Static void
ar9287_olpc_temp_compensation(struct athn_softc *sc)
{
	const struct ar9287_eeprom *eep = sc->sc_eep;
	int8_t pdadc, slope, tcomp;
	uint32_t reg;

	reg = AR_READ(sc, AR_PHY_TX_PWRCTRL4);
	pdadc = MS(reg, AR_PHY_TX_PWRCTRL_PD_AVG_OUT);
	DPRINTFN(DBG_RF, sc, "PD Avg Out=%d\n", pdadc);

	if (sc->sc_pdadc == 0 || pdadc == 0)
		return;	/* No frames transmitted yet. */

	/* Compute Tx gain temperature compensation. */
	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2)
		slope = eep->baseEepHeader.tempSensSlope;
	else
		slope = 0;
	if (slope != 0)	/* Prevents division by zero. */
		tcomp = ((pdadc - sc->sc_pdadc) * 4) / slope;
	else
		tcomp = 0;
	DPRINTFN(DBG_RF, sc, "OLPC temp compensation=%d\n", tcomp);

	/* Write compensation value for both Tx chains. */
	reg = AR_READ(sc, AR_PHY_CH0_TX_PWRCTRL11);
	reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, tcomp);
	AR_WRITE(sc, AR_PHY_CH0_TX_PWRCTRL11, reg);

	reg = AR_READ(sc, AR_PHY_CH1_TX_PWRCTRL11);
	reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, tcomp);
	AR_WRITE(sc, AR_PHY_CH1_TX_PWRCTRL11, reg);
	AR_WRITE_BARRIER(sc);
}
Example #2
0
void
ar9380_set_correction(struct athn_softc *sc, struct ieee80211_channel *c)
{
	const struct ar9380_eeprom *eep = sc->eep;
	const struct ar9380_modal_eep_header *modal;
	uint32_t reg;
	int8_t slope;
	int i, corr, temp, temp0;

	if (IEEE80211_IS_CHAN_2GHZ(c))
		modal = &eep->modalHeader2G;
	else
		modal = &eep->modalHeader5G;

	for (i = 0; i < AR9380_MAX_CHAINS; i++) {
		ar9380_get_correction(sc, c, i, &corr, &temp);
		if (i == 0)
			temp0 = temp;

		reg = AR_READ(sc, AR_PHY_TPC_11_B(i));
		reg = RW(reg, AR_PHY_TPC_11_OLPC_GAIN_DELTA, corr);
		AR_WRITE(sc, AR_PHY_TPC_11_B(i), reg);

		/* Enable open loop power control. */
		reg = AR_READ(sc, AR_PHY_TPC_6_B(i));
		reg = RW(reg, AR_PHY_TPC_6_ERROR_EST_MODE, 3);
		AR_WRITE(sc, AR_PHY_TPC_6_B(i), reg);
	}

	/* Enable temperature compensation. */
	if (IEEE80211_IS_CHAN_5GHZ(c) &&
	    eep->base_ext2.tempSlopeLow != 0) {
		if (c->ic_freq <= 5500) {
			slope = athn_interpolate(c->ic_freq,
			    5180, eep->base_ext2.tempSlopeLow,
			    5500, modal->tempSlope);
		} else {
			slope = athn_interpolate(c->ic_freq,
			    5500, modal->tempSlope,
			    5785, eep->base_ext2.tempSlopeHigh);
		}
	} else
		slope = modal->tempSlope;

	reg = AR_READ(sc, AR_PHY_TPC_19);
	reg = RW(reg, AR_PHY_TPC_19_ALPHA_THERM, slope);
	AR_WRITE(sc, AR_PHY_TPC_19, reg);

	reg = AR_READ(sc, AR_PHY_TPC_18);
	reg = RW(reg, AR_PHY_TPC_18_THERM_CAL, temp0);
	AR_WRITE(sc, AR_PHY_TPC_18, reg);
	AR_WRITE_BARRIER(sc);
}
PUBLIC void
ar9287_1_3_setup_async_fifo(struct athn_softc *sc)
{
	uint32_t reg;

	/*
	 * MAC runs at 117MHz (instead of 88/44MHz) when ASYNC FIFO is
	 * enabled, so the following counters have to be changed.
	 */
	AR_WRITE(sc, AR_D_GBL_IFS_SIFS, AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
	AR_WRITE(sc, AR_D_GBL_IFS_SLOT, AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
	AR_WRITE(sc, AR_D_GBL_IFS_EIFS, AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);

	AR_WRITE(sc, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
	AR_WRITE(sc, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);

	AR_SETBITS(sc, AR_MAC_PCU_LOGIC_ANALYZER,
	    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);

	reg = AR_READ(sc, AR_AHB_MODE);
	reg = RW(reg, AR_AHB_CUSTOM_BURST, AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
	AR_WRITE(sc, AR_AHB_MODE, reg);

	AR_SETBITS(sc, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
	AR_WRITE_BARRIER(sc);
}
Example #4
0
void
ar9285_setup(struct athn_softc *sc)
{
	const struct ar9285_eeprom *eep = sc->eep;
	uint8_t type;

	/* Select initialization values based on ROM. */
	type = eep->baseEepHeader.txGainType;
	DPRINTF(("Tx gain type=0x%x\n", type));
#if NATHN_USB > 0
	if (AR_SREV_9271(sc)) {
		if (type == AR_EEP_TXGAIN_HIGH_POWER)
			sc->tx_gain = &ar9271_tx_gain_high_power;
		else
			sc->tx_gain = &ar9271_tx_gain;
	} else
#endif	/* NATHN_USB */
	if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1) {	/* XE rev. */
		if (type == AR_EEP_TXGAIN_HIGH_POWER)
			sc->tx_gain = &ar9285_2_0_tx_gain_high_power;
		else
			sc->tx_gain = &ar9285_2_0_tx_gain;
	} else {
		if (type == AR_EEP_TXGAIN_HIGH_POWER)
			sc->tx_gain = &ar9285_1_2_tx_gain_high_power;
		else
			sc->tx_gain = &ar9285_1_2_tx_gain;
	}
}
Example #5
0
void
ar9380_spur_mitigate_cck(struct athn_softc *sc, struct ieee80211_channel *c,
    struct ieee80211_channel *extc)
{
	/* NB: It is safe to call this function for 5GHz channels. */
	static const int16_t freqs[] = { 2420, 2440, 2464, 2480 };
	int i, spur, freq;
	uint32_t reg;

	for (i = 0; i < nitems(freqs); i++) {
		spur = freqs[i] - c->ic_freq;
		if (abs(spur) < 10)	/* +/- 10MHz range. */
			break;
	}
	if (i == nitems(freqs)) {
		/* Disable CCK spur mitigation. */
		reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
		reg = RW(reg, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
		AR_WRITE(sc, AR_PHY_AGC_CONTROL, reg);
		reg = AR_READ(sc, AR_PHY_CCK_SPUR_MIT);
		reg = RW(reg, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0);
		reg &= ~AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT;
		AR_WRITE(sc, AR_PHY_CCK_SPUR_MIT, reg);
		AR_WRITE_BARRIER(sc);
		return;
	}
	freq = (spur * 524288) / 11;

	reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
	reg = RW(reg, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
	AR_WRITE(sc, AR_PHY_AGC_CONTROL, reg);

	reg = AR_READ(sc, AR_PHY_CCK_SPUR_MIT);
	reg = RW(reg, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, freq);
	reg = RW(reg, AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
	reg = RW(reg, AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE, 0x2);
	reg |= AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT;
	AR_WRITE(sc, AR_PHY_CCK_SPUR_MIT, reg);
	AR_WRITE_BARRIER(sc);
}
Example #6
0
void
ar9280_olpc_temp_compensation(struct athn_softc *sc)
{
	const struct ar5416_eeprom *eep = sc->eep;
	int8_t pdadc, txgain, tcomp;
	uint32_t reg;
	int i;

	reg = AR_READ(sc, AR_PHY_TX_PWRCTRL4);
	pdadc = MS(reg, AR_PHY_TX_PWRCTRL_PD_AVG_OUT);
	DPRINTFN(3, ("PD Avg Out=%d\n", pdadc));

	if (sc->pdadc == 0 || pdadc == 0)
		return;	/* No frames transmitted yet. */

	/* Compute Tx gain temperature compensation. */
	if (sc->eep_rev >= AR_EEP_MINOR_VER_20 &&
	    eep->baseEepHeader.dacHiPwrMode_5G)
		tcomp = (pdadc - sc->pdadc + 4) / 8;
	else
		tcomp = (pdadc - sc->pdadc + 5) / 10;
	DPRINTFN(3, ("OLPC temp compensation=%d\n", tcomp));

	if (tcomp == sc->tcomp)
		return;	/* Don't rewrite the same values. */
	sc->tcomp = tcomp;

	/* Adjust Tx gain values. */
	for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) {
		txgain = sc->tx_gain_tbl[i] - tcomp;
		if (txgain < 0)
			txgain = 0;
		reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i));
		reg = RW(reg, AR_PHY_TX_GAIN, txgain);
		AR_WRITE(sc, AR_PHY_TX_GAIN_TBL(i), reg);
	}
	AR_WRITE_BARRIER(sc);
}
Static void
ar9287_olpc_init(struct athn_softc *sc)
{
	uint32_t reg;

	AR_SETBITS(sc, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);

	reg = AR_READ(sc, AR9287_AN_TXPC0);
	reg = RW(reg, AR9287_AN_TXPC0_TXPCMODE,
	    AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
	AR_WRITE(sc, AR9287_AN_TXPC0, reg);
	AR_WRITE_BARRIER(sc);
	DELAY(100);
}
Example #8
0
void
ar9280_olpc_init(struct athn_softc *sc)
{
	uint32_t reg;
	int i;

	/* Save original Tx gain values. */
	for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) {
		reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i));
		sc->tx_gain_tbl[i] = MS(reg, AR_PHY_TX_GAIN);
	}
	/* Initial Tx gain temperature compensation. */
	sc->tcomp = 0;
}
Example #9
0
int
ar9485_pmu_write(struct athn_softc *sc, uint32_t addr, uint32_t val)
{
	int ntries;

	AR_WRITE(sc, addr, val);
	/* Wait for write to complete. */
	for (ntries = 0; ntries < 100; ntries++) {
		if (AR_READ(sc, addr) == val)
			return (0);
		AR_WRITE(sc, addr, val);	/* Insist. */
		AR_WRITE_BARRIER(sc);
		DELAY(10);
	}
	return (ETIMEDOUT);
}
Static void
ar9287_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c)
{
	const struct ar9287_eeprom *eep = sc->sc_eep;
	uint8_t boundaries[AR_PD_GAINS_IN_MASK];
	uint8_t pdadcs[AR_NUM_PDADC_VALUES];
	uint8_t xpdgains[AR9287_NUM_PD_GAINS];
	int8_t txpower;
	uint8_t overlap;
	uint32_t reg, offset;
	int i, j, nxpdgains;

	if (sc->sc_eep_rev < AR_EEP_MINOR_VER_2) {
		overlap = MS(AR_READ(sc, AR_PHY_TPCRG5),
		    AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
	}
	else
		overlap = eep->modalHeader.pdGainOverlap;

	if (sc->sc_flags & ATHN_FLAG_OLPC) {
		/* XXX not here. */
		sc->sc_pdadc =
		    ((const struct ar_cal_data_per_freq_olpc *)
		     eep->calPierData2G[0])->vpdPdg[0][0];
	}

	nxpdgains = 0;
	memset(xpdgains, 0, sizeof(xpdgains));
	for (i = AR9287_PD_GAINS_IN_MASK - 1; i >= 0; i--) {
		if (nxpdgains >= AR9287_NUM_PD_GAINS)
			break;		/* Can't happen. */
		if (eep->modalHeader.xpdGain & (1 << i))
			xpdgains[nxpdgains++] = i;
	}
	reg = AR_READ(sc, AR_PHY_TPCRG1);
	reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1);
	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]);
	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]);
	AR_WRITE(sc, AR_PHY_TPCRG1, reg);
	AR_WRITE_BARRIER(sc);

	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
		if (!(sc->sc_txchainmask & (1 << i)))
			continue;

		offset = i * 0x1000;

		if (sc->sc_flags & ATHN_FLAG_OLPC) {
			ar9287_olpc_get_pdgain(sc, c, i, &txpower);

			reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_0);
			reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
			AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_0, reg);

			reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_1);
			reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
			AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_1, reg);

			/* NB: txpower is in half dB. */
			reg = AR_READ(sc, AR_PHY_CH0_TX_PWRCTRL11 + offset);
			reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_PWR, txpower);
			AR_WRITE(sc, AR_PHY_CH0_TX_PWRCTRL11 + offset, reg);

			AR_WRITE_BARRIER(sc);
			continue;	/* That's it for open loop mode. */
		}

		/* Closed loop power control. */
		ar9287_get_pdadcs(sc, c, i, nxpdgains, overlap,
		    boundaries, pdadcs);

		/* Write boundaries. */
		if (i == 0) {
			reg  = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP,
			    overlap);
			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1,
			    boundaries[0]);
			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2,
			    boundaries[1]);
			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3,
			    boundaries[2]);
			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4,
			    boundaries[3]);
			AR_WRITE(sc, AR_PHY_TPCRG5 + offset, reg);
		}
		/* Write PDADC values. */
		for (j = 0; j < AR_NUM_PDADC_VALUES; j += 4) {
			AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + offset + j,
			    pdadcs[j + 0] <<  0 |
			    pdadcs[j + 1] <<  8 |
			    pdadcs[j + 2] << 16 |
			    pdadcs[j + 3] << 24);
		}
		AR_WRITE_BARRIER(sc);
	}
}
Static void
ar9287_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
    struct ieee80211_channel *extc)
{
	const struct ar9287_eeprom *eep = sc->sc_eep;
	const struct ar9287_modal_eep_header *modal = &eep->modalHeader;
	uint32_t reg, offset;
	int i;

	AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);

	for (i = 0; i < AR9287_MAX_CHAINS; i++) {
		offset = i * 0x1000;

		AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset,
		    modal->antCtrlChain[i]);

		reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset);
		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
		    modal->iqCalICh[i]);
		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
		    modal->iqCalQCh[i]);
		AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg);

		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
		    modal->bswMargin[i]);
		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
		    modal->bswAtten[i]);
		AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);

		reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
		reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN,
		    modal->rxTxMarginCh[i]);
		reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN,
		    modal->txRxAttenCh[i]);
		AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);
	}

	reg = AR_READ(sc, AR_PHY_SETTLING);
#ifndef IEEE80211_NO_HT
	if (extc != NULL)
		reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
	else
#endif
		reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
	AR_WRITE(sc, AR_PHY_SETTLING, reg);

	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
	reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);

	reg  = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
	reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
	AR_WRITE(sc, AR_PHY_RF_CTL4, reg);

	reg = AR_READ(sc, AR_PHY_RF_CTL3);
	reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
	AR_WRITE(sc, AR_PHY_RF_CTL3, reg);

	reg = AR_READ(sc, AR_PHY_CCA(0));
	reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62);
	AR_WRITE(sc, AR_PHY_CCA(0), reg);

	reg = AR_READ(sc, AR_PHY_EXT_CCA0);
	reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62);
	AR_WRITE(sc, AR_PHY_EXT_CCA0, reg);

	reg = AR_READ(sc, AR9287_AN_RF2G3_CH0);
	reg = RW(reg, AR9287_AN_RF2G3_DB1, modal->db1);
	reg = RW(reg, AR9287_AN_RF2G3_DB2, modal->db2);
	reg = RW(reg, AR9287_AN_RF2G3_OB_CCK, modal->ob_cck);
	reg = RW(reg, AR9287_AN_RF2G3_OB_PSK, modal->ob_psk);
	reg = RW(reg, AR9287_AN_RF2G3_OB_QAM, modal->ob_qam);
	reg = RW(reg, AR9287_AN_RF2G3_OB_PAL_OFF, modal->ob_pal_off);
	AR_WRITE(sc, AR9287_AN_RF2G3_CH0, reg);
	AR_WRITE_BARRIER(sc);
	DELAY(100);

	reg = AR_READ(sc, AR9287_AN_RF2G3_CH1);
	reg = RW(reg, AR9287_AN_RF2G3_DB1, modal->db1);
	reg = RW(reg, AR9287_AN_RF2G3_DB2, modal->db2);
	reg = RW(reg, AR9287_AN_RF2G3_OB_CCK, modal->ob_cck);
	reg = RW(reg, AR9287_AN_RF2G3_OB_PSK, modal->ob_psk);
	reg = RW(reg, AR9287_AN_RF2G3_OB_QAM, modal->ob_qam);
	reg = RW(reg, AR9287_AN_RF2G3_OB_PAL_OFF, modal->ob_pal_off);
	AR_WRITE(sc, AR9287_AN_RF2G3_CH1, reg);
	AR_WRITE_BARRIER(sc);
	DELAY(100);

	reg = AR_READ(sc, AR_PHY_RF_CTL2);
	reg = RW(reg, AR_PHY_TX_END_DATA_START, modal->txFrameToDataStart);
	reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn);
	AR_WRITE(sc, AR_PHY_RF_CTL2, reg);

	reg = AR_READ(sc, AR9287_AN_TOP2);
	reg = RW(reg, AR9287_AN_TOP2_XPABIAS_LVL, modal->xpaBiasLvl);
	AR_WRITE(sc, AR9287_AN_TOP2, reg);
	AR_WRITE_BARRIER(sc);
	DELAY(100);
}
Example #12
0
void
ar9285_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
    struct ieee80211_channel *extc)
{
	const struct ar9285_eeprom *eep = sc->eep;
	const struct ar9285_modal_eep_header *modal = &eep->modalHeader;
	uint32_t reg, offset = 0x1000;
	uint8_t ob[5], db1[5], db2[5];
	uint8_t txRxAtten;

	AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);
	AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0, modal->antCtrlChain);

	reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0);
	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, modal->iqCalI);
	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, modal->iqCalQ);
	AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg);

	if (sc->eep_rev >= AR_EEP_MINOR_VER_3) {
		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ);
		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
		    modal->bswMargin);
		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
		    modal->bswAtten);
		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
		    modal->xatten2Margin);
		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
		    modal->xatten2Db);
		AR_WRITE(sc, AR_PHY_GAIN_2GHZ, reg);

		/* Duplicate values of chain 0 for chain 1. */
		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
		    modal->bswMargin);
		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
		    modal->bswAtten);
		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
		    modal->xatten2Margin);
		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
		    modal->xatten2Db);
		AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
	}
	if (sc->eep_rev >= AR_EEP_MINOR_VER_3)
		txRxAtten = modal->txRxAtten;
	else	/* Workaround for ROM versions < 14.3. */
		txRxAtten = 23;
	reg = AR_READ(sc, AR_PHY_RXGAIN);
	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin);
	AR_WRITE(sc, AR_PHY_RXGAIN, reg);

	/* Duplicate values of chain 0 for chain 1. */
	reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin);
	AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);

	if (modal->version >= 3) {
		/* Setup antenna diversity from ROM. */
		reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL);
		reg = RW(reg, AR9285_PHY_ANT_DIV_CTL_ALL, 0);
		reg = RW(reg, AR9285_PHY_ANT_DIV_CTL,
		    (modal->ob_234  >> 12) & 0x1);
		reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_LNACONF,
		    (modal->db1_234 >> 12) & 0x3);
		reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_LNACONF,
		    (modal->db1_234 >> 14) & 0x3);
		reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_GAINTB,
		    (modal->ob_234  >> 13) & 0x1);
		reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_GAINTB,
		    (modal->ob_234  >> 14) & 0x1);
		AR_WRITE(sc, AR_PHY_MULTICHAIN_GAIN_CTL, reg);
		reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL);	/* Flush. */

		reg = AR_READ(sc, AR_PHY_CCK_DETECT);
		if (modal->ob_234 & (1 << 15))
			reg |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
		else
			reg &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
		AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
		reg = AR_READ(sc, AR_PHY_CCK_DETECT);		/* Flush. */
	}
Example #13
0
void
ar9280_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
    struct ieee80211_channel *extc)
{
	static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 };
	const struct ar5416_eeprom *eep = sc->eep;
	const struct ar5416_modal_eep_header *modal;
	uint32_t reg, offset;
	uint8_t txRxAtten;
	int i;

	modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];

	AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);

	for (i = 0; i < AR9280_MAX_CHAINS; i++) {
		if (sc->rxchainmask == 0x5 || sc->txchainmask == 0x5)
			offset = chainoffset[i];
		else
			offset = i * 0x1000;

		AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset,
		    modal->antCtrlChain[i]);

		reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset);
		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
		    modal->iqCalICh[i]);
		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
		    modal->iqCalQCh[i]);
		AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg);

		if (sc->eep_rev >= AR_EEP_MINOR_VER_3) {
			reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
			reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
			    modal->bswMargin[i]);
			reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
			    modal->bswAtten[i]);
			reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
			    modal->xatten2Margin[i]);
			reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
			    modal->xatten2Db[i]);
			AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
		}
		if (sc->eep_rev >= AR_EEP_MINOR_VER_3)
			txRxAtten = modal->txRxAttenCh[i];
		else	/* Workaround for ROM versions < 14.3. */
			txRxAtten = IEEE80211_IS_CHAN_2GHZ(c) ? 23 : 44;
		reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
		reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN,
		    txRxAtten);
		reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN,
		    modal->rxTxMarginCh[i]);
		AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);
	}
	if (IEEE80211_IS_CHAN_2GHZ(c)) {
		reg = AR_READ(sc, AR_AN_RF2G1_CH0);
		reg = RW(reg, AR_AN_RF2G1_CH0_OB, modal->ob);
		reg = RW(reg, AR_AN_RF2G1_CH0_DB, modal->db);
		AR_WRITE(sc, AR_AN_RF2G1_CH0, reg);
		AR_WRITE_BARRIER(sc);
		DELAY(100);

		reg = AR_READ(sc, AR_AN_RF2G1_CH1);
		reg = RW(reg, AR_AN_RF2G1_CH1_OB, modal->ob_ch1);
		reg = RW(reg, AR_AN_RF2G1_CH1_DB, modal->db_ch1);
		AR_WRITE(sc, AR_AN_RF2G1_CH1, reg);
		AR_WRITE_BARRIER(sc);
		DELAY(100);
	} else {
		reg = AR_READ(sc, AR_AN_RF5G1_CH0);
		reg = RW(reg, AR_AN_RF5G1_CH0_OB5, modal->ob);
		reg = RW(reg, AR_AN_RF5G1_CH0_DB5, modal->db);
		AR_WRITE(sc, AR_AN_RF5G1_CH0, reg);
		AR_WRITE_BARRIER(sc);
		DELAY(100);

		reg = AR_READ(sc, AR_AN_RF5G1_CH1);
		reg = RW(reg, AR_AN_RF5G1_CH1_OB5, modal->ob_ch1);
		reg = RW(reg, AR_AN_RF5G1_CH1_DB5, modal->db_ch1);
		AR_WRITE(sc, AR_AN_RF5G1_CH1, reg);
		AR_WRITE_BARRIER(sc);
		DELAY(100);
	}
	reg = AR_READ(sc, AR_AN_TOP2);
	if ((sc->flags & ATHN_FLAG_USB) && IEEE80211_IS_CHAN_5GHZ(c)) {
		/*
		 * Hardcode the output voltage of x-PA bias LDO to the
		 * lowest value for UB94 such that the card doesn't get
		 * too hot.
		 */
		reg = RW(reg, AR_AN_TOP2_XPABIAS_LVL, 0);
	} else
		reg = RW(reg, AR_AN_TOP2_XPABIAS_LVL, modal->xpaBiasLvl);
	if (modal->flagBits & AR5416_EEP_FLAG_LOCALBIAS)
		reg |= AR_AN_TOP2_LOCALBIAS;
	else
		reg &= ~AR_AN_TOP2_LOCALBIAS;
	AR_WRITE(sc, AR_AN_TOP2, reg);
	AR_WRITE_BARRIER(sc);
	DELAY(100);

	reg = AR_READ(sc, AR_PHY_XPA_CFG);
	if (modal->flagBits & AR5416_EEP_FLAG_FORCEXPAON)
		reg |= AR_PHY_FORCE_XPA_CFG;
	else
		reg &= ~AR_PHY_FORCE_XPA_CFG;
	AR_WRITE(sc, AR_PHY_XPA_CFG, reg);

	reg = AR_READ(sc, AR_PHY_SETTLING);
	reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
	AR_WRITE(sc, AR_PHY_SETTLING, reg);

	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
	reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);

	reg =  SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
	reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
	AR_WRITE(sc, AR_PHY_RF_CTL4, reg);

	reg = AR_READ(sc, AR_PHY_RF_CTL3);
	reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
	AR_WRITE(sc, AR_PHY_RF_CTL3, reg);

	reg = AR_READ(sc, AR_PHY_CCA(0));
	reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62);
	AR_WRITE(sc, AR_PHY_CCA(0), reg);

	reg = AR_READ(sc, AR_PHY_EXT_CCA0);
	reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62);
	AR_WRITE(sc, AR_PHY_EXT_CCA0, reg);

	if (sc->eep_rev >= AR_EEP_MINOR_VER_2) {
		reg = AR_READ(sc, AR_PHY_RF_CTL2);
		reg = RW(reg, AR_PHY_TX_END_DATA_START,
		    modal->txFrameToDataStart);
		reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn);
		AR_WRITE(sc, AR_PHY_RF_CTL2, reg);
	}
#ifndef IEEE80211_NO_HT
	if (sc->eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) {
		/* Overwrite switch settling with HT-40 value. */
		reg = AR_READ(sc, AR_PHY_SETTLING);
		reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
		AR_WRITE(sc, AR_PHY_SETTLING, reg);
	}
#endif
	if (sc->eep_rev >= AR_EEP_MINOR_VER_19) {
		reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL);
		reg = RW(reg, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
		    MS(modal->miscBits, AR5416_EEP_MISC_TX_DAC_SCALE_CCK));
		AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg);
	}
	if (AR_SREV_9280_20(sc) &&
	    sc->eep_rev >= AR_EEP_MINOR_VER_20) {
		reg = AR_READ(sc, AR_AN_TOP1);
		if (eep->baseEepHeader.dacLpMode &&
		    (IEEE80211_IS_CHAN_2GHZ(c) ||
		     !eep->baseEepHeader.dacHiPwrMode_5G))
			reg |= AR_AN_TOP1_DACLPMODE;
		else
			reg &= ~AR_AN_TOP1_DACLPMODE;
		AR_WRITE(sc, AR_AN_TOP1, reg);
		AR_WRITE_BARRIER(sc);
		DELAY(100);

		reg = AR_READ(sc, AR_PHY_FRAME_CTL);
		reg = RW(reg, AR_PHY_FRAME_CTL_TX_CLIP,
		    MS(modal->miscBits, AR5416_EEP_MISC_TX_CLIP));
		AR_WRITE(sc, AR_PHY_FRAME_CTL, reg);

		reg = AR_READ(sc, AR_PHY_TX_PWRCTRL9);
		reg = RW(reg, AR_PHY_TX_DESIRED_SCALE_CCK,
		    eep->baseEepHeader.desiredScaleCCK);
		AR_WRITE(sc, AR_PHY_TX_PWRCTRL9, reg);
	}
	AR_WRITE_BARRIER(sc);
}
Example #14
0
int
ar9280_set_synth(struct athn_softc *sc, struct ieee80211_channel *c,
    struct ieee80211_channel *extc)
{
	uint32_t phy, reg, ndiv = 0;
	uint32_t freq = c->ic_freq;

	phy = AR_READ(sc, AR9280_PHY_SYNTH_CONTROL) & ~0x3fffffff;

	if (IEEE80211_IS_CHAN_2GHZ(c)) {
		phy |= (freq << 16) / 15;
		phy |= AR9280_BMODE | AR9280_FRACMODE;

		if (AR_SREV_9287_11_OR_LATER(sc)) {
			/* NB: Magic values from the Linux driver. */
			if (freq == 2484) {	/* Channel 14. */
				/* Japanese regulatory requirements. */
				AR_WRITE(sc, AR_PHY(637), 0x00000000);
				AR_WRITE(sc, AR_PHY(638), 0xefff0301);
				AR_WRITE(sc, AR_PHY(639), 0xca9228ee);
			} else {
				AR_WRITE(sc, AR_PHY(637), 0x00fffeff);
				AR_WRITE(sc, AR_PHY(638), 0x00f5f9ff);
				AR_WRITE(sc, AR_PHY(639), 0xb79f6427);
			}
		} else {
			reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL);
			if (freq == 2484)	/* Channel 14. */
				reg |= AR_PHY_CCK_TX_CTRL_JAPAN;
			else
				reg &= ~AR_PHY_CCK_TX_CTRL_JAPAN;
			AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg);
		}
	} else {
		if (AR_SREV_9285_10_OR_LATER(sc) ||
		    sc->eep_rev < AR_EEP_MINOR_VER_22 ||
		    !((struct ar5416_base_eep_header *)sc->eep)->frac_n_5g) {
			if ((freq % 20) == 0) {
				ndiv = (freq * 3) / 60;
				phy |= SM(AR9280_AMODE_REFSEL, 3);
			} else if ((freq % 10) == 0) {
				ndiv = (freq * 6) / 60;
				phy |= SM(AR9280_AMODE_REFSEL, 2);
			}
		}
		if (ndiv != 0) {
			phy |= (ndiv & 0x1ff) << 17;
			phy |= (ndiv & ~0x1ff) * 2;
		} else {
			phy |= (freq << 15) / 15;
			phy |= AR9280_FRACMODE;

			reg = AR_READ(sc, AR_AN_SYNTH9);
			reg = RW(reg, AR_AN_SYNTH9_REFDIVA, 1);
			AR_WRITE(sc, AR_AN_SYNTH9, reg);
		}
	}
	AR_WRITE_BARRIER(sc);
	DPRINTFN(4, ("AR9280_PHY_SYNTH_CONTROL=0x%08x\n", phy));
	AR_WRITE(sc, AR9280_PHY_SYNTH_CONTROL, phy);
	AR_WRITE_BARRIER(sc);
	return (0);
}
Example #15
0
void
ar9380_spur_mitigate_ofdm(struct athn_softc *sc, struct ieee80211_channel *c,
    struct ieee80211_channel *extc)
{
	const struct ar9380_eeprom *eep = sc->eep;
	const uint8_t *spurchans;
	uint32_t reg;
	int idx, spur_delta_phase, spur_off, range, i;
	int freq, spur, spur_freq_sd, spur_subchannel_sd;

	if (IEEE80211_IS_CHAN_2GHZ(c))
		spurchans = eep->modalHeader2G.spurChans;
	else
		spurchans = eep->modalHeader5G.spurChans;
	if (spurchans[0] == 0)
		return;

	/* Disable OFDM spur mitigation. */
	AR_CLRBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER);

	reg = AR_READ(sc, AR_PHY_TIMING11);
	reg = RW(reg, AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
	reg = RW(reg, AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
	reg &= ~AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC;
	reg &= ~AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR;
	AR_WRITE(sc, AR_PHY_TIMING11, reg);

	AR_CLRBITS(sc, AR_PHY_SFCORR_EXT,
	    AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD);

	AR_CLRBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI);

	reg = AR_READ(sc, AR_PHY_SPUR_REG);
	reg = RW(reg, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
	reg &= ~AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI;
	reg &= ~AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT;
	reg &= ~AR_PHY_SPUR_REG_ENABLE_MASK_PPM;
	AR_WRITE(sc, AR_PHY_SPUR_REG, reg);
	AR_WRITE_BARRIER(sc);

	freq = c->ic_freq;
#ifndef IEEE80211_NO_HT
	if (extc != NULL) {
		range = 19;	/* +/- 19MHz range. */
		if (AR_READ(sc, AR_PHY_GEN_CTRL) & AR_PHY_GC_DYN2040_PRI_CH)
			freq += 10;
		else
			freq -= 10;
	} else
#endif
		range = 10;	/* +/- 10MHz range. */
	for (i = 0; i < AR9380_EEPROM_MODAL_SPURS; i++) {
		spur = spurchans[i];
		if (spur == 0)
			return;
		/* Convert to frequency. */
		if (IEEE80211_IS_CHAN_2GHZ(c))
			spur = 2300 + spur;
		else
			spur = 4900 + (spur * 5);
		spur -= freq;
		if (abs(spur) < range)
			break;
	}
	if (i == AR9380_EEPROM_MODAL_SPURS)
		return;

	/* Enable OFDM spur mitigation. */
#ifndef IEEE80211_NO_HT
	if (extc != NULL) {
		spur_delta_phase = (spur * 131072) / 5;
		reg = AR_READ(sc, AR_PHY_GEN_CTRL);
		if (spur < 0) {
			spur_subchannel_sd =
			    (reg & AR_PHY_GC_DYN2040_PRI_CH) == 0;
			spur_off = spur + 10;
		} else {
			spur_subchannel_sd =
			    (reg & AR_PHY_GC_DYN2040_PRI_CH) != 0;
			spur_off = spur - 10;
		}
	} else
#endif
	{
		spur_delta_phase = (spur * 262144) / 5;
		spur_subchannel_sd = 0;
		spur_off = spur;
	}
	spur_freq_sd = (spur_off * 512) / 11;

	AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER);

	reg = AR_READ(sc, AR_PHY_TIMING11);
	reg = RW(reg, AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
	reg = RW(reg, AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
	reg |= AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC;
	reg |= AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR;
	AR_WRITE(sc, AR_PHY_TIMING11, reg);

	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
	if (spur_subchannel_sd)
		reg |= AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD;
	else
		reg &= ~AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD;
	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);

	AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI);

	reg = AR_READ(sc, AR_PHY_SPUR_REG);
	reg = RW(reg, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
	reg = RW(reg, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
	reg |= AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI;
	if (AR_READ(sc, AR_PHY_MODE) & AR_PHY_MODE_DYNAMIC)
		reg |= AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT;
	reg |= AR_PHY_SPUR_REG_ENABLE_MASK_PPM;
	AR_WRITE(sc, AR_PHY_SPUR_REG, reg);

	idx = (spur * 16) / 5;
	if (idx < 0)
		idx--;

	/* Write pilot mask. */
	AR_SETBITS(sc, AR_PHY_TIMING4,
	    AR_PHY_TIMING4_ENABLE_PILOT_MASK |
	    AR_PHY_TIMING4_ENABLE_CHAN_MASK);

	reg = AR_READ(sc, AR_PHY_PILOT_SPUR_MASK);
	reg = RW(reg, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, idx);
	reg = RW(reg, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0x0c);
	AR_WRITE(sc, AR_PHY_PILOT_SPUR_MASK, reg);

	reg = AR_READ(sc, AR_PHY_SPUR_MASK_A);
	reg = RW(reg, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, idx);
	reg = RW(reg, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
	AR_WRITE(sc, AR_PHY_SPUR_MASK_A, reg);

	reg = AR_READ(sc, AR_PHY_CHAN_SPUR_MASK);
	reg = RW(reg, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, idx);
	reg = RW(reg, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0x0c);
	AR_WRITE(sc, AR_PHY_CHAN_SPUR_MASK, reg);
	AR_WRITE_BARRIER(sc);
}
Example #16
0
void
ar9380_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
    struct ieee80211_channel *extc)
{
	const struct ar9380_eeprom *eep = sc->eep;
	const struct ar9380_modal_eep_header *modal;
	uint8_t db, margin, ant_div_ctrl;
	uint32_t reg;
	int i, maxchains;

	if (IEEE80211_IS_CHAN_2GHZ(c))
		modal = &eep->modalHeader2G;
	else
		modal = &eep->modalHeader5G;

	/* Apply XPA bias level. */
	if (AR_SREV_9485(sc)) {
		reg = AR_READ(sc, AR9485_PHY_65NM_CH0_TOP2);
		reg = RW(reg, AR9485_PHY_65NM_CH0_TOP2_XPABIASLVL,
		    modal->xpaBiasLvl);
		AR_WRITE(sc, AR9485_PHY_65NM_CH0_TOP2, reg);
	} else {
		reg = AR_READ(sc, AR_PHY_65NM_CH0_TOP);
		reg = RW(reg, AR_PHY_65NM_CH0_TOP_XPABIASLVL,
		    modal->xpaBiasLvl & 0x3);
		AR_WRITE(sc, AR_PHY_65NM_CH0_TOP, reg);
		reg = AR_READ(sc, AR_PHY_65NM_CH0_THERM);
		reg = RW(reg, AR_PHY_65NM_CH0_THERM_XPABIASLVL_MSB,
		    modal->xpaBiasLvl >> 2);
		reg |= AR_PHY_65NM_CH0_THERM_XPASHORT2GND;
		AR_WRITE(sc, AR_PHY_65NM_CH0_THERM, reg);
	}

	/* Apply antenna control. */
	reg = AR_READ(sc, AR_PHY_SWITCH_COM);
	reg = RW(reg, AR_SWITCH_TABLE_COM_ALL, modal->antCtrlCommon);
	AR_WRITE(sc, AR_PHY_SWITCH_COM, reg);
	reg = AR_READ(sc, AR_PHY_SWITCH_COM_2);
	reg = RW(reg, AR_SWITCH_TABLE_COM_2_ALL, modal->antCtrlCommon2);
	AR_WRITE(sc, AR_PHY_SWITCH_COM_2, reg);

	maxchains = AR_SREV_9485(sc) ? 1 : AR9380_MAX_CHAINS;
	for (i = 0; i < maxchains; i++) {
		reg = AR_READ(sc, AR_PHY_SWITCH_CHAIN(i));
		reg = RW(reg, AR_SWITCH_TABLE_ALL, modal->antCtrlChain[i]);
		AR_WRITE(sc, AR_PHY_SWITCH_CHAIN(i), reg);
	}

	if (AR_SREV_9485(sc)) {
		ant_div_ctrl = eep->base_ext1.ant_div_control;
		reg = AR_READ(sc, AR_PHY_MC_GAIN_CTRL);
		reg = RW(reg, AR_PHY_MC_GAIN_CTRL_ANT_DIV_CTRL_ALL,
		    MS(ant_div_ctrl, AR_EEP_ANT_DIV_CTRL_ALL));
		if (ant_div_ctrl & AR_EEP_ANT_DIV_CTRL_ANT_DIV)
			reg |= AR_PHY_MC_GAIN_CTRL_ENABLE_ANT_DIV;
		else
			reg &= ~AR_PHY_MC_GAIN_CTRL_ENABLE_ANT_DIV;
		AR_WRITE(sc, AR_PHY_MC_GAIN_CTRL, reg);
		reg = AR_READ(sc, AR_PHY_CCK_DETECT);
		if (ant_div_ctrl & AR_EEP_ANT_DIV_CTRL_FAST_DIV)
			reg |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
		else
			reg &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
		AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
	}

	if (eep->baseEepHeader.miscConfiguration & AR_EEP_DRIVE_STRENGTH) {
		/* Apply drive strength. */
		reg = AR_READ(sc, AR_PHY_65NM_CH0_BIAS1);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_0, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_1, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_2, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_3, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_4, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_5, 5);
		AR_WRITE(sc, AR_PHY_65NM_CH0_BIAS1, reg);

		reg = AR_READ(sc, AR_PHY_65NM_CH0_BIAS2);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_0, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_1, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_2, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_3, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_4, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_5, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_6, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_7, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_8, 5);
		AR_WRITE(sc, AR_PHY_65NM_CH0_BIAS2, reg);

		reg = AR_READ(sc, AR_PHY_65NM_CH0_BIAS4);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS4_0, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS4_1, 5);
		reg = RW(reg, AR_PHY_65NM_CH0_BIAS4_2, 5);
		AR_WRITE(sc, AR_PHY_65NM_CH0_BIAS4, reg);
	}

	/* Apply attenuation settings. */
	maxchains = AR_SREV_9485(sc) ? 1 : AR9380_MAX_CHAINS;
	for (i = 0; i < maxchains; i++) {
		if (IEEE80211_IS_CHAN_5GHZ(c) &&
		    eep->base_ext2.xatten1DBLow[i] != 0) {
			if (c->ic_freq <= 5500) {
				db = athn_interpolate(c->ic_freq,
				    5180, eep->base_ext2.xatten1DBLow[i],
				    5500, modal->xatten1DB[i]);
			} else {
				db = athn_interpolate(c->ic_freq,
				    5500, modal->xatten1DB[i],
				    5785, eep->base_ext2.xatten1DBHigh[i]);
			}
		} else
			db = modal->xatten1DB[i];
		if (IEEE80211_IS_CHAN_5GHZ(c) &&
		    eep->base_ext2.xatten1MarginLow[i] != 0) {
			if (c->ic_freq <= 5500) {
				margin = athn_interpolate(c->ic_freq,
				    5180, eep->base_ext2.xatten1MarginLow[i],
				    5500, modal->xatten1Margin[i]);
			} else {
				margin = athn_interpolate(c->ic_freq,
				    5500, modal->xatten1Margin[i],
				    5785, eep->base_ext2.xatten1MarginHigh[i]);
			}
		} else
			margin = modal->xatten1Margin[i];
		reg = AR_READ(sc, AR_PHY_EXT_ATTEN_CTL(i));
		reg = RW(reg, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, db);
		reg = RW(reg, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, margin);
		AR_WRITE(sc, AR_PHY_EXT_ATTEN_CTL(i), reg);
	}

	/* Initialize switching regulator. */
	if (AR_SREV_9485(sc))
		ar9485_init_swreg(sc);
	else
		ar9485_init_swreg(sc);

	/* Apply tuning capabilities. */
	if (AR_SREV_9485(sc) &&
	    (eep->baseEepHeader.featureEnable & AR_EEP_TUNING_CAPS)) {
		reg = AR_READ(sc, AR9485_PHY_CH0_XTAL);
		reg = RW(reg, AR9485_PHY_CH0_XTAL_CAPINDAC,
		    eep->baseEepHeader.params_for_tuning_caps[0]);
		reg = RW(reg, AR9485_PHY_CH0_XTAL_CAPOUTDAC,
		    eep->baseEepHeader.params_for_tuning_caps[0]);
		AR_WRITE(sc, AR9485_PHY_CH0_XTAL, reg);
	}
	AR_WRITE_BARRIER(sc);
}