static int cfgCallback(void *user, const char *section, const char *name, const char *value)
{
	AVB_TRACE_ENTRY(AVB_TRACE_ENDPOINT);

	if (!user || !section || !name || !value) {
		AVB_LOG_ERROR("Config: invalid arguments passed to callback");
		AVB_TRACE_EXIT(AVB_TRACE_ENDPOINT);
		return 0;
	}
	
	openavb_endpoint_cfg_t *pCfg = (openavb_endpoint_cfg_t*)user;
	
	AVB_LOGF_DEBUG("name=[%s] value=[%s]", name, value);

	bool valOK = FALSE;
	char *pEnd;

	if (MATCH(section, "network"))
	{
		if (MATCH(name, "ifname"))
		{
			if_info_t ifinfo;
			if (openavbCheckInterface(value, &ifinfo)) {
				strncpy(pCfg->ifname, value, IFNAMSIZ - 1);
				memcpy(pCfg->ifmac, &ifinfo.mac, ETH_ALEN);
				pCfg->ifindex = ifinfo.index;
				pCfg->mtu = ifinfo.mtu;
				valOK = TRUE;
			}
		}
		else if (MATCH(name, "link_kbit")) {
			errno = 0;
			pCfg->link_kbit = strtoul(value, &pEnd, 10);
			if (*pEnd == '\0' && errno == 0)
				valOK = TRUE;
		}
		else if (MATCH(name, "nsr_kbit")) {
			errno = 0;
			pCfg->nsr_kbit = strtoul(value, &pEnd, 10);
			if (*pEnd == '\0' && errno == 0)
				valOK = TRUE;
		}
		else {
			// unmatched item, fail
			AVB_LOGF_ERROR("Unrecognized configuration item: section=%s, name=%s", section, name);
			AVB_TRACE_EXIT(AVB_TRACE_ENDPOINT);
			return 0;
		}
	}
	else if (MATCH(section, "ptp"))
	{
		if (MATCH(name, "start_options")) {
			pCfg->ptp_start_opts = strdup(value);
			valOK = TRUE;
		}
		else {
			// unmatched item, fail
			AVB_LOGF_ERROR("Unrecognized configuration item: section=%s, name=%s", section, name);
			AVB_TRACE_EXIT(AVB_TRACE_ENDPOINT);
			return 0;
		}
	}
	else if (MATCH(section, "fqtss"))
	{
		if (MATCH(name, "mode")) {
			errno = 0;
			pCfg->fqtss_mode = strtoul(value, &pEnd, 10);
			if (*pEnd == '\0' && errno == 0)
				valOK = TRUE;
		}
		else {
			// unmatched item, fail
			AVB_LOGF_ERROR("Unrecognized configuration item: section=%s, name=%s", section, name);
			AVB_TRACE_EXIT(AVB_TRACE_ENDPOINT);
			return 0;
		}
	}
	else if (MATCH(section, "srp"))
	{
		if (MATCH(name, "preconfigured")) {
			errno = 0;
			unsigned temp = strtoul(value, &pEnd, 10);
			if (*pEnd == '\0' && errno == 0) {
				valOK = TRUE;
				if (temp == 1)
					pCfg->noSrp = TRUE;
				else
					pCfg->noSrp = FALSE;
			}
		}
		else if (MATCH(name, "gptp_asCapable_not_required")) {
			errno = 0;
			unsigned temp = strtoul(value, &pEnd, 10);
			if (*pEnd == '\0' && errno == 0) {
				valOK = TRUE;
				if (temp == 1)
					pCfg->bypassAsCapableCheck = TRUE;
				else
					pCfg->bypassAsCapableCheck = FALSE;
			}
		}
		else {
			// unmatched item, fail
			AVB_LOGF_ERROR("Unrecognized configuration item: section=%s, name=%s", section, name);
			AVB_TRACE_EXIT(AVB_TRACE_ENDPOINT);
			return 0;
		}
	}
	else {
		// unmatched item, fail
		AVB_LOGF_ERROR("Unrecognized configuration item: section=%s, name=%s", section, name);
		AVB_TRACE_EXIT(AVB_TRACE_ENDPOINT);
		return 0;
	}

	if (!valOK) {
		cfgValErr(section, name, value);
		AVB_TRACE_EXIT(AVB_TRACE_ENDPOINT);
		return 0;
	}

	AVB_TRACE_EXIT(AVB_TRACE_ENDPOINT);
	return 1; // OK
}
Example #2
0
// This callback is called when acting as a listener.
bool openavbIntfViewerRxCB(media_q_t *pMediaQ) 
{
	AVB_TRACE_ENTRY(AVB_TRACE_INTF_DETAIL);
	if (pMediaQ) {
		pvt_data_t *pPvtData = pMediaQ->pPvtIntfInfo;
		if (!pPvtData) {
			AVB_LOG_ERROR("Private interface module data not allocated.");
			return FALSE;
		}

		media_q_item_t *pMediaQItem = openavbMediaQTailLock(pMediaQ, pPvtData->ignoreTimestamp);
		if (pMediaQItem) {

		  	// The skip countdown allow the viewer modes to set a number of packets to ignore 
		  	// after logging to reduce or eliminate the logging from affecting the stats.
			if (pPvtData->skipCountdown)
				pPvtData->skipCountdown--;
		  
			if (pMediaQItem->dataLen && !pPvtData->skipCountdown) {
				pPvtData->servicedCount++;

				if (pPvtData->viewType == VIEWER_MODE_DETAIL) {
					U32 avtpTimestamp;
					U64 avtpTimestampTime;
					bool avtpTimestampValid;
					U32 nowTimestamp;
					U64 nowTimestampTime;
					bool nowTimestampValid;
					U64 nowTime;
					S32 lateNS = 0;
					U64 gapNS = 0;
					
					avtpTimestamp = openavbAvtpTimeGetAvtpTimestamp(pMediaQItem->pAvtpTime);
					avtpTimestampTime = openavbAvtpTimeGetAvtpTimeNS(pMediaQItem->pAvtpTime);
					avtpTimestampValid = openavbAvtpTimeTimestampIsValid(pMediaQItem->pAvtpTime);
					
					openavbAvtpTimeSetToWallTime(pMediaQItem->pAvtpTime);
					nowTimestamp = openavbAvtpTimeGetAvtpTimestamp(pMediaQItem->pAvtpTime);
					nowTimestampTime = openavbAvtpTimeGetAvtpTimeNS(pMediaQItem->pAvtpTime);
					nowTimestampValid = openavbAvtpTimeTimestampIsValid(pMediaQItem->pAvtpTime);
					
					CLOCK_GETTIME64(OPENAVB_CLOCK_REALTIME, &nowTime);

					if (avtpTimestampValid && nowTimestampValid) {
						lateNS = nowTimestampTime - avtpTimestampTime;
						if (lateNS > pPvtData->maxLateNS) {
							pPvtData->maxLateNS = lateNS;
						}
						pPvtData->accumLateNS += lateNS;
						
						if (pPvtData->servicedCount > 1) {
							gapNS = nowTime - pPvtData->prevNowTime;
							if (gapNS > pPvtData->maxGapNS) {
								pPvtData->maxGapNS = gapNS;
							}
							pPvtData->accumGapNS += gapNS;
						}
						pPvtData->prevNowTime = nowTime;
						
						if ((pPvtData->servicedCount % pPvtData->viewInterval) == 0) {
							S32 lateAvg = pPvtData->accumLateNS / pPvtData->servicedCount;
							S32 gapAvg = pPvtData->accumGapNS / (pPvtData->servicedCount - 1);
							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, LOG_RT_END, "****************************", LOG_RT_DATATYPE_CONST_STR, NULL);
							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, LOG_RT_END, "Packets: %u", LOG_RT_DATATYPE_U32, &pPvtData->servicedCount);
							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, LOG_RT_END, "AVTP Timestamp: %u NS", LOG_RT_DATATYPE_U32, &avtpTimestamp);
							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, LOG_RT_END, "Now Timestamp:  %u NS", LOG_RT_DATATYPE_U32, &nowTimestamp);
							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, LOG_RT_END, "Late: %d NS", LOG_RT_DATATYPE_S32, &lateNS);
							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, LOG_RT_END, "Late Avg: %d NS", LOG_RT_DATATYPE_S32, &lateAvg);
							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, LOG_RT_END, "Late Max: %d NS", LOG_RT_DATATYPE_S32, &pPvtData->maxLateNS);
							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, LOG_RT_END, "Gap: %u NS", LOG_RT_DATATYPE_U32, &gapNS);
							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, LOG_RT_END, "Gap Avg: %u NS", LOG_RT_DATATYPE_U32, &gapAvg);
							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, LOG_RT_END, "Gap Max: %u NS", LOG_RT_DATATYPE_U32, &pPvtData->maxGapNS);
							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, LOG_RT_END, "Data length:  %u", LOG_RT_DATATYPE_U32, &pMediaQItem->dataLen);
							
							pPvtData->accumLateNS = 0;
							pPvtData->maxLateNS = 0;
							pPvtData->accumGapNS = 0;
							pPvtData->maxGapNS = 0;
							pPvtData->prevNowTime = 0;							
							pPvtData->servicedCount = 0;
							pPvtData->skipCountdown = 10;
						}
					}
				}
				
				else if (pPvtData->viewType == VIEWER_MODE_MAPPING_AWARE) {
				}

				else if (pPvtData->viewType == VIEWER_MODE_AVTP_TIMESTAMP) {
					U64 avtpTimestampTime;
					bool avtpTimestampValid;
					S32 deltaNS = 0;
					
					avtpTimestampTime = openavbAvtpTimeGetAvtpTimeNS(pMediaQItem->pAvtpTime);
					avtpTimestampValid = openavbAvtpTimeTimestampIsValid(pMediaQItem->pAvtpTime);
					
					if (avtpTimestampValid) {
						if (pPvtData->servicedCount > 1) {
							deltaNS = avtpTimestampTime - pPvtData->prevAvtpTimestampTime;
							if (deltaNS > pPvtData->maxAvtpDeltaNS) {
								pPvtData->maxAvtpDeltaNS = deltaNS;
							}
							pPvtData->accumAvtpDeltaNS += deltaNS;

							if (pPvtData->avgForJitter != 0) {
								S32 deltaJitter = pPvtData->avgForJitter - deltaNS;
								if (deltaJitter < 0) deltaJitter = -deltaJitter;
								pPvtData->jitter += (1.0/16.0) * ((float)deltaJitter - pPvtData->jitter);
							}
						}
						pPvtData->prevAvtpTimestampTime = avtpTimestampTime;

						if ((pPvtData->servicedCount % pPvtData->viewInterval) == 0) {
							S32 deltaAvg = pPvtData->accumAvtpDeltaNS / (pPvtData->servicedCount - 1);
							U32 jitter = (U32)(pPvtData->jitter);
							
							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, FALSE, "AVTP Timestamp Delta: %d NS  ", LOG_RT_DATATYPE_S32, &deltaNS);
							AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, FALSE, "AVTP Timestamp Delta Avg: %d NS  ", LOG_RT_DATATYPE_S32, &deltaAvg);
							AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, FALSE, "AVTP Timestamp Delta Max: %d NS  ", LOG_RT_DATATYPE_S32, &pPvtData->maxAvtpDeltaNS);
							AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, LOG_RT_END, "Jitter: %d", LOG_RT_DATATYPE_S32, &jitter);
							
							pPvtData->accumAvtpDeltaNS = 0;
							pPvtData->maxAvtpDeltaNS = 0;
							pPvtData->servicedCount = 0;
							pPvtData->prevAvtpTimestampTime = 0;
							pPvtData->skipCountdown = 10;
							pPvtData->jitter = 0.0;
							pPvtData->avgForJitter = deltaAvg;
						}
					}
				}

				else if (pPvtData->viewType == VIEWER_MODE_LATENCY) {
					U64 avtpTimestampTime;
					bool avtpTimestampValid;
					U64 nowTimestampTime;
					bool nowTimestampValid;
					S32 lateNS = 0;
					
					avtpTimestampTime = openavbAvtpTimeGetAvtpTimeNS(pMediaQItem->pAvtpTime);
					avtpTimestampValid = openavbAvtpTimeTimestampIsValid(pMediaQItem->pAvtpTime);
					
					openavbAvtpTimeSetToWallTime(pMediaQItem->pAvtpTime);
					nowTimestampTime = openavbAvtpTimeGetAvtpTimeNS(pMediaQItem->pAvtpTime);
					nowTimestampValid = openavbAvtpTimeTimestampIsValid(pMediaQItem->pAvtpTime);

					if (avtpTimestampValid && nowTimestampValid) {
						lateNS = nowTimestampTime - avtpTimestampTime;
						if (lateNS > pPvtData->maxLateNS) {
							pPvtData->maxLateNS = lateNS;
						}
						pPvtData->accumLateNS += lateNS;
						
						if (pPvtData->avgForJitter != 0) {
							S32 lateJitter = pPvtData->avgForJitter - lateNS;
							if (lateJitter < 0) lateJitter = -lateJitter;
							pPvtData->jitter += (1.0/16.0) * ((float)lateJitter - pPvtData->jitter);
						}
						
						if ((pPvtData->servicedCount % pPvtData->viewInterval) == 0) {
							S32 lateAvg = pPvtData->accumLateNS / pPvtData->servicedCount;
							U32 jitter = (U32)(pPvtData->jitter);
							
							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, FALSE, "Latency: %d NS  ", LOG_RT_DATATYPE_S32, &lateNS);
							AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, FALSE, "Latency Avg: %d NS  ", LOG_RT_DATATYPE_S32, &lateAvg);
							AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, FALSE, "Latency Max: %d NS  ", LOG_RT_DATATYPE_S32, &pPvtData->maxLateNS);
							AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, LOG_RT_END, "Jitter: %d", LOG_RT_DATATYPE_S32, &jitter);
							
							pPvtData->accumLateNS = 0;
							pPvtData->maxLateNS = 0;
							pPvtData->servicedCount = 0;
							pPvtData->skipCountdown = 10;
							pPvtData->jitter = 0.0;
							pPvtData->avgForJitter = lateAvg;
						}
					}
				}
			  
				else if (pPvtData->viewType == VIEWER_MODE_SELECTIVE_TIMESTAMP) {
				}				  

				else if (pPvtData->viewType == VIEWER_MODE_LATE) {
					U64 avtpTimestampTime;
					bool avtpTimestampValid;
					U64 nowTimestampTime;
					bool nowTimestampValid;
					S32 lateNS = 0;
					
					avtpTimestampTime = openavbAvtpTimeGetAvtpTimeNS(pMediaQItem->pAvtpTime);
					avtpTimestampValid = openavbAvtpTimeTimestampIsValid(pMediaQItem->pAvtpTime);
					
					openavbAvtpTimeSetToWallTime(pMediaQItem->pAvtpTime);
					nowTimestampTime = openavbAvtpTimeGetAvtpTimeNS(pMediaQItem->pAvtpTime);
					nowTimestampValid = openavbAvtpTimeTimestampIsValid(pMediaQItem->pAvtpTime);

					if (avtpTimestampValid && nowTimestampValid) {
						lateNS = nowTimestampTime - avtpTimestampTime;
						if (lateNS > pPvtData->maxLateNS) {
							pPvtData->maxLateNS = lateNS;
						}
						pPvtData->accumLateNS += lateNS;
						
						if (pPvtData->avgForJitter != 0) {
							S32 lateJitter = pPvtData->avgForJitter - lateNS;
							if (lateJitter < 0) lateJitter = -lateJitter;
							pPvtData->jitter += (1.0/16.0) * ((float)lateJitter - pPvtData->jitter);
						}
						
						if ((pPvtData->servicedCount % pPvtData->viewInterval) == 0) {
							S32 lateAvg = pPvtData->accumLateNS / pPvtData->servicedCount;
							U32 jitter = (U32)(pPvtData->jitter);

							AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, FALSE, "Late: %d NS  ", LOG_RT_DATATYPE_S32, &lateNS);
							AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, FALSE, "Late Avg: %d NS  ", LOG_RT_DATATYPE_S32, &lateAvg);
							AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, FALSE, "Late Max: %d NS  ", LOG_RT_DATATYPE_S32, &pPvtData->maxLateNS);
							AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, LOG_RT_END, "Jitter: %d", LOG_RT_DATATYPE_S32, &jitter);
							
							pPvtData->accumLateNS = 0;
							pPvtData->maxLateNS = 0;
							pPvtData->servicedCount = 0;
							pPvtData->skipCountdown = 10;
							pPvtData->jitter = 0.0;
							pPvtData->avgForJitter = lateAvg;
						}
					}
				}
				
				else if (pPvtData->viewType == VIEWER_MODE_GAP) {
					U64 nowTime;
					U64 gapNS = 0;
					
					CLOCK_GETTIME64(OPENAVB_CLOCK_REALTIME, &nowTime);

					if (pPvtData->servicedCount > 1) {
						gapNS = nowTime - pPvtData->prevNowTime;
						if (gapNS > pPvtData->maxGapNS) {
							pPvtData->maxGapNS = gapNS;
						}
						pPvtData->accumGapNS += gapNS;
						
						if (pPvtData->avgForJitter != 0) {
							S32 gapJitter = pPvtData->avgForJitter - gapNS;
							if (gapJitter < 0) gapJitter = -gapJitter;
							pPvtData->jitter += (1.0/16.0) * ((float)gapJitter - pPvtData->jitter);
						}
					}
					pPvtData->prevNowTime = nowTime;
						
					if ((pPvtData->servicedCount % pPvtData->viewInterval) == 0) {
						S32 gapAvg = pPvtData->accumGapNS / (pPvtData->servicedCount - 1);
						U32 jitter = (U32)(pPvtData->jitter);
						
						AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, FALSE, "Gap: %d NS  ", LOG_RT_DATATYPE_S32, &gapNS);
						AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, FALSE, "Gap Avg: %d NS  ", LOG_RT_DATATYPE_S32, &gapAvg);
						AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, FALSE, "Gap Max: %d NS  ", LOG_RT_DATATYPE_S32, &pPvtData->maxGapNS);
						AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, LOG_RT_END, "Jitter: %d", LOG_RT_DATATYPE_S32, &jitter);
					  
						pPvtData->accumGapNS = 0;
						pPvtData->maxGapNS = 0;
						pPvtData->prevNowTime = 0;							
						pPvtData->servicedCount = 0;
						pPvtData->skipCountdown = 10;
						pPvtData->jitter = 0.0;
						pPvtData->avgForJitter = gapAvg;
					}
				}
				
			}
			openavbMediaQTailPull(pMediaQ);
		}
	}
	AVB_TRACE_EXIT(AVB_TRACE_INTF_DETAIL);
	return TRUE;
}
Example #3
0
void openavbIntfViewerGenEndCB(media_q_t *pMediaQ) 
{
	AVB_TRACE_ENTRY(AVB_TRACE_INTF);
	AVB_TRACE_EXIT(AVB_TRACE_INTF);
}
Example #4
0
// No talker functionality in this interface
bool openavbIntfViewerTxCB(media_q_t *pMediaQ)
{
	AVB_TRACE_ENTRY(AVB_TRACE_INTF_DETAIL);
	AVB_TRACE_EXIT(AVB_TRACE_INTF_DETAIL);
	return FALSE;
}
bool talkerStartStream(tl_state_t *pTLState)
{
	AVB_TRACE_ENTRY(AVB_TRACE_TL);

	if (!pTLState) {
		AVB_LOG_ERROR("Invalid TLState");
		AVB_TRACE_EXIT(AVB_TRACE_TL);
		return FALSE;
	}

	openavb_tl_cfg_t *pCfg = &pTLState->cfg;
	talker_data_t *pTalkerData = pTLState->pPvtTalkerData;

	assert(!pTLState->bStreaming);

	pTalkerData->wakeFrames = pCfg->max_interval_frames * pCfg->batch_factor;

	// Set a max_transmit_deficit_usec default
	if (pCfg->max_transmit_deficit_usec == 0)
		pCfg->max_transmit_deficit_usec = 50000;

	openavbRC rc = openavbAvtpTxInit(pTLState->pMediaQ,
		&pCfg->map_cb,
		&pCfg->intf_cb,
		pTalkerData->ifname,
		&pTalkerData->streamID,
		pTalkerData->destAddr,
		pCfg->max_transit_usec,
		pTalkerData->fwmark,
		pTalkerData->vlanID,
		pTalkerData->vlanPCP,
		pTalkerData->wakeFrames * pCfg->raw_tx_buffers,
		&pTalkerData->avtpHandle);
	if (IS_OPENAVB_FAILURE(rc)) {
		AVB_LOG_ERROR("Failed to create AVTP stream");
		AVB_TRACE_EXIT(AVB_TRACE_TL);
		return FALSE;
	}

	avtp_stream_t *pStream = (avtp_stream_t *)(pTalkerData->avtpHandle);

	if (!pStream->pMapCB->map_transmit_interval_cb(pTLState->pMediaQ)) {
		pTalkerData->wakeRate = pTalkerData->classRate / pCfg->batch_factor;
	}
	else {
		// Override the class observation interval with the one provided by the mapping module.
		pTalkerData->wakeRate = pStream->pMapCB->map_transmit_interval_cb(pTLState->pMediaQ) / pCfg->batch_factor;
	}
	pTalkerData->sleepUsec = MICROSECONDS_PER_SECOND / pTalkerData->wakeRate;
	pTalkerData->intervalNS = NANOSECONDS_PER_SECOND / pTalkerData->wakeRate;

	U32 SRKbps = ((unsigned long)pTalkerData->classRate * (unsigned long)pCfg->max_interval_frames * (unsigned long)pStream->frameLen * 8L) / 1000;
	U32 DataKbps = ((unsigned long)pTalkerData->wakeRate * (unsigned long)pCfg->max_interval_frames * (unsigned long)pStream->frameLen * 8L) / 1000;

	AVB_LOGF_INFO(STREAMID_FORMAT", sr-rate=%lu, data-rate=%lu, frames=%u, size=%u, batch=%u, sleep=%" PRId64 ", sr-Kbps=%d, data-Kbps=%d",
		STREAMID_ARGS(&pTalkerData->streamID), (unsigned long)(pTalkerData->classRate), (unsigned long)(pTalkerData->wakeRate),
		pTalkerData->tSpec.maxIntervalFrames, pTalkerData->tSpec.maxFrameSize,
		pCfg->batch_factor, pTalkerData->intervalNS / 1000, SRKbps, DataKbps);


	// number of intervals per report
	pTalkerData->wakesPerReport = pCfg->report_seconds * NANOSECONDS_PER_SECOND / pTalkerData->intervalNS;
	// counts of intervals and frames between reports
	pTalkerData->cntFrames = 0;
	pTalkerData->cntWakes = 0;

	// setup the initial times
	U64 nowNS;
	CLOCK_GETTIME64(OPENAVB_TIMER_CLOCK, &nowNS);
	
	// Align clock : allows for some performance gain
	nowNS = ((nowNS + (pTalkerData->intervalNS)) / pTalkerData->intervalNS) * pTalkerData->intervalNS;

	pTalkerData->nextReportNS = nowNS + (pCfg->report_seconds * NANOSECONDS_PER_SECOND);
	pTalkerData->nextSecondNS = nowNS + NANOSECONDS_PER_SECOND;
	pTalkerData->nextCycleNS = nowNS + pTalkerData->intervalNS;

	// Clear stats
	openavbTalkerClearStats(pTLState);

	// we're good to go!
	pTLState->bStreaming = TRUE;

	AVB_TRACE_EXIT(AVB_TRACE_TL);
	return TRUE;
}
// Called from openavbTLThreadFn() which is started from openavbTLRun() 
void openavbTLRunTalker(tl_state_t *pTLState)
{
	AVB_TRACE_ENTRY(AVB_TRACE_TL);

	if (!pTLState) {
		AVB_LOG_ERROR("Invalid TLState");
		AVB_TRACE_EXIT(AVB_TRACE_TL);
		return;
	}

	pTLState->pPvtTalkerData = calloc(1, sizeof(talker_data_t));
	if (!pTLState->pPvtTalkerData) {
		AVB_LOG_WARNING("Failed to allocate talker data.");
		return;
	}

	// Create Stats Mutex
	{
		MUTEX_ATTR_HANDLE(mta);
		MUTEX_ATTR_INIT(mta);
		MUTEX_ATTR_SET_TYPE(mta, MUTEX_ATTR_TYPE_DEFAULT);
		MUTEX_ATTR_SET_NAME(mta, "TLStatsMutex");
		MUTEX_CREATE_ERR();
		MUTEX_CREATE(pTLState->statsMutex, mta);
		MUTEX_LOG_ERR("Could not create/initialize 'TLStatsMutex' mutex");
	}

	/* If using endpoint register talker,
	   else register with tpsec */
	pTLState->bConnected = openavbTLRunTalkerInit(pTLState); 

	if (pTLState->bConnected) {
		bool bServiceIPC;

		// Do until we are stopped or loose connection to endpoint
		while (pTLState->bRunning && pTLState->bConnected) {

			// Talk (or just sleep if not streaming.)
			bServiceIPC = talkerDoStream(pTLState);

			// TalkerDoStream() returns TRUE once per second,
			// so that we can service our IPC at that low rate.
			if (bServiceIPC) {
				// Look for messages from endpoint.  Don't block (timeout=0)
				if (!openavbEptClntService(pTLState->endpointHandle, 0)) {
					AVB_LOGF_WARNING("Lost connection to endpoint, will retry "STREAMID_FORMAT, STREAMID_ARGS(&(((talker_data_t *)pTLState->pPvtTalkerData)->streamID)));
					pTLState->bConnected = FALSE;
					pTLState->endpointHandle = 0;
				}
			}
		}

		// Stop streaming
		talkerStopStream(pTLState);

		{
			MUTEX_CREATE_ERR();
			MUTEX_DESTROY(pTLState->statsMutex); // Destroy Stats Mutex
			MUTEX_LOG_ERR("Error destroying mutex");
		}

		// withdraw our talker registration
		if (pTLState->bConnected)
			openavbEptClntStopStream(pTLState->endpointHandle, &(((talker_data_t *)pTLState->pPvtTalkerData)->streamID));

		openavbTLRunTalkerFinish(pTLState);
	}
	else {
		AVB_LOGF_WARNING("Failed to connect to endpoint"STREAMID_FORMAT, STREAMID_ARGS(&(((talker_data_t *)pTLState->pPvtTalkerData)->streamID)));
	}

	if (pTLState->pPvtTalkerData) {
		free(pTLState->pPvtTalkerData);
		pTLState->pPvtTalkerData = NULL;
	}

	AVB_TRACE_EXIT(AVB_TRACE_TL);
}
static inline bool talkerDoStream(tl_state_t *pTLState)
{
	AVB_TRACE_ENTRY(AVB_TRACE_TL);

	if (!pTLState) {
		AVB_LOG_ERROR("Invalid TLState");
		AVB_TRACE_EXIT(AVB_TRACE_TL);
		return FALSE;
	}

	openavb_tl_cfg_t *pCfg = &pTLState->cfg;
	talker_data_t *pTalkerData = pTLState->pPvtTalkerData;
	bool bRet = FALSE;

	if (pTLState->bStreaming) {
		U64 nowNS;

		if (!pCfg->tx_blocking_in_intf) {

			// sleep until the next interval
			SLEEP_UNTIL_NSEC(pTalkerData->nextCycleNS);

			//AVB_DBG_INTERVAL(8000, TRUE);

			// send the frames for this interval
			int i;
			for (i = pTalkerData->wakeFrames; i > 0; i--) {
					if (IS_OPENAVB_SUCCESS(openavbAvtpTx(pTalkerData->avtpHandle, i == 1, pCfg->tx_blocking_in_intf)))
					pTalkerData->cntFrames++;
				else break;
				}
			}
		else {
			// Interface module block option
			if (IS_OPENAVB_SUCCESS(openavbAvtpTx(pTalkerData->avtpHandle, TRUE, pCfg->tx_blocking_in_intf)))
				pTalkerData->cntFrames++;
		}

		if (pTalkerData->cntWakes++ % pTalkerData->wakeRate == 0) {
			// time to service the endpoint IPC
			bRet = TRUE;
		}

		CLOCK_GETTIME64(OPENAVB_TIMER_CLOCK, &nowNS);

		if (pCfg->report_seconds > 0) {
			if (nowNS > pTalkerData->nextReportNS) {
			  
				S32 late = pTalkerData->wakesPerReport - pTalkerData->cntWakes;
				U64 bytes = openavbAvtpBytes(pTalkerData->avtpHandle);
				if (late < 0) late = 0;
				U32 txbuf = openavbAvtpTxBufferLevel(pTalkerData->avtpHandle);
				U32 mqbuf = openavbMediaQCountItems(pTLState->pMediaQ, TRUE);
			
				AVB_LOGRT_INFO(LOG_RT_BEGIN, LOG_RT_ITEM, FALSE, "TX UID:%d, ", LOG_RT_DATATYPE_U16, &pTalkerData->streamID.uniqueID);
				AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, FALSE, "calls=%ld, ", LOG_RT_DATATYPE_U32, &pTalkerData->cntWakes);
				AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, FALSE, "frames=%ld, ", LOG_RT_DATATYPE_U32, &pTalkerData->cntFrames);
				AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, FALSE, "late=%d, ", LOG_RT_DATATYPE_U32, &late);
				AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, FALSE, "bytes=%lld, ", LOG_RT_DATATYPE_U64, &bytes);
				AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, FALSE, "txbuf=%d, ", LOG_RT_DATATYPE_U32, &txbuf);
				AVB_LOGRT_INFO(FALSE, LOG_RT_ITEM, LOG_RT_END, "mqbuf=%d, ", LOG_RT_DATATYPE_U32, &mqbuf);

				openavbTalkerAddStat(pTLState, TL_STAT_TX_CALLS, pTalkerData->cntWakes);
				openavbTalkerAddStat(pTLState, TL_STAT_TX_FRAMES, pTalkerData->cntFrames);
				openavbTalkerAddStat(pTLState, TL_STAT_TX_LATE, late);
				openavbTalkerAddStat(pTLState, TL_STAT_TX_BYTES, bytes);

				pTalkerData->cntFrames = 0;
				pTalkerData->cntWakes = 0;
				pTalkerData->nextReportNS = nowNS + (pCfg->report_seconds * NANOSECONDS_PER_SECOND);  
			}
		}

		if (nowNS > pTalkerData->nextSecondNS) {
			pTalkerData->nextSecondNS += NANOSECONDS_PER_SECOND;
			bRet = TRUE;
		}

		if (!pCfg->tx_blocking_in_intf) {
			pTalkerData->nextCycleNS += pTalkerData->intervalNS;

			if ((pTalkerData->nextCycleNS + (pCfg->max_transmit_deficit_usec * 1000)) < nowNS) {
				// Hit max deficit time. Something must be wrong. Reset the cycle timer.	
				// Align clock : allows for some performance gain
				nowNS = ((nowNS + (pTalkerData->intervalNS)) / pTalkerData->intervalNS) * pTalkerData->intervalNS;
				pTalkerData->nextCycleNS = nowNS + pTalkerData->intervalNS;
			}				
		}
	}
	else {
            SLEEP(1);
	    // time to service the endpoint IPC
	    bRet = TRUE;
	}

	AVB_TRACE_EXIT(AVB_TRACE_TL);
	return bRet;
}
Example #8
0
/**********************************************
 * main
 */
int main(int argc, char *argv[])
{
	AVB_TRACE_ENTRY(AVB_TRACE_HOST);

	int iniIdx = 0;
	char *programName;
	char *optIfnameGlobal = NULL;

	programName = strrchr(argv[0], '/');
	programName = programName ? programName + 1 : argv[0];

	if (argc < 2) {
		openavbTlHostUsage(programName);
		exit(-1);
	}

	tl_handle_t *tlHandleList = NULL;
	int i1;

	// Process command line
	bool optDone = FALSE;
	while (!optDone) {
		int opt = getopt(argc, argv, "hI:");
		if (opt != EOF) {
			switch (opt) {
				case 'I':
					optIfnameGlobal = strdup(optarg);
					break;
				case 'h':
				default:
					openavbTlHostUsage(programName);
					exit(-1);
			}
		}
		else {
			optDone = TRUE;
		}
	}

	osalAVBInitialize(optIfnameGlobal);

	iniIdx = optind;
	U32 tlCount = argc - iniIdx;

	if (!openavbTLInitialize(tlCount)) {
		AVB_LOG_ERROR("Unable to initialize talker listener library");
		osalAVBFinalize();
		exit(-1);
	}

	// Setup signal handler
	// We catch SIGINT and shutdown cleanly
	bool err;
	struct sigaction sa;
	sa.sa_handler = openavbTLSigHandler;
	sigemptyset(&sa.sa_mask);
	sa.sa_flags = 0;
	err = sigaction(SIGINT, &sa, NULL);
	if (err)
	{
		AVB_LOG_ERROR("Failed to setup SIGINT handler");
		osalAVBFinalize();
		exit(-1);
	}
	err = sigaction(SIGUSR1, &sa, NULL);
	if (err)
	{
		AVB_LOG_ERROR("Failed to setup SIGUSR1 handler");
		osalAVBFinalize();
		exit(-1);
	}

	registerStaticMapModule(openavbMapPipeInitialize);
	registerStaticMapModule(openavbMapAVTPAudioInitialize);
	registerStaticMapModule(openavbMapCtrlInitialize);
	registerStaticMapModule(openavbMapH264Initialize);
	registerStaticMapModule(openavbMapMjpegInitialize);
	registerStaticMapModule(openavbMapMpeg2tsInitialize);
	registerStaticMapModule(openavbMapNullInitialize);
	registerStaticMapModule(openavbMapUncmpAudioInitialize);

	registerStaticIntfModule(openavbIntfEchoInitialize);
	registerStaticIntfModule(openavbIntfCtrlInitialize);
	registerStaticIntfModule(openavbIntfLoggerInitialize);
	registerStaticIntfModule(openavbIntfNullInitialize);
	//registerStaticIntfModule(openavbIntfToneGenInitialize);
	registerStaticIntfModule(openavbIntfViewerInitialize);
	registerStaticIntfModule(openavbIntfAlsaInitialize);
	registerStaticIntfModule(openavbIntfMjpegGstInitialize);
	registerStaticIntfModule(openavbIntfMpeg2tsFileInitialize);
	registerStaticIntfModule(openavbIntfMpeg2tsGstInitialize);
	registerStaticIntfModule(openavbIntfWavFileInitialize);
	registerStaticIntfModule(openavbIntfH264RtpGstInitialize);

	tlHandleList = calloc(1, sizeof(tl_handle_t) * tlCount);

	// Open all streams
	for (i1 = 0; i1 < tlCount; i1++) {
		tlHandleList[i1] = openavbTLOpen();
	}

	// Parse ini and configure all streams
	for (i1 = 0; i1 < tlCount; i1++) {
		openavb_tl_cfg_t cfg;
		openavb_tl_cfg_name_value_t NVCfg;
		char iniFile[1024];

		snprintf(iniFile, sizeof(iniFile), "%s", argv[i1 + iniIdx]);

		if (optIfnameGlobal && !strcasestr(iniFile, ",ifname=")) {
			snprintf(iniFile + strlen(iniFile), sizeof(iniFile), ",ifname=%s", optIfnameGlobal);
		}

		openavbTLInitCfg(&cfg);
		memset(&NVCfg, 0, sizeof(NVCfg));

		if (!openavbTLReadIniFileOsal(tlHandleList[i1], iniFile, &cfg, &NVCfg)) {
			AVB_LOGF_ERROR("Error reading ini file: %s\n", argv[i1 + 1]);
			osalAVBFinalize();
			exit(-1);
		}
		if (!openavbTLConfigure(tlHandleList[i1], &cfg, &NVCfg)) {
			AVB_LOGF_ERROR("Error configuring: %s\n", argv[i1 + 1]);
			osalAVBFinalize();
			exit(-1);
		}

		int i2;
		for (i2 = 0; i2 < NVCfg.nLibCfgItems; i2++) {
			free(NVCfg.libCfgNames[i2]);
			free(NVCfg.libCfgValues[i2]);
		}
	}

#ifdef AVB_FEATURE_GSTREAMER
	// If we're supporting the interface modules which use GStreamer,
	// initialize GStreamer here to avoid errors.
	gst_init(0, NULL);
#endif

	for (i1 = 0; i1 < tlCount; i1++) {
		openavbTLRun(tlHandleList[i1]);
	}

	while (bRunning) {
		sleep(1);
	}

	for (i1 = 0; i1 < tlCount; i1++) {
		openavbTLStop(tlHandleList[i1]);
	}

	for (i1 = 0; i1 < tlCount; i1++) {
		openavbTLClose(tlHandleList[i1]);
	}

	openavbTLCleanup();

#ifdef AVB_FEATURE_GSTREAMER
	// If we're supporting the interface modules which use GStreamer,
	// De-initialize GStreamer to clean up resources.
	gst_deinit();
#endif

	osalAVBFinalize();

	AVB_TRACE_EXIT(AVB_TRACE_HOST);
	exit(0);
}