Example #1
0
static void
AeGenericRegisters (
    void)
{
    ACPI_STATUS             Status;
    UINT64                  Value;


    GenericRegister.Address = 0x1234;
    GenericRegister.BitWidth = 64;
    GenericRegister.BitOffset = 0;
    GenericRegister.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;

    Status = AcpiRead (&Value, &GenericRegister);
    ACPI_CHECK_OK (AcpiRead, Status);

    Status = AcpiWrite (Value, &GenericRegister);
    ACPI_CHECK_OK (AcpiWrite, Status);

    GenericRegister.Address = 0x12345678;
    GenericRegister.BitOffset = 0;
    GenericRegister.SpaceId = ACPI_ADR_SPACE_SYSTEM_MEMORY;

    Status = AcpiRead (&Value, &GenericRegister);
    ACPI_CHECK_OK (AcpiRead, Status);

    Status = AcpiWrite (Value, &GenericRegister);
    ACPI_CHECK_OK (AcpiWrite, Status);
}
Example #2
0
static ACPI_STATUS
AcpiHwReadMultiple (
    UINT32                  *Value,
    ACPI_GENERIC_ADDRESS    *RegisterA,
    ACPI_GENERIC_ADDRESS    *RegisterB)
{
    UINT32                  ValueA = 0;
    UINT32                  ValueB = 0;
    ACPI_STATUS             Status;


    /* The first register is always required */

    Status = AcpiRead (&ValueA, RegisterA);
    if (ACPI_FAILURE (Status))
    {
        return (Status);
    }

    /* Second register is optional */

    if (RegisterB->Address)
    {
        Status = AcpiRead (&ValueB, RegisterB);
        if (ACPI_FAILURE (Status))
        {
            return (Status);
        }
    }

    /*
     * OR the two return values together. No shifting or masking is necessary,
     * because of how the PM1 registers are defined in the ACPI specification:
     *
     * "Although the bits can be split between the two register blocks (each
     * register block has a unique pointer within the FADT), the bit positions
     * are maintained. The register block with unimplemented bits (that is,
     * those implemented in the other register block) always returns zeros,
     * and writes have no side effects"
     */
    *Value = (ValueA | ValueB);
    return (AE_OK);
}
Example #3
0
ACPI_STATUS
AcpiHwLowDisableGpe (
    ACPI_GPE_EVENT_INFO     *GpeEventInfo)
{
    ACPI_GPE_REGISTER_INFO  *GpeRegisterInfo;
    ACPI_STATUS             Status;
    UINT32                  EnableMask;


    /* Get the info block for the entire GPE register */

    GpeRegisterInfo = GpeEventInfo->RegisterInfo;
    if (!GpeRegisterInfo)
    {
        return (AE_NOT_EXIST);
    }

    /* Get current value of the enable register that contains this GPE */

    Status = AcpiRead (&EnableMask, &GpeRegisterInfo->EnableAddress);
    if (ACPI_FAILURE (Status))
    {
        return (Status);
    }

    /* Clear just the bit that corresponds to this GPE */

    ACPI_CLEAR_BIT (EnableMask, ((UINT32) 1 <<
        (GpeEventInfo->GpeNumber - GpeRegisterInfo->BaseGpeNumber)));


    /* Write the updated enable mask */

    Status = AcpiWrite (EnableMask, &GpeRegisterInfo->EnableAddress);
    return (Status);
}
Example #4
0
ACPI_STATUS
AcpiHwExtendedSleep (
    UINT8                   SleepState)
{
    ACPI_STATUS             Status;
    UINT8                   SleepTypeValue;
    UINT64                  SleepStatus;


    ACPI_FUNCTION_TRACE (HwExtendedSleep);


    /* Extended sleep registers must be valid */

    if (!AcpiGbl_FADT.SleepControl.Address ||
        !AcpiGbl_FADT.SleepStatus.Address)
    {
        return_ACPI_STATUS (AE_NOT_EXIST);
    }

    /* Clear wake status (WAK_STS) */

    Status = AcpiWrite ((UINT64) ACPI_X_WAKE_STATUS, &AcpiGbl_FADT.SleepStatus);
    if (ACPI_FAILURE (Status))
    {
        return_ACPI_STATUS (Status);
    }

    AcpiGbl_SystemAwakeAndRunning = FALSE;

    /* Flush caches, as per ACPI specification */

    ACPI_FLUSH_CPU_CACHE ();

    /*
     * Set the SLP_TYP and SLP_EN bits.
     *
     * Note: We only use the first value returned by the \_Sx method
     * (AcpiGbl_SleepTypeA) - As per ACPI specification.
     */
    ACPI_DEBUG_PRINT ((ACPI_DB_INIT,
        "Entering sleep state [S%u]\n", SleepState));

    SleepTypeValue = ((AcpiGbl_SleepTypeA << ACPI_X_SLEEP_TYPE_POSITION) &
        ACPI_X_SLEEP_TYPE_MASK);

    Status = AcpiWrite ((UINT64) (SleepTypeValue | ACPI_X_SLEEP_ENABLE),
        &AcpiGbl_FADT.SleepControl);
    if (ACPI_FAILURE (Status))
    {
        return_ACPI_STATUS (Status);
    }

    /* Wait for transition back to Working State */

    do
    {
        Status = AcpiRead (&SleepStatus, &AcpiGbl_FADT.SleepStatus);
        if (ACPI_FAILURE (Status))
        {
            return_ACPI_STATUS (Status);
        }

    } while (!(((UINT8) SleepStatus) & ACPI_X_WAKE_STATUS));

    return_ACPI_STATUS (AE_OK);
}
/*
 * Idle the CPU in the lowest state possible.  This function is called with
 * interrupts disabled.  Note that once it re-enables interrupts, a task
 * switch can occur so do not access shared data (i.e. the softc) after
 * interrupts are re-enabled.
 */
static void
acpi_cpu_idle()
{
    struct	acpi_cpu_softc *sc;
    struct	acpi_cx *cx_next;
    uint32_t	start_time, end_time;
    int		bm_active, cx_next_idx, i;

    /* If disabled, return immediately. */
    if (cpu_disable_idle) {
	ACPI_ENABLE_IRQS();
	return;
    }

    /*
     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
     * since there is no ACPI processor object for this CPU.  This occurs
     * for logical CPUs in the HTT case.
     */
    sc = cpu_softc[PCPU_GET(cpuid)];
    if (sc == NULL) {
	acpi_cpu_c1();
	return;
    }

    /* Find the lowest state that has small enough latency. */
    cx_next_idx = 0;
    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
	if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
	    cx_next_idx = i;
	    break;
	}
    }

    /*
     * Check for bus master activity.  If there was activity, clear
     * the bit and use the lowest non-C3 state.  Note that the USB
     * driver polling for new devices keeps this bit set all the
     * time if USB is loaded.
     */
    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
	AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
	if (bm_active != 0) {
	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
	    cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
	}
    }

    /* Select the next state and update statistics. */
    cx_next = &sc->cpu_cx_states[cx_next_idx];
    sc->cpu_cx_stats[cx_next_idx]++;
    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));

    /*
     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
     * calculate the time spent in C1 since the place we wake up is an
     * ISR.  Assume we slept half of quantum and return.
     */
    if (cx_next->type == ACPI_STATE_C1) {
	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + 500000 / hz) / 4;
	acpi_cpu_c1();
	return;
    }

    /*
     * For C3, disable bus master arbitration and enable bus master wake
     * if BM control is available, otherwise flush the CPU cache.
     */
    if (cx_next->type == ACPI_STATE_C3) {
	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
	} else
	    ACPI_FLUSH_CPU_CACHE();
    }

    /*
     * Read from P_LVLx to enter C2(+), checking time spent asleep.
     * Use the ACPI timer for measuring sleep time.  Since we need to
     * get the time very close to the CPU start/stop clock logic, this
     * is the only reliable time source.
     */
    AcpiRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
    CPU_GET_REG(cx_next->p_lvlx, 1);

    /*
     * Read the end time twice.  Since it may take an arbitrary time
     * to enter the idle state, the first read may be executed before
     * the processor has stopped.  Doing it again provides enough
     * margin that we are certain to have a correct value.
     */
    AcpiRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
    AcpiRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);

    /* Enable bus master arbitration and disable bus master wakeup. */
    if (cx_next->type == ACPI_STATE_C3 &&
	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
    }
    ACPI_ENABLE_IRQS();

    /* Find the actual time asleep in microseconds. */
    end_time = acpi_TimerDelta(end_time, start_time);
    sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
}
Example #6
0
ACPI_STATUS
AcpiHwGetGpeStatus (
    ACPI_GPE_EVENT_INFO     *GpeEventInfo,
    ACPI_EVENT_STATUS       *EventStatus)
{
    UINT32                  InByte;
    UINT8                   RegisterBit;
    ACPI_GPE_REGISTER_INFO  *GpeRegisterInfo;
    ACPI_STATUS             Status;
    ACPI_EVENT_STATUS       LocalEventStatus = 0;


    ACPI_FUNCTION_ENTRY ();


    if (!EventStatus)
    {
        return (AE_BAD_PARAMETER);
    }

    /* Get the info block for the entire GPE register */

    GpeRegisterInfo = GpeEventInfo->RegisterInfo;

    /* Get the register bitmask for this GPE */

    RegisterBit = (UINT8) (1 <<
        (GpeEventInfo->GpeNumber - GpeEventInfo->RegisterInfo->BaseGpeNumber));

    /* GPE currently enabled? (enabled for runtime?) */

    if (RegisterBit & GpeRegisterInfo->EnableForRun)
    {
        LocalEventStatus |= ACPI_EVENT_FLAG_ENABLED;
    }

    /* GPE enabled for wake? */

    if (RegisterBit & GpeRegisterInfo->EnableForWake)
    {
        LocalEventStatus |= ACPI_EVENT_FLAG_WAKE_ENABLED;
    }

    /* GPE currently active (status bit == 1)? */

    Status = AcpiRead (&InByte, &GpeRegisterInfo->StatusAddress);
    if (ACPI_FAILURE (Status))
    {
        goto UnlockAndExit;
    }

    if (RegisterBit & InByte)
    {
        LocalEventStatus |= ACPI_EVENT_FLAG_SET;
    }

    /* Set return value */

    (*EventStatus) = LocalEventStatus;


UnlockAndExit:
    return (Status);
}
Example #7
0
ACPI_STATUS
AcpiHwRegisterWrite (
    UINT32                  RegisterId,
    UINT32                  Value)
{
    ACPI_STATUS             Status;
    UINT32                  ReadValue;


    ACPI_FUNCTION_TRACE (HwRegisterWrite);


    switch (RegisterId)
    {
    case ACPI_REGISTER_PM1_STATUS:           /* PM1 A/B: 16-bit access each */
        /*
         * Handle the "ignored" bit in PM1 Status. According to the ACPI
         * specification, ignored bits are to be preserved when writing.
         * Normally, this would mean a read/modify/write sequence. However,
         * preserving a bit in the status register is different. Writing a
         * one clears the status, and writing a zero preserves the status.
         * Therefore, we must always write zero to the ignored bit.
         *
         * This behavior is clarified in the ACPI 4.0 specification.
         */
        Value &= ~ACPI_PM1_STATUS_PRESERVED_BITS;

        Status = AcpiHwWriteMultiple (Value,
                    &AcpiGbl_XPm1aStatus,
                    &AcpiGbl_XPm1bStatus);
        break;


    case ACPI_REGISTER_PM1_ENABLE:           /* PM1 A/B: 16-bit access each */

        Status = AcpiHwWriteMultiple (Value,
                    &AcpiGbl_XPm1aEnable,
                    &AcpiGbl_XPm1bEnable);
        break;


    case ACPI_REGISTER_PM1_CONTROL:          /* PM1 A/B: 16-bit access each */

        /*
         * Perform a read first to preserve certain bits (per ACPI spec)
         * Note: This includes SCI_EN, we never want to change this bit
         */
        Status = AcpiHwReadMultiple (&ReadValue,
                    &AcpiGbl_FADT.XPm1aControlBlock,
                    &AcpiGbl_FADT.XPm1bControlBlock);
        if (ACPI_FAILURE (Status))
        {
            goto Exit;
        }

        /* Insert the bits to be preserved */

        ACPI_INSERT_BITS (Value, ACPI_PM1_CONTROL_PRESERVED_BITS, ReadValue);

        /* Now we can write the data */

        Status = AcpiHwWriteMultiple (Value,
                    &AcpiGbl_FADT.XPm1aControlBlock,
                    &AcpiGbl_FADT.XPm1bControlBlock);
        break;


    case ACPI_REGISTER_PM2_CONTROL:          /* 8-bit access */

        /*
         * For control registers, all reserved bits must be preserved,
         * as per the ACPI spec.
         */
        Status = AcpiRead (&ReadValue, &AcpiGbl_FADT.XPm2ControlBlock);
        if (ACPI_FAILURE (Status))
        {
            goto Exit;
        }

        /* Insert the bits to be preserved */

        ACPI_INSERT_BITS (Value, ACPI_PM2_CONTROL_PRESERVED_BITS, ReadValue);

        Status = AcpiWrite (Value, &AcpiGbl_FADT.XPm2ControlBlock);
        break;


    case ACPI_REGISTER_PM_TIMER:             /* 32-bit access */

        Status = AcpiWrite (Value, &AcpiGbl_FADT.XPmTimerBlock);
        break;


    case ACPI_REGISTER_SMI_COMMAND_BLOCK:    /* 8-bit access */

        /* SMI_CMD is currently always in IO space */

        Status = AcpiHwWritePort (AcpiGbl_FADT.SmiCommand, Value, 8);
        break;


    default:
        ACPI_ERROR ((AE_INFO, "Unknown Register ID: %X",
            RegisterId));
        Status = AE_BAD_PARAMETER;
        break;
    }

Exit:
    return_ACPI_STATUS (Status);
}
Example #8
0
ACPI_STATUS
AcpiHwRegisterRead (
    UINT32                  RegisterId,
    UINT32                  *ReturnValue)
{
    UINT32                  Value = 0;
    ACPI_STATUS             Status;


    ACPI_FUNCTION_TRACE (HwRegisterRead);


    switch (RegisterId)
    {
    case ACPI_REGISTER_PM1_STATUS:           /* PM1 A/B: 16-bit access each */

        Status = AcpiHwReadMultiple (&Value,
                    &AcpiGbl_XPm1aStatus,
                    &AcpiGbl_XPm1bStatus);
        break;


    case ACPI_REGISTER_PM1_ENABLE:           /* PM1 A/B: 16-bit access each */

        Status = AcpiHwReadMultiple (&Value,
                    &AcpiGbl_XPm1aEnable,
                    &AcpiGbl_XPm1bEnable);
        break;


    case ACPI_REGISTER_PM1_CONTROL:          /* PM1 A/B: 16-bit access each */

        Status = AcpiHwReadMultiple (&Value,
                    &AcpiGbl_FADT.XPm1aControlBlock,
                    &AcpiGbl_FADT.XPm1bControlBlock);

        /*
         * Zero the write-only bits. From the ACPI specification, "Hardware
         * Write-Only Bits": "Upon reads to registers with write-only bits,
         * software masks out all write-only bits."
         */
        Value &= ~ACPI_PM1_CONTROL_WRITEONLY_BITS;
        break;


    case ACPI_REGISTER_PM2_CONTROL:          /* 8-bit access */

        Status = AcpiRead (&Value, &AcpiGbl_FADT.XPm2ControlBlock);
        break;


    case ACPI_REGISTER_PM_TIMER:             /* 32-bit access */

        Status = AcpiRead (&Value, &AcpiGbl_FADT.XPmTimerBlock);
        break;


    case ACPI_REGISTER_SMI_COMMAND_BLOCK:    /* 8-bit access */

        Status = AcpiHwReadPort (AcpiGbl_FADT.SmiCommand, &Value, 8);
        break;


    default:
        ACPI_ERROR ((AE_INFO, "Unknown Register ID: %X",
            RegisterId));
        Status = AE_BAD_PARAMETER;
        break;
    }

    if (ACPI_SUCCESS (Status))
    {
        *ReturnValue = Value;
    }

    return_ACPI_STATUS (Status);
}