Example #1
0
int Abc_WinNode(Mfs_Man_t * p, Abc_Obj_t *pNode)
{
//    abctime clk;
//    Abc_Obj_t * pFanin;
//    int i;

    p->nNodesTried++;
    // prepare data structure for this node
    Mfs_ManClean( p );
    // compute window roots, window support, and window nodes
    p->vRoots = Abc_MfsComputeRoots( pNode, p->pPars->nWinTfoLevs, p->pPars->nFanoutsMax );
    p->vSupp  = Abc_NtkNodeSupport( p->pNtk, (Abc_Obj_t **)Vec_PtrArray(p->vRoots), Vec_PtrSize(p->vRoots) );
    p->vNodes = Abc_NtkDfsNodes( p->pNtk, (Abc_Obj_t **)Vec_PtrArray(p->vRoots), Vec_PtrSize(p->vRoots) );
    if ( p->pPars->nWinMax && Vec_PtrSize(p->vNodes) > p->pPars->nWinMax )
        return 1;
    // compute the divisors of the window
    p->vDivs  = Abc_MfsComputeDivisors( p, pNode, Abc_ObjRequiredLevel(pNode) - 1 );
    p->nTotalDivs += Vec_PtrSize(p->vDivs) - Abc_ObjFaninNum(pNode);
    // construct AIG for the window
    p->pAigWin = Abc_NtkConstructAig( p, pNode );
    // translate it into CNF
    p->pCnf = Cnf_DeriveSimple( p->pAigWin, 1 + Vec_PtrSize(p->vDivs) );
    // create the SAT problem
    p->pSat = Abc_MfsCreateSolverResub( p, NULL, 0, 0 );
    if ( p->pSat == NULL )
    {
        p->nNodesBad++;
        return 1;
    }
	return 0;
}
Example #2
0
/**Function*************************************************************

  Synopsis    []

  Description []

  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkMfsResub( Mfs_Man_t * p, Abc_Obj_t * pNode )
{
    abctime clk;
    p->nNodesTried++;
    // prepare data structure for this node
    Mfs_ManClean( p );
    // compute window roots, window support, and window nodes
clk = Abc_Clock();
    p->vRoots = Abc_MfsComputeRoots( pNode, p->pPars->nWinTfoLevs, p->pPars->nFanoutsMax );
    p->vSupp  = Abc_NtkNodeSupport( p->pNtk, (Abc_Obj_t **)Vec_PtrArray(p->vRoots), Vec_PtrSize(p->vRoots) );
    p->vNodes = Abc_NtkDfsNodes( p->pNtk, (Abc_Obj_t **)Vec_PtrArray(p->vRoots), Vec_PtrSize(p->vRoots) );
p->timeWin += Abc_Clock() - clk;
    if ( p->pPars->nWinMax && Vec_PtrSize(p->vNodes) > p->pPars->nWinMax )
    {
        p->nMaxDivs++;
        return 1;
    }
    // compute the divisors of the window
clk = Abc_Clock();
    p->vDivs  = Abc_MfsComputeDivisors( p, pNode, Abc_ObjRequiredLevel(pNode) - 1 );
    p->nTotalDivs += Vec_PtrSize(p->vDivs) - Abc_ObjFaninNum(pNode);
p->timeDiv += Abc_Clock() - clk;
    // construct AIG for the window
clk = Abc_Clock();
    p->pAigWin = Abc_NtkConstructAig( p, pNode );
p->timeAig += Abc_Clock() - clk;
    // translate it into CNF
clk = Abc_Clock();
    p->pCnf = Cnf_DeriveSimple( p->pAigWin, 1 + Vec_PtrSize(p->vDivs) );
p->timeCnf += Abc_Clock() - clk;
    // create the SAT problem
clk = Abc_Clock();
    p->pSat = Abc_MfsCreateSolverResub( p, NULL, 0, 0 );
    if ( p->pSat == NULL )
    {
        p->nNodesBad++;
        return 1;
    }
//clk = Abc_Clock();
//    if ( p->pPars->fGiaSat )
//        Abc_NtkMfsConstructGia( p );
//p->timeGia += Abc_Clock() - clk;
    // solve the SAT problem
    if ( p->pPars->fPower )
        Abc_NtkMfsEdgePower( p, pNode );
    else if ( p->pPars->fSwapEdge )
        Abc_NtkMfsEdgeSwapEval( p, pNode );
    else
    {
        Abc_NtkMfsResubNode( p, pNode );
        if ( p->pPars->fMoreEffort )
            Abc_NtkMfsResubNode2( p, pNode );
    }
p->timeSat += Abc_Clock() - clk;
//    if ( p->pPars->fGiaSat )
//        Abc_NtkMfsDeconstructGia( p );
    return 1;
}
Example #3
0
/**Function*************************************************************

  Synopsis    [Performs rewriting for one node.]

  Description [This procedure considers all the cuts computed for the node
  and tries to rewrite each of them using the "forest" of different AIG
  structures precomputed and stored in the RWR manager. 
  Determines the best rewriting and computes the gain in the number of AIG
  nodes in the final network. In the end, p->vFanins contains information 
  about the best cut that can be used for rewriting, while p->pGraph gives 
  the decomposition dag (represented using decomposition graph data structure).
  Returns gain in the number of nodes or -1 if node cannot be rewritten.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Rwr_NodeRewrite( Rwr_Man_t * p, Cut_Man_t * pManCut, Abc_Obj_t * pNode, int fUpdateLevel, int fUseZeros, int fPlaceEnable )
{
    int fVeryVerbose = 0;
    Dec_Graph_t * pGraph;
    Cut_Cut_t * pCut;//, * pTemp;
    Abc_Obj_t * pFanin;
    unsigned uPhase, uTruthBest, uTruth;
    char * pPerm;
    int Required, nNodesSaved, nNodesSaveCur;
    int i, GainCur, GainBest = -1;
    int clk, clk2;//, Counter;

    p->nNodesConsidered++;
    // get the required times
    Required = fUpdateLevel? Abc_ObjRequiredLevel(pNode) : ABC_INFINITY;

    // get the node's cuts
clk = clock();
    pCut = (Cut_Cut_t *)Abc_NodeGetCutsRecursive( pManCut, pNode, 0, 0 );
    assert( pCut != NULL );
p->timeCut += clock() - clk;

//printf( " %d", Rwr_CutCountNumNodes(pNode, pCut) );
/*
    Counter = 0;
    for ( pTemp = pCut->pNext; pTemp; pTemp = pTemp->pNext )
        Counter++;
    printf( "%d ", Counter );
*/
    // go through the cuts
clk = clock();
    for ( pCut = pCut->pNext; pCut; pCut = pCut->pNext )
    {
        // consider only 4-input cuts
        if ( pCut->nLeaves < 4 )
            continue;
//            Cut_CutPrint( pCut, 0 ), printf( "\n" );

        // get the fanin permutation
        uTruth = 0xFFFF & *Cut_CutReadTruth(pCut);
        pPerm = p->pPerms4[ p->pPerms[uTruth] ];
        uPhase = p->pPhases[uTruth];
        // collect fanins with the corresponding permutation/phase
        Vec_PtrClear( p->vFaninsCur );
        Vec_PtrFill( p->vFaninsCur, (int)pCut->nLeaves, 0 );
        for ( i = 0; i < (int)pCut->nLeaves; i++ )
        {
            pFanin = Abc_NtkObj( pNode->pNtk, pCut->pLeaves[pPerm[i]] );
            if ( pFanin == NULL )
                break;
            pFanin = Abc_ObjNotCond(pFanin, ((uPhase & (1<<i)) > 0) );
            Vec_PtrWriteEntry( p->vFaninsCur, i, pFanin );
        }
        if ( i != (int)pCut->nLeaves )
        {
            p->nCutsBad++;
            continue;
        }
        p->nCutsGood++;

        {
            int Counter = 0;
            Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
                if ( Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) == 1 )
                    Counter++;
            if ( Counter > 2 )
                continue;
        }

clk2 = clock();
/*
        printf( "Considering: (" );
        Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
            printf( "%d ", Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) );
        printf( ")\n" );
*/
        // mark the fanin boundary 
        Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize++;

        // label MFFC with current ID
        Abc_NtkIncrementTravId( pNode->pNtk );
        nNodesSaved = Abc_NodeMffcLabelAig( pNode );
        // unmark the fanin boundary
        Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize--;
p->timeMffc += clock() - clk2;

        // evaluate the cut
clk2 = clock();
        pGraph = Rwr_CutEvaluate( p, pNode, pCut, p->vFaninsCur, nNodesSaved, Required, &GainCur, fPlaceEnable );
p->timeEval += clock() - clk2;

        // check if the cut is better than the current best one
        if ( pGraph != NULL && GainBest < GainCur )
        {
            // save this form
            nNodesSaveCur = nNodesSaved;
            GainBest  = GainCur;
            p->pGraph  = pGraph;
            p->fCompl = ((uPhase & (1<<4)) > 0);
            uTruthBest = 0xFFFF & *Cut_CutReadTruth(pCut);
            // collect fanins in the
            Vec_PtrClear( p->vFanins );
            Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
                Vec_PtrPush( p->vFanins, pFanin );
        }
    }
p->timeRes += clock() - clk;

    if ( GainBest == -1 )
        return -1;
/*
    if ( GainBest > 0 )
    {
        printf( "Class %d  ", p->pMap[uTruthBest] );
        printf( "Gain = %d. Node %d : ", GainBest, pNode->Id );
        Vec_PtrForEachEntry( p->vFanins, pFanin, i )
            printf( "%d ", Abc_ObjRegular(pFanin)->Id );
        Dec_GraphPrint( stdout, p->pGraph, NULL, NULL );
        printf( "\n" );
    }
*/

//    printf( "%d", nNodesSaveCur - GainBest );
/*
    if ( GainBest > 0 )
    {
        if ( Rwr_CutIsBoolean( pNode, p->vFanins ) )
            printf( "b" );
        else
        {
            printf( "Node %d : ", pNode->Id );
            Vec_PtrForEachEntry( p->vFanins, pFanin, i )
                printf( "%d ", Abc_ObjRegular(pFanin)->Id );
            printf( "a" );
        }
    }
*/
/*
    if ( GainBest > 0 )
        if ( p->fCompl )
            printf( "c" );
        else
            printf( "." );
*/

    // copy the leaves
    Vec_PtrForEachEntry( p->vFanins, pFanin, i )
        Dec_GraphNode(p->pGraph, i)->pFunc = pFanin;
/*
    printf( "(" );
    Vec_PtrForEachEntry( p->vFanins, pFanin, i )
        printf( " %d", Abc_ObjRegular(pFanin)->vFanouts.nSize - 1 );
    printf( " )  " );
*/
//    printf( "%d ", Rwr_NodeGetDepth_rec( pNode, p->vFanins ) );

    p->nScores[p->pMap[uTruthBest]]++;
    p->nNodesGained += GainBest;
    if ( fUseZeros || GainBest > 0 )
    {
        p->nNodesRewritten++;
    }

    // report the progress
    if ( fVeryVerbose && GainBest > 0 )
    {
        printf( "Node %6s :   ", Abc_ObjName(pNode) );
        printf( "Fanins = %d. ", p->vFanins->nSize );
        printf( "Save = %d.  ", nNodesSaveCur );
        printf( "Add = %d.  ",  nNodesSaveCur-GainBest );
        printf( "GAIN = %d.  ", GainBest );
        printf( "Cone = %d.  ", p->pGraph? Dec_GraphNodeNum(p->pGraph) : 0 );
        printf( "Class = %d.  ", p->pMap[uTruthBest] );
        printf( "\n" );
    }
    return GainBest;
}
Example #4
0
File: rwrEva.c Project: mrkj/abc
/**Function*************************************************************

  Synopsis    [Performs rewriting for one node.]

  Description [This procedure considers all the cuts computed for the node
  and tries to rewrite each of them using the "forest" of different AIG
  structures precomputed and stored in the RWR manager. 
  Determines the best rewriting and computes the gain in the number of AIG
  nodes in the final network. In the end, p->vFanins contains information 
  about the best cut that can be used for rewriting, while p->pGraph gives 
  the decomposition dag (represented using decomposition graph data structure).
  Returns gain in the number of nodes or -1 if node cannot be rewritten.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Rwr_NodeRewrite( Rwr_Man_t * p, Cut_Man_t * pManCut, Abc_Obj_t * pNode, int fUpdateLevel, int fUseZeros, int fPlaceEnable )
{
    int fVeryVerbose = 0;
    Dec_Graph_t * pGraph;
    Cut_Cut_t * pCut;//, * pTemp;
    Abc_Obj_t * pFanin;
    unsigned uPhase;
    unsigned uTruthBest = 0; // Suppress "might be used uninitialized"
    unsigned uTruth;
    char * pPerm;
    int Required, nNodesSaved;
    int nNodesSaveCur = -1; // Suppress "might be used uninitialized"
    int i, GainCur, GainBest = -1;
    int clk, clk2;//, Counter;

    p->nNodesConsidered++;
    // get the required times
    Required = fUpdateLevel? Abc_ObjRequiredLevel(pNode) : ABC_INFINITY;

    // get the node's cuts
clk = clock();
    pCut = (Cut_Cut_t *)Abc_NodeGetCutsRecursive( pManCut, pNode, 0, 0 );
    assert( pCut != NULL );
p->timeCut += clock() - clk;

//printf( " %d", Rwr_CutCountNumNodes(pNode, pCut) );
/*
    Counter = 0;
    for ( pTemp = pCut->pNext; pTemp; pTemp = pTemp->pNext )
        Counter++;
    printf( "%d ", Counter );
*/
    // go through the cuts
clk = clock();
    for ( pCut = pCut->pNext; pCut; pCut = pCut->pNext )
    {
        // consider only 4-input cuts
        if ( pCut->nLeaves < 4 )
            continue;
//            Cut_CutPrint( pCut, 0 ), printf( "\n" );

        // get the fanin permutation
        uTruth = 0xFFFF & *Cut_CutReadTruth(pCut);
        pPerm = p->pPerms4[ (int)p->pPerms[uTruth] ];
        uPhase = p->pPhases[uTruth];
        // collect fanins with the corresponding permutation/phase
        Vec_PtrClear( p->vFaninsCur );
        Vec_PtrFill( p->vFaninsCur, (int)pCut->nLeaves, 0 );
        for ( i = 0; i < (int)pCut->nLeaves; i++ )
        {
            pFanin = Abc_NtkObj( pNode->pNtk, pCut->pLeaves[(int)pPerm[i]] );
            if ( pFanin == NULL )
                break;
            pFanin = Abc_ObjNotCond(pFanin, ((uPhase & (1<<i)) > 0) );
            Vec_PtrWriteEntry( p->vFaninsCur, i, pFanin );
        }
        if ( i != (int)pCut->nLeaves )
        {
            p->nCutsBad++;
            continue;
        }
        p->nCutsGood++;

        {
            int Counter = 0;
            Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
                if ( Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) == 1 )
                    Counter++;
            if ( Counter > 2 )
                continue;
        }

clk2 = clock();
/*
        printf( "Considering: (" );
        Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
            printf( "%d ", Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) );
        printf( ")\n" );
*/
        // mark the fanin boundary 
        Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize++;

        // label MFFC with current ID
        Abc_NtkIncrementTravId( pNode->pNtk );
        nNodesSaved = Abc_NodeMffcLabelAig( pNode );
        // unmark the fanin boundary
        Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize--;
p->timeMffc += clock() - clk2;

        // evaluate the cut
clk2 = clock();
        pGraph = Rwr_CutEvaluate( p, pNode, pCut, p->vFaninsCur, nNodesSaved, Required, &GainCur, fPlaceEnable );
p->timeEval += clock() - clk2;

        // check if the cut is better than the current best one
        if ( pGraph != NULL && GainBest < GainCur )
        {
            // save this form
            nNodesSaveCur = nNodesSaved;
            GainBest  = GainCur;
            p->pGraph  = pGraph;
            p->fCompl = ((uPhase & (1<<4)) > 0);
            uTruthBest = 0xFFFF & *Cut_CutReadTruth(pCut);
            // collect fanins in the
            Vec_PtrClear( p->vFanins );
            Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
                Vec_PtrPush( p->vFanins, pFanin );
        }
    }