Example #1
0
/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Wlc_NtkGetInv( Wlc_Ntk_t * pNtk, Vec_Int_t * vInv, Vec_Str_t * vSop, int fVerbose )
{
    Wlc_Obj_t * pObj;
    int i, k, nNum, nRange, nBits = 0;
    Abc_Ntk_t * pMainNtk = NULL;
    Abc_Obj_t * pMainObj, * pMainTemp;
    char Buffer[5000];
    // start the network
    pMainNtk = Abc_NtkAlloc( ABC_NTK_LOGIC, ABC_FUNC_SOP, 1 );
    // duplicate the name and the spec
    pMainNtk->pName = Extra_UtilStrsav(pNtk->pName);
    // create primary inputs
    Wlc_NtkForEachCi( pNtk, pObj, i )
    {
        if ( pObj->Type != WLC_OBJ_FO )
            continue;
        nRange = Wlc_ObjRange(pObj);
        for ( k = 0; k < nRange; k++ )
        {
            nNum = Vec_IntEntry(vInv, nBits + k);
            if ( nNum )
                break;
        }
        if ( k == nRange )
        {
            nBits += nRange;
            continue;
        }
        //printf( "%s[%d:%d] : ", Wlc_ObjName(pNtk, Wlc_ObjId(pNtk, pObj)), pObj->End, pObj->Beg );
        for ( k = 0; k < nRange; k++ )
        {
            nNum = Vec_IntEntry( vInv, nBits + k );
            if ( nNum == 0 )
                continue;
            //printf( "  [%d] -> %d", k, nNum );
            pMainObj = Abc_NtkCreatePi( pMainNtk );
            sprintf( Buffer, "%s[%d]", Wlc_ObjName(pNtk, Wlc_ObjId(pNtk, pObj)), k );
            Abc_ObjAssignName( pMainObj, Buffer, NULL );

        }
        //printf( "\n");
        nBits += nRange;
    }
    //printf( "%d %d\n", Vec_IntSize(vInv), nBits );
    assert( Vec_IntSize(vInv) == nBits );
    // create node
    pMainObj = Abc_NtkCreateNode( pMainNtk );
    Abc_NtkForEachPi( pMainNtk, pMainTemp, i )
        Abc_ObjAddFanin( pMainObj, pMainTemp );
    pMainObj->pData = Abc_SopRegister( (Mem_Flex_t *)pMainNtk->pManFunc, Vec_StrArray(vSop) );
    // create PO
    pMainTemp = Abc_NtkCreatePo( pMainNtk );
    Abc_ObjAddFanin( pMainTemp, pMainObj );
    Abc_ObjAssignName( pMainTemp, "inv", NULL );
    return pMainNtk;
}
Example #2
0
/**Function*************************************************************

  Synopsis    [This procedure also finalizes construction of the ABC network.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void ABC_Network_Finalize( ABC_Manager mng )
{
    Abc_Ntk_t * pNtk = mng->pNtk;
    Abc_Obj_t * pObj;
    int i;
    Abc_NtkForEachPi( pNtk, pObj, i )
        Abc_ObjAssignName( pObj, ABC_GetNodeName(mng, pObj), NULL );
    Abc_NtkForEachPo( pNtk, pObj, i )
        Abc_ObjAssignName( pObj, ABC_GetNodeName(mng, pObj), NULL );
    assert( Abc_NtkLatchNum(pNtk) == 0 );
}
Example #3
0
/**Function*************************************************************

  Synopsis    [Constructs the network isomorphic to the given BDD.]

  Description [Assumes that the BDD depends on the variables whose indexes
  correspond to the names in the array (pNamesPi). Otherwise, returns NULL.
  The resulting network comes with one node, whose functionality is
  equal to the given BDD. To decompose this BDD into the network of
  multiplexers use Abc_NtkBddToMuxes(). To decompose this BDD into
  an And-Inverter Graph, use Abc_NtkStrash().]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkDeriveFromBdd( void * dd0, void * bFunc, char * pNamePo, Vec_Ptr_t * vNamesPi )
{
    DdManager * dd = (DdManager *)dd0;
    Abc_Ntk_t * pNtk; 
    Vec_Ptr_t * vNamesPiFake = NULL;
    Abc_Obj_t * pNode, * pNodePi, * pNodePo;
    DdNode * bSupp, * bTemp;
    char * pName;
    int i;

    // supply fake names if real names are not given
    if ( pNamePo == NULL )
        pNamePo = "F";
    if ( vNamesPi == NULL )
    {
        vNamesPiFake = Abc_NodeGetFakeNames( dd->size );
        vNamesPi = vNamesPiFake;
    }

    // make sure BDD depends on the variables whose index 
    // does not exceed the size of the array with PI names
    bSupp = Cudd_Support( dd, (DdNode *)bFunc );   Cudd_Ref( bSupp );
    for ( bTemp = bSupp; bTemp != Cudd_ReadOne(dd); bTemp = cuddT(bTemp) )
        if ( (int)Cudd_NodeReadIndex(bTemp) >= Vec_PtrSize(vNamesPi) )
            break;
    Cudd_RecursiveDeref( dd, bSupp );
    if ( bTemp != Cudd_ReadOne(dd) )
        return NULL;

    // start the network
    pNtk = Abc_NtkAlloc( ABC_NTK_LOGIC, ABC_FUNC_BDD, 1 );
    pNtk->pName = Extra_UtilStrsav(pNamePo);
    // make sure the new manager has enough inputs
    Cudd_bddIthVar( (DdManager *)pNtk->pManFunc, Vec_PtrSize(vNamesPi) );
    // add the PIs corresponding to the names
    Vec_PtrForEachEntry( char *, vNamesPi, pName, i )
        Abc_ObjAssignName( Abc_NtkCreatePi(pNtk), pName, NULL );
    // create the node
    pNode = Abc_NtkCreateNode( pNtk );
    pNode->pData = (DdNode *)Cudd_bddTransfer( dd, (DdManager *)pNtk->pManFunc, (DdNode *)bFunc ); Cudd_Ref((DdNode *)pNode->pData);
    Abc_NtkForEachPi( pNtk, pNodePi, i )
        Abc_ObjAddFanin( pNode, pNodePi );
    // create the only PO
    pNodePo = Abc_NtkCreatePo( pNtk );
    Abc_ObjAddFanin( pNodePo, pNode );
    Abc_ObjAssignName( pNodePo, pNamePo, NULL );
    // make the network minimum base
    Abc_NtkMinimumBase( pNtk );
    if ( vNamesPiFake )
        Abc_NodeFreeNames( vNamesPiFake );
    if ( !Abc_NtkCheck( pNtk ) )
        fprintf( stdout, "Abc_NtkDeriveFromBdd(): Network check has failed.\n" );
    return pNtk;
}
Example #4
0
/**Function*************************************************************

  Synopsis    [Assigns name with index.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Abc_NtkConvertAssignName( Abc_Obj_t * pObj, Abc_Obj_t * pNet, int Index )
{
    char Suffix[16];
    assert( Abc_ObjIsTerm(pObj) );
    assert( Abc_ObjIsNet(pNet) );
    sprintf( Suffix, "[%d]", Index );
    Abc_ObjAssignName( pObj, Abc_ObjName(pNet), Suffix );
}
/**Function*************************************************************

  Synopsis    [Tranfers names to the old network.]

  Description [Assumes that the new nodes are attached using pObj->pCopy.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkTrasferNames( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew )
{
    Abc_Obj_t * pObj;
    int i;
    assert( Abc_NtkPiNum(pNtk) == Abc_NtkPiNum(pNtkNew) );
    assert( Abc_NtkPoNum(pNtk) == Abc_NtkPoNum(pNtkNew) );
    assert( Abc_NtkBoxNum(pNtk) == Abc_NtkBoxNum(pNtkNew) );
    assert( Nm_ManNumEntries(pNtk->pManName) > 0 );
    assert( Nm_ManNumEntries(pNtkNew->pManName) == 0 );
    // copy the CI/CO/box names
    Abc_NtkForEachCi( pNtk, pObj, i )
        Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(Abc_ObjFanout0Ntk(pObj)), NULL );
    Abc_NtkForEachCo( pNtk, pObj, i ) 
        Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(Abc_ObjFanin0Ntk(pObj)), NULL );
    Abc_NtkForEachBox( pNtk, pObj, i ) 
        Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
}
/**Function*************************************************************

  Synopsis    [Tranfers names to the old network.]

  Description [Assumes that the new nodes are attached using pObj->pCopy.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkTrasferNamesNoLatches( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew )
{
    Abc_Obj_t * pObj;
    int i;
    assert( Abc_NtkPiNum(pNtk) == Abc_NtkPiNum(pNtkNew) );
    assert( Abc_NtkPoNum(pNtk) == Abc_NtkPoNum(pNtkNew) );
    assert( Nm_ManNumEntries(pNtk->pManName) > 0 );
    assert( Nm_ManNumEntries(pNtkNew->pManName) == 0 );
    // copy the CI/CO/box name and skip latches and theirs inputs/outputs
    Abc_NtkForEachCi( pNtk, pObj, i )
        if ( Abc_ObjFaninNum(pObj) == 0 || !Abc_ObjIsLatch(Abc_ObjFanin0(pObj)) )
            Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(Abc_ObjFanout0Ntk(pObj)), NULL );
    Abc_NtkForEachCo( pNtk, pObj, i ) 
        if ( Abc_ObjFanoutNum(pObj) == 0 || !Abc_ObjIsLatch(Abc_ObjFanout0(pObj)) )
            Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(Abc_ObjFanin0Ntk(pObj)), NULL );
    Abc_NtkForEachBox( pNtk, pObj, i ) 
        if ( !Abc_ObjIsLatch(pObj) )
            Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
}
Example #7
0
/**Function*************************************************************

  Synopsis    [Create the reset latch with data=1 and init=0.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Obj_t * Io_ReadCreateResetLatch( Abc_Ntk_t * pNtk, int fBlifMv )
{
    Abc_Obj_t * pLatch, * pNode;
    Abc_Obj_t * pNetLI, * pNetLO;
    // create latch with 0 init value
//    pLatch = Io_ReadCreateLatch( pNtk, "_resetLI_", "_resetLO_" );
    pNetLI = Abc_NtkCreateNet( pNtk );
    pNetLO = Abc_NtkCreateNet( pNtk );
    Abc_ObjAssignName( pNetLI, Abc_ObjName(pNetLI), NULL );
    Abc_ObjAssignName( pNetLO, Abc_ObjName(pNetLO), NULL );
    pLatch = Io_ReadCreateLatch( pNtk, Abc_ObjName(pNetLI), Abc_ObjName(pNetLO) );
    // set the initial value
    Abc_LatchSetInit0( pLatch );
    // feed the latch with constant1- node
//    pNode = Abc_NtkCreateNode( pNtk );   
//    pNode->pData = Abc_SopRegister( pNtk->pManFunc, "2\n1\n" );
    pNode = Abc_NtkCreateNodeConst1( pNtk );
    Abc_ObjAddFanin( Abc_ObjFanin0(Abc_ObjFanin0(pLatch)), pNode );
    return pLatch;
}
Example #8
0
/**Function*************************************************************

  Synopsis    [Prepares the network for mitering.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkMiterPrepare( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, Abc_Ntk_t * pNtkMiter, int fComb, int nPartSize, int fMulti )
{
    Abc_Obj_t * pObj, * pObjNew;
    int i;
    // clean the copy field in all objects
//    Abc_NtkCleanCopy( pNtk1 );
//    Abc_NtkCleanCopy( pNtk2 );
    Abc_AigConst1(pNtk1)->pCopy = Abc_AigConst1(pNtkMiter);
    Abc_AigConst1(pNtk2)->pCopy = Abc_AigConst1(pNtkMiter);

    if ( fComb )
    {
        // create new PIs and remember them in the old PIs
        Abc_NtkForEachCi( pNtk1, pObj, i )
        {
            pObjNew = Abc_NtkCreatePi( pNtkMiter );
            // remember this PI in the old PIs
            pObj->pCopy = pObjNew;
            pObj = Abc_NtkCi(pNtk2, i);  
            pObj->pCopy = pObjNew;
            // add name
            Abc_ObjAssignName( pObjNew, Abc_ObjName(pObj), NULL );
        }
        if ( nPartSize <= 0 )
        {
            // create POs
            if ( fMulti )
            {
                Abc_NtkForEachCo( pNtk1, pObj, i )
                {
                    pObjNew = Abc_NtkCreatePo( pNtkMiter );
                    Abc_ObjAssignName( pObjNew, "miter", Abc_ObjName(pObjNew) );
                }

            }
            else
            {
/**Function*************************************************************

  Synopsis    [Converts combinational AIG with latches into sequential AIG.]

  Description [The const/PI/PO nodes are duplicated. The internal
  nodes are duplicated in the topological order. The dangling nodes
  are not duplicated. The choice nodes are duplicated.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkAigToSeq( Abc_Ntk_t * pNtk )
{
    Abc_Ntk_t * pNtkNew;
    Abc_Obj_t * pObj, * pFaninNew;
    Vec_Int_t * vInitValues;
    Abc_InitType_t Init;
    int i, k, RetValue;

    // make sure it is an AIG without self-feeding latches
    assert( Abc_NtkIsStrash(pNtk) );
    assert( Abc_NtkIsDfsOrdered(pNtk) );

    if ( RetValue = Abc_NtkRemoveSelfFeedLatches(pNtk) )
        printf( "Modified %d self-feeding latches. The result will not verify.\n", RetValue );
    assert( Abc_NtkCountSelfFeedLatches(pNtk) == 0 );

    // start the network
    pNtkNew = Abc_NtkAlloc( ABC_NTK_SEQ, ABC_FUNC_AIG, 1 );
    // duplicate the name and the spec
    pNtkNew->pName = Extra_UtilStrsav(pNtk->pName);
    pNtkNew->pSpec = Extra_UtilStrsav(pNtk->pSpec);

    // map the constant nodes
    Abc_NtkCleanCopy( pNtk );
    Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);

    // copy all objects, except the latches and constant
    Vec_PtrFill( pNtkNew->vObjs, Abc_NtkObjNumMax(pNtk), NULL );
    Vec_PtrWriteEntry( pNtkNew->vObjs, 0, Abc_AigConst1(pNtk)->pCopy );
    Abc_NtkForEachObj( pNtk, pObj, i )
    {
        if ( i == 0 || Abc_ObjIsLatch(pObj) )
            continue;
        pObj->pCopy = Abc_ObjAlloc( pNtkNew, pObj->Type );
        pObj->pCopy->Id     = pObj->Id;      // the ID is the same for both
        pObj->pCopy->fPhase = pObj->fPhase;  // used to work with choices
        pObj->pCopy->Level  = pObj->Level;   // used for upper bound on clock cycle
        Vec_PtrWriteEntry( pNtkNew->vObjs, pObj->pCopy->Id, pObj->pCopy );
        pNtkNew->nObjs++;
    }
    pNtkNew->nObjCounts[ABC_OBJ_NODE] = pNtk->nObjCounts[ABC_OBJ_NODE];

    // create PI/PO and their names
    Abc_NtkForEachPi( pNtk, pObj, i )
    {
        Vec_PtrPush( pNtkNew->vPis, pObj->pCopy );
        Vec_PtrPush( pNtkNew->vCis, pObj->pCopy );
        Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
    }
Example #10
0
/**Function*************************************************************

  Synopsis    [Create a latch with the given input/output.]

  Description [By default, the latch value is unknown (ABC_INIT_NONE).]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Obj_t * Io_ReadCreateLatch( Abc_Ntk_t * pNtk, char * pNetLI, char * pNetLO )
{
    Abc_Obj_t * pLatch, * pTerm, * pNet;
    // get the LI net
    pNet = Abc_NtkFindOrCreateNet( pNtk, pNetLI );
    // add the BO terminal
    pTerm = Abc_NtkCreateBi( pNtk );
    Abc_ObjAddFanin( pTerm, pNet );
    // add the latch box
    pLatch = Abc_NtkCreateLatch( pNtk );
    Abc_ObjAddFanin( pLatch, pTerm  );
    // add the BI terminal
    pTerm = Abc_NtkCreateBo( pNtk );
    Abc_ObjAddFanin( pTerm, pLatch );
    // get the LO net
    pNet = Abc_NtkFindOrCreateNet( pNtk, pNetLO );
    Abc_ObjAddFanin( pNet, pTerm );
    // set latch name
    Abc_ObjAssignName( pLatch, pNetLO, "L" );
    return pLatch;
}
Example #11
0
/**Function*************************************************************

  Synopsis    [Strashes one node in the BLIF-MV netlist.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NodeStrashBlifMv( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pObj )
{
    int fAddFreeVars = 1;
    char * pSop;
    Abc_Obj_t ** pValues, ** pValuesF, ** pValuesF2;
    Abc_Obj_t * pTemp, * pTemp2, * pFanin, * pFanin2, * pNet;
    int k, v, Def, DefIndex, Index, nValues, nValuesF, nValuesF2;

    // start the output values
    assert( Abc_ObjIsNode(pObj) );
    pNet = Abc_ObjFanout0(pObj);
    nValues = Abc_ObjMvVarNum(pNet);
    pValues = ABC_ALLOC( Abc_Obj_t *, nValues );
    for ( k = 0; k < nValues; k++ )
        pValues[k] = Abc_ObjNot( Abc_AigConst1(pNtkNew) );

    // get the BLIF-MV formula
    pSop = (char *)pObj->pData;
    // skip the value line
//    while ( *pSop++ != '\n' );

    // handle the constant
    if ( Abc_ObjFaninNum(pObj) == 0 )
    {
        // skip the default if present
        if ( *pSop == 'd' )
            while ( *pSop++ != '\n' );
        // skip space if present
        if ( *pSop == ' ' )
            pSop++;
        // assume don't-care constant to be zero
        if ( *pSop == '-' )
            Index = 0;
        else
            Index = Abc_StringGetNumber( &pSop );
        assert( Index < nValues );
        ////////////////////////////////////////////
        // adding free variables for binary ND-constants
        if ( fAddFreeVars && nValues == 2 && *pSop == '-' )
        {
            pValues[1] = Abc_NtkCreatePi(pNtkNew);
            pValues[0] = Abc_ObjNot( pValues[1] );
            Abc_ObjAssignName( pValues[1], "free_var_", Abc_ObjName(pValues[1]) );
        }
        else
            pValues[Index] = Abc_AigConst1(pNtkNew);
        ////////////////////////////////////////////
        // save the values in the fanout net
        pNet->pCopy = (Abc_Obj_t *)pValues;
        return 1;
    }

    // parse the default line
    Def = DefIndex = -1;
    if ( *pSop == 'd' )
    {
        pSop++;
        if ( *pSop == '=' )
        {
            pSop++;
            DefIndex = Abc_StringGetNumber( &pSop );
            assert( DefIndex < Abc_ObjFaninNum(pObj) );
        }
        else if ( *pSop == '-' )
        {
            pSop++;
            Def = 0;
        }
        else
        {
            Def = Abc_StringGetNumber( &pSop );
            assert( Def < nValues );
        }
        assert( *pSop == '\n' );
        pSop++;
    }

    // convert the values
    while ( *pSop )
    {
        // extract the values for each cube
        pTemp = Abc_AigConst1(pNtkNew); 
        Abc_ObjForEachFanin( pObj, pFanin, k )
        {
            if ( *pSop == '-' )
            {
                pSop += 2;
                continue;
            }
            if ( *pSop == '!' )
            {
                ABC_FREE( pValues );
                printf( "Abc_NodeStrashBlifMv(): Cannot handle complement in the MV function of node %s.\n", Abc_ObjName(Abc_ObjFanout0(pObj)) );
                return 0;
            }
            if ( *pSop == '{' )
            {
                ABC_FREE( pValues );
                printf( "Abc_NodeStrashBlifMv(): Cannot handle braces in the MV function of node %s.\n", Abc_ObjName(Abc_ObjFanout0(pObj)) );
                return 0;
            }
            // get the value set
            nValuesF = Abc_ObjMvVarNum(pFanin);
            pValuesF = (Abc_Obj_t **)pFanin->pCopy;
            if ( *pSop == '(' )
            {
                pSop++;
                pTemp2 = Abc_ObjNot( Abc_AigConst1(pNtkNew) );
                while ( *pSop != ')' )
                {
                    Index = Abc_StringGetNumber( &pSop );
                    assert( Index < nValuesF );
                    pTemp2 = Abc_AigOr( (Abc_Aig_t *)pNtkNew->pManFunc, pTemp2, pValuesF[Index] );
                    assert( *pSop == ')' || *pSop == ',' );
                    if ( *pSop == ',' )
                        pSop++;
                }
                assert( *pSop == ')' );
                pSop++;
            }
            else if ( *pSop == '=' )
            {
                pSop++;
                // get the fanin index
                Index = Abc_StringGetNumber( &pSop );
                assert( Index < Abc_ObjFaninNum(pObj) );
                assert( Index != k );
                // get the fanin
                pFanin2 = Abc_ObjFanin( pObj, Index );
                nValuesF2 = Abc_ObjMvVarNum(pFanin2);
                pValuesF2 = (Abc_Obj_t **)pFanin2->pCopy;
                // create the sum of products of values
                assert( nValuesF == nValuesF2 );
                pTemp2 = Abc_ObjNot( Abc_AigConst1(pNtkNew) );
                for ( v = 0; v < nValues; v++ )
                    pTemp2 = Abc_AigOr( (Abc_Aig_t *)pNtkNew->pManFunc, pTemp2, Abc_AigAnd((Abc_Aig_t *)pNtkNew->pManFunc, pValuesF[v], pValuesF2[v]) );
            }
            else
            {
                Index = Abc_StringGetNumber( &pSop );
                assert( Index < nValuesF );
                pTemp2 = pValuesF[Index];
            }
            // compute the compute
            pTemp = Abc_AigAnd( (Abc_Aig_t *)pNtkNew->pManFunc, pTemp, pTemp2 );
            // advance the reading point
            assert( *pSop == ' ' );
            pSop++;
        }
        // check if the output value is an equal construct
        if ( *pSop == '=' )
        {
            pSop++;
            // get the output value
            Index = Abc_StringGetNumber( &pSop );
            assert( Index < Abc_ObjFaninNum(pObj) );
            // add values of the given fanin with the given cube
            pFanin = Abc_ObjFanin( pObj, Index );
            nValuesF = Abc_ObjMvVarNum(pFanin);
            pValuesF = (Abc_Obj_t **)pFanin->pCopy;
            assert( nValuesF == nValues ); // should be guaranteed by the parser
            for ( k = 0; k < nValuesF; k++ )
                pValues[k] = Abc_AigOr( (Abc_Aig_t *)pNtkNew->pManFunc, pValues[k], Abc_AigAnd((Abc_Aig_t *)pNtkNew->pManFunc, pTemp, pValuesF[k]) );
        }
        else
        {
            // get the output value
            Index = Abc_StringGetNumber( &pSop );
            assert( Index < nValues );
            pValues[Index] = Abc_AigOr( (Abc_Aig_t *)pNtkNew->pManFunc, pValues[Index], pTemp );
        }
        // advance the reading point
        assert( *pSop == '\n' );
        pSop++;
    }

    // compute the default value
    if ( Def >= 0 || DefIndex >= 0 )
    {
        pTemp = Abc_AigConst1(pNtkNew);
        for ( k = 0; k < nValues; k++ )
        {
            if ( k == Def )
                continue;
            pTemp = Abc_AigAnd( (Abc_Aig_t *)pNtkNew->pManFunc, pTemp, Abc_ObjNot(pValues[k]) );
        }

        // assign the default value
        if ( Def >= 0 )
            pValues[Def] = pTemp;
        else
        {
            assert( DefIndex >= 0 );
            // add values of the given fanin with the given cube
            pFanin = Abc_ObjFanin( pObj, DefIndex );
            nValuesF = Abc_ObjMvVarNum(pFanin);
            pValuesF = (Abc_Obj_t **)pFanin->pCopy;
            assert( nValuesF == nValues ); // should be guaranteed by the parser
            for ( k = 0; k < nValuesF; k++ )
                pValues[k] = Abc_AigOr( (Abc_Aig_t *)pNtkNew->pManFunc, pValues[k], Abc_AigAnd((Abc_Aig_t *)pNtkNew->pManFunc, pTemp, pValuesF[k]) );
        }

    }

    // save the values in the fanout net
    pNet->pCopy = (Abc_Obj_t *)pValues;
    return 1;
}
 Abc_NtkForEachAssert( pNtk, pObj, i ) 
 {
     Vec_PtrPush( pNtkNew->vAsserts, pObj->pCopy );
     Vec_PtrPush( pNtkNew->vCos, pObj->pCopy );
     Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
 }
Example #13
0
/**Function*************************************************************

  Synopsis    [Starts the record for the given network.]

  Description []

  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkRecStart( Abc_Ntk_t * pNtk, int nVars, int nCuts )
{
    Abc_ManRec_t * p;
    Abc_Obj_t * pObj, ** ppSpot;
    char Buffer[10];
    unsigned * pTruth;
    int i, RetValue;
    int clkTotal = clock(), clk;

    assert( s_pMan == NULL );
    if ( pNtk == NULL )
    {
        assert( nVars > 2 && nVars <= 16 );
        pNtk = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG, 1 );
        pNtk->pName = Extra_UtilStrsav( "record" );
    }
    else
    {
        if ( Abc_NtkGetChoiceNum(pNtk) > 0 )
        {
            printf( "The starting record should be a network without choice nodes.\n" );
            return;
        }
        if ( Abc_NtkPiNum(pNtk) > 16 )
        {
            printf( "The starting record should be a network with no more than %d primary inputs.\n", 16 );
            return;
        }
        if ( Abc_NtkPiNum(pNtk) > nVars )
            printf( "The starting record has %d inputs (warning only).\n", Abc_NtkPiNum(pNtk) );
        pNtk = Abc_NtkDup( pNtk );
    }
    // create the primary inputs
    for ( i = Abc_NtkPiNum(pNtk); i < nVars; i++ )
    {
        pObj = Abc_NtkCreatePi( pNtk );
        Buffer[0] = 'a' + i;
        Buffer[1] = 0;
        Abc_ObjAssignName( pObj, Buffer, NULL );
    }
    Abc_NtkCleanCopy( pNtk );
    Abc_NtkCleanEquiv( pNtk );

    // start the manager
    p = ABC_ALLOC( Abc_ManRec_t, 1 );
    memset( p, 0, sizeof(Abc_ManRec_t) );
    p->pNtk = pNtk;
    p->nVars = Abc_NtkPiNum(pNtk);
    p->nWords = Kit_TruthWordNum( p->nVars );
    p->nCuts = nCuts;
    p->nVarsInit = nVars;

    // create elementary truth tables
    p->vTtElems = Vec_PtrAlloc( 0 );
    assert( p->vTtElems->pArray == NULL );
    p->vTtElems->nSize = p->nVars;
    p->vTtElems->nCap = p->nVars;
    p->vTtElems->pArray = (void *)Extra_TruthElementary( p->nVars );

    // allocate room for node truth tables
    if ( Abc_NtkObjNum(pNtk) > (1<<14) )
        p->vTtNodes = Vec_PtrAllocSimInfo( 2 * Abc_NtkObjNum(pNtk), p->nWords );
    else
        p->vTtNodes = Vec_PtrAllocSimInfo( 1<<14, p->nWords );

    // create hash table
    p->nBins = 50011;
    p->pBins = ABC_ALLOC( Abc_Obj_t *, p->nBins );
    memset( p->pBins, 0, sizeof(Abc_Obj_t *) * p->nBins );

    // set elementary tables
    Kit_TruthFill( Vec_PtrEntry(p->vTtNodes, 0), p->nVars );
    Abc_NtkForEachPi( pNtk, pObj, i )
    Kit_TruthCopy( Vec_PtrEntry(p->vTtNodes, pObj->Id), Vec_PtrEntry(p->vTtElems, i), p->nVars );

    // compute the tables
    clk = clock();
    Abc_AigForEachAnd( pNtk, pObj, i )
    {
        RetValue = Abc_NtkRecComputeTruth( pObj, p->vTtNodes, p->nVars );
        assert( RetValue );
    }