Allocate 4 pages for code and data
  for(i = 0; i < 4; i++)
  {
		newpage = MemoryAllocatePage();
		if (newpage == 0)
		{
			printf ("ProcessFork-FATAL: couldn't allocate memory - no free pages!\n");
			exitsim ();	// NEVER RETURNS!
		}
		dbprintf('p', "ProcessFork-Allocating physical page #%d (Address 0x%.8X) for process virtual page #%d (data/code)\n", newpage, (newpage*MEM_PAGE_SIZE), i);

		*(p+i) = ((newpage*MEM_PAGE_SIZE) | MEM_PTE_VALID);
		dbprintf('p', "Contents at 0x%.8X: 0x%.8X\n\n", (int)(p+i), *(p+i));
  }
	/////////////////////////////////////////////////////
	//YF ADDED allocate page for heap
  // First, initialize the heapfree map
  for (j=0; j<MEM_MAX_HEAP_FREEMAP; j++){
  	pcb->HeapFreeMap[j] = 0;
  }
  for (j =0; j<MEM_MAX_HEAP_POINTER_ARRAY; j++){
  	pcb->HeapPtrSizes[j] = 0;
  }

  index = MemoryAllocateL2PT();
	if (index == -1)
	{
		printf ("ProcessFork-FATAL: couldn't allocate L2 Page Table for index 0 of L1 Page Table - no free page tables!\n");
		exitsim ();	// NEVER RETURNS!
	}
  // Assign L1 entry to address of start of L2 Page Table
	pcb->pagetable[0] = (uint32)&level2_pt_block[index];
	p = (uint32 *)pcb->pagetable[0];

	newpage = MemoryAllocatePage();
	if (newpage == 0)
	{
		printf ("ProcessFork-FATAL: couldn't allocate memory - no free pages!\n");
		exitsim ();	// NEVER RETURNS!
	}
	dbprintf('p', "ProcessFork-Allocating physical page #%d (Address 0x%.8X) for process virtual page #%d (Heap Allocation)\n", newpage, (newpage*MEM_PAGE_SIZE), i);
	//address for catch in Memory translate. UserHeap Address =0x4000 =
	*(p+i) = ((newpage*MEM_PAGE_SIZE) | MEM_PTE_VALID | MEM_PTE_HEAP); //TODO ProcessFork: marked as a heap.
	pcb->userHeapArea = (uint32 *)(newpage*MEM_PAGE_SIZE);
	dbprintf('p', "Heap area is at physical address:0x%.8X   L2 Address: 0x%.8X\n", (int)(newpage*MEM_PAGE_SIZE), *(p+i));
	dbprintf('p', "Contents at 0x%.8X: 0x%.8X\n\n", (int)(p+i), *(p+i));
	//Done with Heap allocation

///////////////////////////////////////////////////////////////////////////////////////////////////
  // Allocate page for user stack
  // First, get L2 Page Table for index 15 of L1 Page Table
  index = MemoryAllocateL2PT();
	if (index == -1)
	{
		printf ("ProcessFork-FATAL: couldn't allocate L2 Page Table for index 0 of L1 Page Table - no free page tables!\n");
		exitsim ();	// NEVER RETURNS!
	}
  // Assign L1 entry to address of start of L2 Page Table
	pcb->pagetable[MEM_L1_PAGE_TABLE_SIZE-1] = (uint32)&level2_pt_block[index];
	p = (uint32 *)pcb->pagetable[MEM_L1_PAGE_TABLE_SIZE-1];

	newpage = MemoryAllocatePage();
	if (newpage == 0)
	{
		printf ("ProcessFork-FATAL: couldn't allocate memory - no free pages!\n");
		exitsim ();	// NEVER RETURNS!
	}
	dbprintf('p', "ProcessFork-Allocating physical page #%d (Address 0x%.8X) for process virtual page #%d (user stack)\n\n", newpage, (newpage*MEM_PAGE_SIZE), (MEM_L1_PAGE_TABLE_SIZE*MEM_L2_PAGE_TABLE_SIZE)-1);

	*(p+(MEM_L2_PAGE_TABLE_SIZE-1)) = ((newpage*MEM_PAGE_SIZE) | MEM_PTE_VALID);
	dbprintf('p', "Contents at 0x%.8X: 0x%.8X\n\n", (int)(p+(MEM_L2_PAGE_TABLE_SIZE-1)), *(p+(MEM_L2_PAGE_TABLE_SIZE-1)));

  // Allocate page for system stack
	newpage = MemoryAllocatePage();
	if (newpage == 0)
	{
		printf ("ProcessFork-FATAL: couldn't allocate memory - no free pages!\n");
		exitsim ();	// NEVER RETURNS!
	}
	dbprintf('p', "ProcessFork-Allocating physical page #%d (Address 0x%.8X) for process system stack\n\n", newpage, (newpage*MEM_PAGE_SIZE));
	pcb->sysStackArea = newpage * MEM_PAGE_SIZE;
	stackframe = (uint32 *)(pcb->sysStackArea + (MEM_PAGE_SIZE-4));
	dbprintf('p', "ProcessFork-Initializing system stack pointer to 0x%.8X\n\n", (uint32)stackframe);

  ////////////////////////////////////////////////////////////////

  // Now that the stack frame points at the bottom of the system stack memory area, we need to
  // move it up (decrement it) by one stack frame size because we're about to fill in the
  // initial stack frame that will be loaded for this PCB when it gets switched in by 
  // ProcessSchedule the first time.
  stackframe -= PROCESS_STACK_FRAME_SIZE;

  // The system stack pointer is set to the base of the current interrupt stack frame.
  pcb->sysStackPtr = stackframe;
  // The current stack frame pointer is set to the same thing.
  pcb->currentSavedFrame = stackframe;

  //----------------------------------------------------------------------
  // This section sets up the stack frame for the process.  This is done
  // so that the frame looks to the interrupt handler like the process
  // was "suspended" right before it began execution.  The standard
  // mechanism of swapping in the registers and returning to the place
  // where it was "interrupted" will then work.
  //----------------------------------------------------------------------

  // The previous stack frame pointer is set to 0, meaning there is no
  // previous frame.
  dbprintf('m', "ProcessFork-ProcessFork: stackframe = 0x%x\n", (int)stackframe);
  stackframe[PROCESS_STACK_PREV_FRAME] = 0;

  //----------------------------------------------------------------------
  // STUDENT: setup the PTBASE, PTBITS, and PTSIZE here on the current
  // stack frame.
  //----------------------------------------------------------------------

  // JSM added PTBASE, PTBITS, and PTSIZE on stack frame
  //////////////////////////////////////////////////////////
  stackframe[PROCESS_STACK_PTBASE] = (uint32)&(pcb->pagetable[0]);
  dbprintf('p', "ProcessFork-PTBASE: 0x%.8X\n\n", (uint32)&(pcb->pagetable[0]));
  stackframe[PROCESS_STACK_PTSIZE] = MEM_L1_PAGE_TABLE_SIZE;
  dbprintf('p', "ProcessFork-PTSIZE: 0x%.8X\n\n", MEM_L1_PAGE_TABLE_SIZE);
  stackframe[PROCESS_STACK_PTBITS] = (MEM_L2FIELD_FIRST_BITNUM << 16) | MEM_L1FIELD_FIRST_BITNUM;
  dbprintf('p', "ProcessFork-PTBITS: 0x%.8X\n\n", (MEM_L2FIELD_FIRST_BITNUM << 16) | MEM_L1FIELD_FIRST_BITNUM);

  //////////////////////////////////////////////////////////

  if (isUser) {//user prog .dlx.obj
    dbprintf ('p', "ProcessFork-About to load %s\n", name);
    fd = ProcessGetCodeInfo (name, &start, &codeS, &codeL, &dataS, &dataL);
    if (fd < 0) {
      // Free newpage and pcb so we don't run out...
      ProcessFreeResources (pcb);
      return (-1);
    }

    dbprintf ('p', "ProcessFork-File %s -> start=0x%08x\n", name, start);
    dbprintf ('p', "ProcessFork-File %s -> code @ 0x%08x (size=0x%08x)\n", name, codeS,
	      codeL);
    dbprintf ('p', "ProcessFork-File %s -> data @ 0x%08x (size=0x%08x)\n", name, dataS,
	      dataL);

    while ((n = ProcessGetFromFile (fd, buf, &addr, sizeof (buf))) > 0) {
      dbprintf ('p', "ProcessFork-Placing %d bytes at vaddr %08x.\n", n, addr - n);
      // Copy the data to user memory.  Note that the user memory needs to
      // have enough space so that this copy will succeed!
      MemoryCopySystemToUser (pcb, buf, (char *)(addr - n), n);
    }
    FsClose (fd);
    stackframe[PROCESS_STACK_ISR] = PROCESS_INIT_ISR_USER;

    //----------------------------------------------------------------------
    // STUDENT: setup the initial user stack pointer here as the top
    // of the process's virtual address space (4-byte aligned).
    //----------------------------------------------------------------------

    // JSM initialized user stack pointer
    //////////////////////////////////////////////////////////
    stackframe[PROCESS_STACK_USER_STACKPOINTER] = (MEM_MAX_VIRTUAL_ADDRESS-3);
    dbprintf('p', "ProcessFork-USER_STACKPOINTER: 0x%.8X\n\n", stackframe[PROCESS_STACK_USER_STACKPOINTER]);
    //////////////////////////////////////////////////////////

    //--------------------------------------------------------------------
    // This part is setting up the initial user stack with argc and argv.
    //--------------------------------------------------------------------

    // Copy the entire set of strings of command line parameters onto the user stack.
    // The "param" variable is a pointer to the start of a sequenial set of strings,
    // each ending with its own '\0' character.  The final "string" of the sequence
    // must be an empty string to indicate that the sequence is done.  Since we
    // can't figure out how long the set of strings actually is in this scenario,
    // we have to copy the maximum possible string length and parse things manually.
    stackframe[PROCESS_STACK_USER_STACKPOINTER] -= SIZE_ARG_BUFF;
    MemoryCopySystemToUser (pcb, (char *)param, (char *)stackframe[PROCESS_STACK_USER_STACKPOINTER], SIZE_ARG_BUFF);

    // Now that the main string is copied into the user space, we need to setup
    // argv as an array of pointers into that string, and argc as the total
    // number of arguments found in the string.  The first call to get_argument
    // should return 0 as the offset of the first string.
    offset = get_argument((char *)param);
   
    // Compute the addresses in user space of where each string for the command line arguments
    // begins.  These addresses make up the argv array.
    for(argc=0; argc < MAX_ARGS; argc++) {
      // The "+2" is because initial_user_params[0] is argc, and initial_user_params[1] is argv.
      // The address can be found as the current stack pointer (which points to the start of
      // the params list) plus the byte offset of the parameter from the beginning of
      // the list of parameters.
      initial_user_params[argc+2] = stackframe[PROCESS_STACK_USER_STACKPOINTER] + offset;
      offset = get_argument(NULL);
      if (offset == 0) {
        initial_user_params[argc+2+1] = 0; // last entry should be a null value
        break;
      }
    }
    // argc is currently the index of the last command line argument.  We need it to instead
    // be the number of command line arguments, so we increment it by 1.
    argc++;

    // Now argc can be stored properly
    initial_user_params[0] = argc;

    // Compute where initial_user_params[3] will be copied in user space as the 
    // base of the array of string addresses.  The entire initial_user_params array
    // of uint32's will be copied onto the stack.  We'll move the stack pointer by
    // the necessary amount, then start copying the array.  Therefore, initial_user_params[3]
    // will reside at the current stack pointer value minus the number of command line
    // arguments (argc).
    initial_user_params[1] = stackframe[PROCESS_STACK_USER_STACKPOINTER] - (argc*sizeof(uint32));

    // Now copy the actual memory.  Remember that stacks grow down from the top of memory, so 
    // we need to move the stack pointer first, then do the copy.  The "+2", as before, is 
    // because initial_user_params[0] is argc, and initial_user_params[1] is argv.
    initial_user_params_bytes = (argc + 2) * sizeof(uint32);

    stackframe[PROCESS_STACK_USER_STACKPOINTER] -= initial_user_params_bytes;
    MemoryCopySystemToUser (pcb, (char *)initial_user_params, (char *)(stackframe[PROCESS_STACK_USER_STACKPOINTER]), initial_user_params_bytes);

    // Set the correct address at which to execute a user process.
    stackframe[PROCESS_STACK_IAR] = (uint32)start;

    // Flag this as a user process
    pcb->flags |= PROCESS_TYPE_USER;
  } else {
    // Don't worry about messing with any code here for kernel processes because
    // there aren't any kernel processes in DLXOS.

    // Set r31 to ProcessExit().  This will only be called for a system
    // process; user processes do an exit() trap.
    stackframe[PROCESS_STACK_IREG+31] = (uint32)ProcessExit;

    // Set the stack register to the base of the system stack.
    //stackframe[PROCESS_STACK_IREG+29]=pcb->sysStackArea + MEM_PAGESIZE;

    // Set the initial parameter properly by placing it on the stack frame
    // at the location pointed to by the "saved" stack pointer (r29).
    *((uint32 *)(stackframe[PROCESS_STACK_IREG+29])) = param;

    // Set up the initial address at which to execute.  This is done by
    // placing the address into the IAR slot of the stack frame.
    stackframe[PROCESS_STACK_IAR] = (uint32)func;

    // Set the initial value for the interrupt status register
    stackframe[PROCESS_STACK_ISR] = PROCESS_INIT_ISR_SYS;

    // Mark this as a system process.
    pcb->flags |= PROCESS_TYPE_SYSTEM;
  }

  // Place the PCB onto the run queue.
  intrs = DisableIntrs ();
  if ((pcb->l = AQueueAllocLink(pcb)) == NULL) {
    printf("FATAL ERROR: could not get link for forked PCB in ProcessFork!\n");
    exitsim();
  }
  if (AQueueInsertLast(&runQueue, pcb->l) != QUEUE_SUCCESS) {
    printf("FATAL ERROR: could not insert link into runQueue in ProcessFork!\n");
    exitsim();
  }
  RestoreIntrs (intrs);

  // If this is the first process, make it the current one
  if (currentPCB == NULL) {
    dbprintf ('p', "Setting currentPCB=0x%x, stackframe=0x%x\n",
	      (int)pcb, (int)(pcb->currentSavedFrame));
    currentPCB = pcb;
  }

  dbprintf ('p', "Leaving ProcessFork (%s)\n", name);
  // Return the process number (found by subtracting the PCB number
  // from the base of the PCB array).
  return (pcb - pcbs);
}
Example #11
0
//----------------------------------------------------------------------
//
//	ProcessFork
//
//	Create a new process and make it runnable.  This involves the
//	following steps:
//	* Allocate resources for the process (PCB, memory, etc.)
//	* Initialize the resources
//	* Place the PCB on the runnable queue
//
//	NOTE: This code has been tested for system processes, but not
//	for user processes.
//
//----------------------------------------------------------------------
int ProcessFork (VoidFunc func, uint32 param, char *name, int isUser) {
  int i;                   // Loop index variable
  int fd, n;               // Used for reading code from files.
  int start, codeS, codeL; // Used for reading code from files.
  int dataS, dataL;        // Used for reading code from files.
  int addr = 0;            // Used for reading code from files.
  unsigned char buf[100];  // Used for reading code from files.
  uint32 *stackframe;      // Stores address of current stack frame.
  PCB *pcb;                // Holds pcb while we build it for this process.
  int intrs;               // Stores previous interrupt settings.
  uint32  initial_user_params[MAX_ARGS+2]; // Initial memory for user parameters (argc, argv)
                                           // initial_user_params[0] = argc
                                           // initial_user_params[1] = argv, points to initial_user_params[2]
                                           // initial_user_params[2] = address of string for argv[0]
                                           // initial_user_params[3] = address of string for argv[1]
                                           //                           ...
  uint32 argc=0;           // running counter for number of arguments
  uint32 offset;           // Used in parsing command line argument strings, holds offset (in bytes) from
                           // beginning of the string to the current argument.
  uint32 initial_user_params_bytes;  // total number of bytes in initial user parameters array
  int newPage;


  intrs = DisableIntrs ();
  dbprintf ('I', "Old interrupt value was 0x%x.\n", intrs);
  dbprintf ('p', "Entering ProcessFork args=0x%x 0x%x %s %d\n", (int)func,
	    param, name, isUser);
  // Get a free PCB for the new process
  if (AQueueEmpty(&freepcbs)) {
    printf ("FATAL error: no free processes!\n");
    exitsim ();	// NEVER RETURNS!
  }
  pcb = (PCB *)AQueueObject(AQueueFirst (&freepcbs));
  dbprintf ('p', "Got a link @ 0x%x\n", (int)(pcb->l));
  if (AQueueRemove (&(pcb->l)) != QUEUE_SUCCESS) {
    printf("FATAL ERROR: could not remove link from freepcbsQueue in ProcessFork!\n");
    exitsim();
  }
  // This prevents someone else from grabbing this process
  ProcessSetStatus (pcb, PROCESS_STATUS_RUNNABLE);

  // At this point, the PCB is allocated and nobody else can get it.
  // However, it's not in the run queue, so it won't be run.  Thus, we
  // can turn on interrupts here.
  RestoreIntrs (intrs);

  // Copy the process name into the PCB.
  dstrcpy(pcb->name, name);

  //----------------------------------------------------------------------
  // This section initializes the memory for this process
  //----------------------------------------------------------------------
  // Allocate 1 page for system stack, 1 page for user stack (at top of
  // virtual address space), and 4 pages for user code and global data.
  //---------------------------------------------------------
  // STUDENT: allocate pages for a new process here.  The
  // code below assumes that you set the "stackframe" variable
  // equal to the last 4-byte-aligned address in physical page
  // for the system stack.
  //---------------------------------------------------------
  // Pages for code and global data and Heap
  pcb->npages = 5;
  for(i = 0; i < pcb->npages; i++) {
    newPage = MemoryAllocPage();
    if(newPage == MEM_FAIL) {
      printf ("FATAL: couldn't allocate memory - no free pages!\n");
      ProcessFreeResources (pcb);
      return PROCESS_FORK_FAIL;
    }
    pcb->pagetable[i] = MemorySetupPte (newPage);
  }
  // Initialize nodes in pool
  for (i = 1; i <= MEM_HEAP_MAX_NODES; i++) {
    pcb->htree_array[i].parent = NULL;
    pcb->htree_array[i].cleft = NULL;
    pcb->htree_array[i].crght = NULL;
    pcb->htree_array[i].index = i;
    pcb->htree_array[i].size = -1;
    pcb->htree_array[i].addr = -1;
    pcb->htree_array[i].inuse = 0;
    pcb->htree_array[i].order = -1;
  }
  // Initialize Heap tree
  pcb->htree_array[1].size = MEM_PAGESIZE;
  pcb->htree_array[1].addr = 0;
  pcb->htree_array[1].order = 7;
  // user stack
  pcb->npages += 1;
  newPage = MemoryAllocPage();
  if(newPage == MEM_FAIL) {
    printf ("FATAL: couldn't allocate user stack - no free pages!\n");
    ProcessFreeResources (pcb);
    return PROCESS_FORK_FAIL;
  }
  pcb->pagetable[MEM_ADDRESS_TO_PAGE(MEM_MAX_VIRTUAL_ADDRESS)] = MemorySetupPte (newPage);

  // for system stack
  newPage = MemoryAllocPage ();
  if(newPage == MEM_FAIL) {
    printf ("FATAL: couldn't allocate system stack - no free pages!\n");
    ProcessFreeResources (pcb);
    return PROCESS_FORK_FAIL;
  }

  pcb->sysStackArea = newPage * MEM_PAGESIZE;
  //----------------------------------------------------------------------
  // Stacks grow down from the top.  The current system stack pointer has
  // to be set to the bottom of the interrupt stack frame, which is at the
  // high end (address-wise) of the system stack.
  stackframe = (uint32 *)(pcb->sysStackArea + MEM_PAGESIZE - 4);
  dbprintf('p', "ProcessFork: SystemStack page=%d sysstackarea=0x%x\n", newPage, pcb->sysStackArea);

  // Now that the stack frame points at the bottom of the system stack memory area, we need to
  // move it up (decrement it) by one stack frame size because we're about to fill in the
  // initial stack frame that will be loaded for this PCB when it gets switched in by
  // ProcessSchedule the first time.
  stackframe -= PROCESS_STACK_FRAME_SIZE;

  // The system stack pointer is set to the base of the current interrupt stack frame.
  pcb->sysStackPtr = stackframe;
  // The current stack frame pointer is set to the same thing.
  pcb->currentSavedFrame = stackframe;

  dbprintf ('p', "Setting up PCB @ 0x%x (sys stack=0x%x, mem=0x%x, size=0x%x)\n",
    (int)pcb, pcb->sysStackArea, pcb->pagetable[0], pcb->npages * MEM_PAGESIZE);

  //----------------------------------------------------------------------
  // This section sets up the stack frame for the process.  This is done
  // so that the frame looks to the interrupt handler like the process
  // was "suspended" right before it began execution.  The standard
  // mechanism of swapping in the registers and returning to the place
  // where it was "interrupted" will then work.
  //----------------------------------------------------------------------

  // The previous stack frame pointer is set to 0, meaning there is no
  // previous frame.
  dbprintf('p', "ProcessFork: stackframe = 0x%x\n", (int)stackframe);
  stackframe[PROCESS_STACK_PREV_FRAME] = 0;

  //----------------------------------------------------------------------
  // STUDENT: setup the PTBASE, PTBITS, and PTSIZE here on the current
  // stack frame.
  //----------------------------------------------------------------------
  // Set the base of the level 1 page table.  If there's only one page
  // table level, this is it.  For 2-level page tables, put the address
  // of the level 1 page table here.  For 2-level page tables, we'll also
  // have to build up the necessary tables....
  stackframe[PROCESS_STACK_PTBASE] = (uint32)(&(pcb->pagetable[0]));

  // Set the size (maximum number of entries) of the level 1 page table.
  // In our case, it's just one page, but it could be larger.
  stackframe[PROCESS_STACK_PTSIZE] = MEM_PAGE_TBL_SIZE;

  // Set the number of bits for both the level 1 and level 2 page tables.
  // This can be changed on a per-process basis if desired.  For now,
  // though, it's fixed.
  stackframe[PROCESS_STACK_PTBITS] = (MEM_L1FIELD_FIRST_BITNUM << 16) + MEM_L1FIELD_FIRST_BITNUM;

  if (isUser) {
    dbprintf ('p', "About to load %s\n", name);
    fd = ProcessGetCodeInfo (name, &start, &codeS, &codeL, &dataS, &dataL);
    if (fd < 0) {
      // Free newPage and pcb so we don't run out...
      ProcessFreeResources (pcb);
      return (-1);
    }

    dbprintf ('p', "File %s -> start=0x%08x\n", name, start);
    dbprintf ('p', "File %s -> code @ 0x%08x (size=0x%08x)\n", name, codeS,
	      codeL);
    dbprintf ('p', "File %s -> data @ 0x%08x (size=0x%08x)\n", name, dataS,
	      dataL);

    while ((n = ProcessGetFromFile (fd, buf, &addr, sizeof (buf))) > 0) {
      dbprintf ('i', "Placing %d bytes at vaddr %08x.\n", n, addr - n);
      // Copy the data to user memory.  Note that the user memory needs to
      // have enough space so that this copy will succeed!
      MemoryCopySystemToUser (pcb, buf, (char *)(addr - n), n);
    }
    FsClose (fd);
    stackframe[PROCESS_STACK_ISR] = PROCESS_INIT_ISR_USER;

    //----------------------------------------------------------------------
    // STUDENT: setup the initial user stack pointer here as the top
    // of the process's virtual address space (4-byte aligned).
    //----------------------------------------------------------------------
    stackframe[PROCESS_STACK_USER_STACKPOINTER] = MEM_MAX_VIRTUAL_ADDRESS - 3;
    dbprintf('p', "ProcessFork: UserStack usrsp=0x%x\n", stackframe[PROCESS_STACK_USER_STACKPOINTER]);

    //--------------------------------------------------------------------
    // This part is setting up the initial user stack with argc and argv.
    //--------------------------------------------------------------------

    // Copy the entire set of strings of command line parameters onto the user stack.
    // The "param" variable is a pointer to the start of a sequenial set of strings,
    // each ending with its own '\0' character.  The final "string" of the sequence
    // must be an empty string to indicate that the sequence is done.  Since we
    // can't figure out how long the set of strings actually is in this scenario,
    // we have to copy the maximum possible string length and parse things manually.
    stackframe[PROCESS_STACK_USER_STACKPOINTER] -= SIZE_ARG_BUFF;
    MemoryCopySystemToUser (pcb, (char *)param, (char *)stackframe[PROCESS_STACK_USER_STACKPOINTER], SIZE_ARG_BUFF);

    // Now that the main string is copied into the user space, we need to setup
    // argv as an array of pointers into that string, and argc as the total
    // number of arguments found in the string.  The first call to get_argument
    // should return 0 as the offset of the first string.
    offset = get_argument((char *)param);

    // Compute the addresses in user space of where each string for the command line arguments
    // begins.  These addresses make up the argv array.
    for(argc=0; argc < MAX_ARGS; argc++) {
      // The "+2" is because initial_user_params[0] is argc, and initial_user_params[1] is argv.
      // The address can be found as the current stack pointer (which points to the start of
      // the params list) plus the byte offset of the parameter from the beginning of
      // the list of parameters.
      initial_user_params[argc+2] = stackframe[PROCESS_STACK_USER_STACKPOINTER] + offset;
      offset = get_argument(NULL);
      if (offset == 0) {
        initial_user_params[argc+2+1] = 0; // last entry should be a null value
        break;
      }
    }
    // argc is currently the index of the last command line argument.  We need it to instead
    // be the number of command line arguments, so we increment it by 1.
    argc++;

    // Now argc can be stored properly
    initial_user_params[0] = argc;

    // Compute where initial_user_params[3] will be copied in user space as the
    // base of the array of string addresses.  The entire initial_user_params array
    // of uint32's will be copied onto the stack.  We'll move the stack pointer by
    // the necessary amount, then start copying the array.  Therefore, initial_user_params[3]
    // will reside at the current stack pointer value minus the number of command line
    // arguments (argc).
    initial_user_params[1] = stackframe[PROCESS_STACK_USER_STACKPOINTER] - (argc*sizeof(uint32));

    // Now copy the actual memory.  Remember that stacks grow down from the top of memory, so
    // we need to move the stack pointer first, then do the copy.  The "+2", as before, is
    // because initial_user_params[0] is argc, and initial_user_params[1] is argv.
    initial_user_params_bytes = (argc + 2) * sizeof(uint32);

    stackframe[PROCESS_STACK_USER_STACKPOINTER] -= initial_user_params_bytes;
    MemoryCopySystemToUser (pcb, (char *)initial_user_params, (char *)(stackframe[PROCESS_STACK_USER_STACKPOINTER]), initial_user_params_bytes);

    // Set the correct address at which to execute a user process.
    stackframe[PROCESS_STACK_IAR] = (uint32)start;

    // Flag this as a user process
    pcb->flags |= PROCESS_TYPE_USER;
  } else {
    // Don't worry about messing with any code here for kernel processes because
    // there aren't any kernel processes in DLXOS.

    // Set r31 to ProcessExit().  This will only be called for a system
    // process; user processes do an exit() trap.
    stackframe[PROCESS_STACK_IREG+31] = (uint32)ProcessExit;

    // Set the stack register to the base of the system stack.
    //stackframe[PROCESS_STACK_IREG+29]=pcb->sysStackArea + MEM_PAGESIZE;

    // Set the initial parameter properly by placing it on the stack frame
    // at the location pointed to by the "saved" stack pointer (r29).
    *((uint32 *)(stackframe[PROCESS_STACK_IREG+29])) = param;

    // Set up the initial address at which to execute.  This is done by
    // placing the address into the IAR slot of the stack frame.
    stackframe[PROCESS_STACK_IAR] = (uint32)func;

    // Set the initial value for the interrupt status register
    stackframe[PROCESS_STACK_ISR] = PROCESS_INIT_ISR_SYS;

    // Mark this as a system process.
    pcb->flags |= PROCESS_TYPE_SYSTEM;
  }

  // Place the PCB onto the run queue.
  intrs = DisableIntrs ();
  if ((pcb->l = AQueueAllocLink(pcb)) == NULL) {
    printf("FATAL ERROR: could not get link for forked PCB in ProcessFork!\n");
    exitsim();
  }
  if (AQueueInsertLast(&runQueue, pcb->l) != QUEUE_SUCCESS) {
    printf("FATAL ERROR: could not insert link into runQueue in ProcessFork!\n");
    exitsim();
  }
  RestoreIntrs (intrs);

  // If this is the first process, make it the current one
  if (currentPCB == NULL) {
    dbprintf ('p', "Setting currentPCB=0x%x, stackframe=0x%x\n",
	      (int)pcb, (int)(pcb->currentSavedFrame));
    currentPCB = pcb;
  }

  dbprintf ('p', "Leaving ProcessFork (%s)\n", name);
  // Return the process number (found by subtracting the PCB number
  // from the base of the PCB array).
  return (pcb - pcbs);
}
Example #12
0
int ProcessRealFork (PCB* ppcb) {
  PCB *cpcb;                // Holds pcb while we build it for this process.
  int intrs;               // Stores previous interrupt settings.
  int newPage;
  int i;
  uint32 *stackframe;


  intrs = DisableIntrs ();
  dbprintf ('I', "Old interrupt value was 0x%x.\n", intrs);
  dbprintf ('p', "Entering ProcessRealFork ppcb=%d\n", GetPidFromAddress(ppcb));
  // Get a free PCB for the new process
  if (AQueueEmpty(&freepcbs)) {
    printf ("FATAL error: no free processes!\n");
    exitsim (); // NEVER RETURNS!
  }
  cpcb = (PCB *)AQueueObject(AQueueFirst (&freepcbs));
  dbprintf ('p', "Got a link @ 0x%x\n", (int)(cpcb->l));
  if (AQueueRemove (&(cpcb->l)) != QUEUE_SUCCESS) {
    printf("FATAL ERROR: could not remove link from freepcbsQueue in ProcessFork!\n");
    exitsim();
  }
  // This prevents someone else from grabbing this process
  ProcessSetStatus (cpcb, PROCESS_STATUS_RUNNABLE);
  
  // cpcb shares code and global data with ppcb
  for(i = 0; i < 4; i++) {
    ppcb->pagetable[i] |= MEM_PTE_READONLY;
    MemorySharePage(ppcb->pagetable[i]);
  }
  // user stack is also shared at first
  ppcb->pagetable[MEM_ADDRESS_TO_PAGE(MEM_MAX_VIRTUAL_ADDRESS)] |= MEM_PTE_READONLY; 
  MemorySharePage(ppcb->pagetable[MEM_ADDRESS_TO_PAGE(MEM_MAX_VIRTUAL_ADDRESS)]);

  // copy parent pcb to child pcb
  bcopy((char *)ppcb, (char *)cpcb, sizeof(PCB));
  // At this point, the PCB is allocated and nobody else can get it.
  // However, it's not in the run queue, so it won't be run.  Thus, we
  // can turn on interrupts here.
  RestoreIntrs (intrs);

  // for system stack
  newPage = MemoryAllocPage ();
  if(newPage == MEM_FAIL) {
    printf ("FATAL: couldn't allocate system stack - no free pages!\n");
    ProcessFreeResources (cpcb);
    return PROCESS_FORK_FAIL;
  }
  cpcb->sysStackArea = newPage * MEM_PAGESIZE;
  // copy system stack from ppcb to cpcb
  bcopy((char *)(ppcb->sysStackArea), (char *)(cpcb->sysStackArea), MEM_PAGESIZE);
  dbprintf('p', "ProcessRealFork: SystemStack page=%d sysstackarea=0x%x\n", newPage, cpcb->sysStackArea);
  // printf("ProcessRealFork: parent_sysstackarea=0x%x child_sysstackarea=0x%x\n", ppcb->sysStackArea, cpcb->sysStackArea);

  //----------------------------------------------------------------------
  // Stacks grow down from the top.  The current system stack pointer has
  // to be set to the bottom of the interrupt stack frame, which is at the
  // high end (address-wise) of the system stack.
  stackframe = (uint32 *)(cpcb->sysStackArea + MEM_PAGESIZE - 4);

  // Now that the stack frame points at the bottom of the system stack memory area, we need to
  // move it up (decrement it) by one stack frame size because we're about to fill in the
  // initial stack frame that will be loaded for this PCB when it gets switched in by
  // ProcessSchedule the first time.
  stackframe -= PROCESS_STACK_FRAME_SIZE;

  // The system stack pointer is set to the base of the current interrupt stack frame.
  cpcb->sysStackPtr = stackframe;
  // The current stack frame pointer is set to the same thing.
  cpcb->currentSavedFrame = stackframe;

  dbprintf ('p', "Setting up PCB @ 0x%x (sys stack=0x%x, mem=0x%x, size=0x%x)\n",
    (int)cpcb, cpcb->sysStackArea, cpcb->pagetable[0], cpcb->npages * MEM_PAGESIZE);

  //----------------------------------------------------------------------
  // STUDENT: setup the PTBASE, PTBITS, and PTSIZE here on the current
  // stack frame.
  //----------------------------------------------------------------------
  // Set the base of the level 1 page table.  If there's only one page
  // table level, this is it.  For 2-level page tables, put the address
  // of the level 1 page table here.  For 2-level page tables, we'll also
  // have to build up the necessary tables....
  stackframe[PROCESS_STACK_PTBASE] = (uint32)(&(cpcb->pagetable[0]));

  // Place the PCB onto the run queue.
  intrs = DisableIntrs ();
  if ((cpcb->l = AQueueAllocLink(cpcb)) == NULL) {
    printf("FATAL ERROR: could not get link for forked PCB in ProcessFork!\n");
    exitsim();
  }
  if (AQueueInsertLast(&runQueue, cpcb->l) != QUEUE_SUCCESS) {
    printf("FATAL ERROR: could not insert link into runQueue in ProcessFork!\n");
    exitsim();
  }
  RestoreIntrs (intrs);
  ProcessSetResult(cpcb, 0);
  ProcessSetResult(ppcb, GetPidFromAddress(cpcb));
  
  // TEST PRINTS
  printf("\nIn ProcessRealFork:\n");
  printf("----- Page table of parent process PID:%d -----\n", GetPidFromAddress(ppcb));
  ProcessForkTestPrints(ppcb);
  printf("\n----- Page table of child process PID: %d -----\n", GetPidFromAddress(cpcb));
  ProcessForkTestPrints(cpcb);

  dbprintf ('p', "Leaving ProcessRealFork cpcbid=%d\n", GetPidFromAddress(cpcb));
  return PROCESS_FORK_SUCCESS;
}
Example #13
0
//-------------------------------------------------------
//
// int MboxRecv(mbox_t handle, int maxlength, void* message);
//
// Receive a message from the specified mailbox.  The call 
// blocks when there is no message in the buffer.  Maxlength
// should indicate the maximum number of bytes that can be
// copied from the buffer into the address of "message".  
// An error occurs if the message is larger than maxlength.
// Note that the calling process must have opened the mailbox 
// via MboxOpen.
//   
// Returns MBOX_FAIL on failure.
// Returns number of bytes written into message on success.
//
//-------------------------------------------------------
int MboxRecv(mbox_t handle, int maxlength, void* message) {
    int i;
    int qlen;
    Link *l;
    int exists = 0;
    mbox_message *m;
    
    //check if mailbox is real
    if(!&mboxs[handle]) return MBOX_FAIL;

    //check if pid opened this mailbox
    if(!AQueueEmpty(&mboxs[handle].pids ) ){
       
        qlen = AQueueLength(&mboxs[handle].pids); 
        
        l = AQueueFirst(&mboxs[handle].pids);

        for(i=0; i < qlen; i++){
            if((int)AQueueObject(l) == GetCurrentPid()){
                exists = 1; 
                break;
            }

            l = AQueueNext(l);
        }
       
       //actualy checks if pid exists 
        if(exists == 0){
            return MBOX_FAIL;
        }

        //wait until queue has something in it
        if(SemHandleWait(mboxs[handle].s_msg_full) == SYNC_FAIL){
            printf("bad sem handle wait in mbox recv\n");
            exitsim();
        }

        //lock
        if(LockHandleAcquire(mboxs[handle].l) != SYNC_SUCCESS){
            printf("FATAL ERROR: could not get lock in Mbox send!\n");
            exitsim();
        }

        l = AQueueFirst(&mboxs[handle].messages);

        m = (mbox_message *) l->object;

        //check if message longer than max length
        if(m->length > maxlength) {
            return MBOX_FAIL;
        }
 
        //copy message to local variable
        dstrncpy(message,(void*) m->message, m->length);

        //reset structure for use elsewhere
        m->inuse =0;

        //delete link
        AQueueRemove(&l);

        //unlock
        if(LockHandleRelease(mboxs[handle].l) != SYNC_SUCCESS){
            printf("FATAL ERROR: could not release lock in Mbox send!\n");
            exitsim();
        }

        if(SemHandleSignal(mboxs[handle].s_msg_empty) == SYNC_FAIL){
            printf("bad sem handle signal in mbox recv\n");
            exitsim();
        }

    }else{
        return MBOX_FAIL;
    }

    return MBOX_SUCCESS;


}
Example #14
0
//-------------------------------------------------------
//
// int MboxSend(mbox_t handle,int length, void* message);
//
// Send a message (pointed to by "message") of length
// "length" bytes to the specified mailbox.  Messages of
// length 0 are allowed.  The call 
// blocks when there is not enough space in the mailbox.
// Messages cannot be longer than MBOX_MAX_MESSAGE_LENGTH.
// Note that the calling process must have opened the 
// mailbox via MboxOpen.
//
// Returns MBOX_FAIL on failure.
// Returns MBOX_SUCCESS on success.
//
//-------------------------------------------------------
int MboxSend(mbox_t handle, int length, void* message) {
    int i;
    int qlen;
    Link *l;
    int exists = 0;
    
    //check if mailbox is real
    if(!&mboxs[handle]) return MBOX_FAIL;

    //check if pid opened this mailbox
    if(!AQueueEmpty(&mboxs[handle].pids ) ){
       
        qlen = AQueueLength(&mboxs[handle].pids); 
        
        l = AQueueFirst(&mboxs[handle].pids);

        for(i=0; i < qlen; i++){
            if((int)AQueueObject(l) == GetCurrentPid()){
                exists = 1; 
                break;
            }

            l = AQueueNext(l);
        }
       
       //actuall checks if pid exists 
        if(exists == 0){
            return MBOX_FAIL;
        }

        //check if message longer than max length
        if(length > MBOX_MAX_MESSAGE_LENGTH) {
            return MBOX_FAIL;
        }
        
        //check for space in mailbox 

        if((SemHandleWait(mboxs[handle].s_msg_empty)) == SYNC_FAIL ){
            printf("bad sem handle wait in mbox send\n");
            exitsim();
        }

        //lock
        if(LockHandleAcquire(mboxs[handle].l) != SYNC_SUCCESS){
            printf("FATAL ERROR: could not get lock in Mbox send!\n");
            exitsim();
        }

        for(i=0; i<MBOX_NUM_BUFFERS; i++){
            if(mbox_messages[i].inuse == 0){
                mbox_messages[i].inuse = 1;
                break;
            }
        }


        //creating mbox_message structure
        dstrncpy(mbox_messages[i].message, (char *) message, length);
        mbox_messages[i].length = length;

        if ((l = AQueueAllocLink(&mbox_messages[i])) == NULL) {
            printf("FATAL ERROR: could not allocate link for pid queue in Mbox Open!\n");
            exitsim();
        }

        //add message to end of queue
        AQueueInsertLast(&mboxs[handle].messages, l);

        //unlock
        if(LockHandleRelease(mboxs[handle].l) != SYNC_SUCCESS){
            printf("FATAL ERROR: could not release lock in Mbox send!\n");
            exitsim();
        }

        if(SemHandleSignal(mboxs[handle].s_msg_full) == SYNC_FAIL){
            printf("bad sem handle signal in mbox send\n");
            exitsim();
        }
    

    }else{
        return MBOX_FAIL;
    }

    return MBOX_SUCCESS;

}
Example #15
0
//----------------------------------------------------------------------
//
//	ProcessFork
//
//	Create a new process and make it runnable.  This involves the
//	following steps:
//	* Allocate resources for the process (PCB, memory, etc.)
//	* Initialize the resources
//	* Place the PCB on the runnable queue
//
//	NOTE: This code has been tested for system processes, but not
//	for user processes.
//
//----------------------------------------------------------------------
int ProcessFork (VoidFunc func, uint32 param, char *name, int isUser) {
  int		fd, n;
  int		start, codeS, codeL, dataS, dataL;
  uint32	*stackframe;
  int		newPage;
  PCB		*pcb;
  int	addr = 0;
  int		intrs;
  unsigned char buf[100];
  uint32 dum[MAX_ARGS+8], count, offset;
  char *str;

  dbprintf ('p', "ProcessFork (%d): function started\n", GetCurrentPid());
  intrs = DisableIntrs ();
  dbprintf ('I', "Old interrupt value was 0x%x.\n", intrs);
  dbprintf ('p', "Entering ProcessFork args=0x%x 0x%x %s %d\n", (int)func,
	    param, name, isUser);
  // Get a free PCB for the new process
  if (AQueueEmpty(&freepcbs)) {
    printf ("FATAL error: no free processes!\n");
    GracefulExit ();	// NEVER RETURNS!
  }
  pcb = (PCB *)AQueueObject(AQueueFirst (&freepcbs));
  dbprintf ('p', "Got a link @ 0x%x\n", (int)(pcb->l));
  if (AQueueRemove (&(pcb->l)) != QUEUE_SUCCESS) {
    printf("FATAL ERROR: could not remove link from freepcbsQueue in ProcessFork!\n");
    GracefulExit();
  }
  // This prevents someone else from grabbing this process
  ProcessSetStatus (pcb, PROCESS_STATUS_RUNNABLE);

  // At this point, the PCB is allocated and nobody else can get it.
  // However, it's not in the run queue, so it won't be run.  Thus, we
  // can turn on interrupts here.
  dbprintf ('I', "Before restore interrupt value is 0x%x.\n", (int)CurrentIntrs());
  RestoreIntrs (intrs);
  dbprintf ('I', "New interrupt value is 0x%x.\n", (int)CurrentIntrs());

  // Copy the process name into the PCB.
  dbprintf('p', "ProcessFork: Copying process name (%s) to pcb\n", name);
  dstrcpy(pcb->name, name);

  //----------------------------------------------------------------------
  // This section initializes the memory for this process
  //----------------------------------------------------------------------
  // For now, we'll use one user page and a page for the system stack.
  // For system processes, though, all pages must be contiguous.
  // Of course, system processes probably need just a single page for
  // their stack, and don't need any code or data pages allocated for them.
  pcb->npages = 1;
  newPage = MemoryAllocPage ();
  if (newPage == 0) {
    printf ("aFATAL: couldn't allocate memory - no free pages!\n");
    GracefulExit ();	// NEVER RETURNS!
  }
  pcb->pagetable[0] = MemorySetupPte (newPage);
  newPage = MemoryAllocPage ();
  if (newPage == 0) {
    printf ("bFATAL: couldn't allocate system stack - no free pages!\n");
    GracefulExit ();	// NEVER RETURNS!
  }
  pcb->sysStackArea = newPage * MEMORY_PAGE_SIZE;

  //----------------------------------------------------------------------
  // Stacks grow down from the top.  The current system stack pointer has
  // to be set to the bottom of the interrupt stack frame, which is at the
  // high end (address-wise) of the system stack.
  stackframe = ((uint32 *)(pcb->sysStackArea + MEMORY_PAGE_SIZE)) -
    (PROCESS_STACK_FRAME_SIZE + 8);
  // The system stack pointer is set to the base of the current interrupt
  // stack frame.
  pcb->sysStackPtr = stackframe;
  // The current stack frame pointer is set to the same thing.
  pcb->currentSavedFrame = stackframe;

  dbprintf ('p',
	    "Setting up PCB @ 0x%x (sys stack=0x%x, mem=0x%x, size=0x%x)\n",
	    (int)pcb, pcb->sysStackArea, pcb->pagetable[0],
	    pcb->npages * MEMORY_PAGE_SIZE);

  //----------------------------------------------------------------------
  // This section sets up the stack frame for the process.  This is done
  // so that the frame looks to the interrupt handler like the process
  // was "suspended" right before it began execution.  The standard
  // mechanism of swapping in the registers and returning to the place
  // where it was "interrupted" will then work.
  //----------------------------------------------------------------------

  // The previous stack frame pointer is set to 0, meaning there is no
  // previous frame.
  stackframe[PROCESS_STACK_PREV_FRAME] = 0;

  // Set the base of the level 1 page table.  If there's only one page
  // table level, this is it.  For 2-level page tables, put the address
  // of the level 1 page table here.  For 2-level page tables, we'll also
  // have to build up the necessary tables....
  stackframe[PROCESS_STACK_PTBASE] = (uint32)&(pcb->pagetable[0]);

  // Set the size (maximum number of entries) of the level 1 page table.
  // In our case, it's just one page, but it could be larger.
  stackframe[PROCESS_STACK_PTSIZE] = pcb->npages;

  // Set the number of bits for both the level 1 and level 2 page tables.
  // This can be changed on a per-process basis if desired.  For now,
  // though, it's fixed.
  stackframe[PROCESS_STACK_PTBITS] = (MEMORY_L1_PAGE_SIZE_BITS
					  + (MEMORY_L2_PAGE_SIZE_BITS << 16));


  if (isUser) {
    dbprintf ('p', "About to load %s\n", name);
    fd = ProcessGetCodeInfo (name, &start, &codeS, &codeL, &dataS, &dataL);
    if (fd < 0) {
      // Free newpage and pcb so we don't run out...
      ProcessFreeResources (pcb);
      return (-1);
    }
    dbprintf ('p', "File %s -> start=0x%08x\n", name, start);
    dbprintf ('p', "File %s -> code @ 0x%08x (size=0x%08x)\n", name, codeS,
	      codeL);
    dbprintf ('p', "File %s -> data @ 0x%08x (size=0x%08x)\n", name, dataS,
	      dataL);
    while ((n = ProcessGetFromFile (fd, buf, &addr, sizeof (buf))) > 0) {
      dbprintf ('p', "Placing %d bytes at vaddr %08x.\n", n, addr - n);
      // Copy the data to user memory.  Note that the user memory needs to
      // have enough space so that this copy will succeed!
      MemoryCopySystemToUser (pcb, buf, addr - n, n);
    }
    FsClose (fd);
    stackframe[PROCESS_STACK_ISR] = PROCESS_INIT_ISR_USER;
    // Set the initial stack pointer correctly.  Currently, it's just set
    // to the top of the (single) user address space allocated to this
    // process.
    str = (char *)param;
    stackframe[PROCESS_STACK_IREG+29] = MEMORY_PAGE_SIZE - SIZE_ARG_BUFF;
    // Copy the initial parameter to the top of stack
    MemoryCopySystemToUser (pcb, (char *)str,
			    (char *)stackframe[PROCESS_STACK_IREG+29],
			    SIZE_ARG_BUFF-32);
    offset = get_argument((char *)param);

    dum[2] = MEMORY_PAGE_SIZE - SIZE_ARG_BUFF + offset; 
    for(count=3;;count++)
    {
      offset=get_argument(NULL);
      dum[count] = MEMORY_PAGE_SIZE - SIZE_ARG_BUFF + offset;
      if(offset==0)
      {
        break;
      }
    }
    dum[0] = count-2;
    dum[1] = MEMORY_PAGE_SIZE - SIZE_ARG_BUFF - (count-2)*4;
    MemoryCopySystemToUser (pcb, (char *)dum,
			    (char *)(stackframe[PROCESS_STACK_IREG+29]-count*4),
			    (count)*sizeof(uint32));
    stackframe[PROCESS_STACK_IREG+29] -= 4*count;
    // Set the correct address at which to execute a user process.
    stackframe[PROCESS_STACK_IAR] = (uint32)start;
    pcb->flags |= PROCESS_TYPE_USER;
  } else {
    // Set r31 to ProcessExit().  This will only be called for a system
    // process; user processes do an exit() trap.
    stackframe[PROCESS_STACK_IREG+31] = (uint32)ProcessExit;

    // Set the stack register to the base of the system stack.
    stackframe[PROCESS_STACK_IREG+29]=pcb->sysStackArea + MEMORY_PAGE_SIZE-32;

    // Set the initial parameter properly by placing it on the stack frame
    // at the location pointed to by the "saved" stack pointer (r29).
    *((uint32 *)(stackframe[PROCESS_STACK_IREG+29])) = param;

    // Set up the initial address at which to execute.  This is done by
    // placing the address into the IAR slot of the stack frame.
    stackframe[PROCESS_STACK_IAR] = (uint32)func;

    // Set the initial value for the interrupt status register
    stackframe[PROCESS_STACK_ISR] = PROCESS_INIT_ISR_SYS;

    // Mark this as a system process.
    pcb->flags |= PROCESS_TYPE_SYSTEM;
  }

  // Place PCB onto run queue
  intrs = DisableIntrs ();
  if ((pcb->l = AQueueAllocLink(pcb)) == NULL) {
    printf("FATAL ERROR: could not get link for forked PCB in ProcessFork!\n");
    GracefulExit();
  }
  if (AQueueInsertLast(&runQueue, pcb->l) != QUEUE_SUCCESS) {
    printf("FATAL ERROR: could not insert link into runQueue in ProcessFork!\n");
    GracefulExit();
  }
  RestoreIntrs (intrs);

  // If this is the first process, make it the current one
  if (currentPCB == NULL) {
    dbprintf ('p', "Setting currentPCB=0x%x, stackframe=0x%x\n", (int)pcb, (int)(pcb->currentSavedFrame));
    currentPCB = pcb;
  }

  dbprintf ('p', "Leaving ProcessFork (%s)\n", name);
  // Return the process number (found by subtracting the PCB number
  // from the base of the PCB array).
  dbprintf ('p', "ProcessFork (%d): function complete\n", GetCurrentPid());

  return (pcb - pcbs);
}