Example #1
0
Arg Arg::operator -() const noexcept{
	return Arg(-value);
}
Example #2
0
int EvaluationThread::Start(void * arg)
{
   Arg(arg); // store user data
   int code = pthread_create( &ThreadId_, NULL, EvaluationThread::EntryPoint, (void*) this );
   return code;
}
Example #3
0
int Thread::Start(void * arg)
{
   Arg(arg); // store user data
   int code = thread_create(Thread::EntryPoint, this, & ThreadId_);
   return code;
}
 named_creation_functor(create_enum_t type, Arg arg = Arg())
    :  m_creation_type(type), m_arg(arg){}
Example #5
0
void parseProcMaps(pid_t pid, std::vector<Libpair>& libA, double& t_maps, double& t_sha1)
{
  std::string path;
  char *      buf  = NULL;
  size_t      sz   = 0;
  char *      fn;

  double t1 = epoch();

  asprintf(&fn,"/proc/%d/maps",pid);

  FILE* fp = fopen(fn,"r");
  if (!fp) return;

  Set soSet;

  while(xalt_fgets_alloc(fp, &buf, &sz))
    {
      // Step a:
      // find the start of the file name
      char *p = strstr(buf,"    /");
      if (p == NULL)
        continue;
      p += 4;  // move to the leading slash

      // Step b: Remove all lines that have "(deleted)" in them
      const char *q = strstr(p,"(deleted)");
      if (q)
        continue;

      // Step c: find the filename in the directory
      q = strrchr(p,'/');
      if (q == NULL)
        continue;

      // Step d: Find the .so in the file
      const char * so = strstr(++q,".so");
      if (so == NULL)
        continue;

      // Step e: make sure that any trailing chars are numbers or a period
      so += 3;
      size_t tail = strspn(so,"1234567890.");
      if (0 < tail && tail < 2)
        continue;
      
      // Step f: remove libxalt_init.so
      const char *xalt_so = strstr(q,"libxalt_init.so");
      if (xalt_so)
        continue;

      path.assign(p);

      soSet.insert(path);
    }

  for ( auto const & it : soSet)
    argV.push_back(Arg(it));

  long fnSzG = argV.size();

  double t2 = epoch();
  t_maps = t2 - t1;


  compute_sha1_master(fnSzG);  // compute sha1sum for all files.

  for (long i = 0; i < fnSzG; ++i)
    {
      Libpair libpair(argV[i].fn, argV[i].sha1);
      libA.push_back(libpair);
    }
  t_sha1 = epoch() - t2;
  
  free(buf); sz = 0; buf = NULL;
  fclose(fp);
}
Example #6
0
/*-------------------------------------------------------------------------*
 * PL_BLT_UNIV                                                             *
 *                                                                         *
 *-------------------------------------------------------------------------*/
Bool FC
Pl_Blt_Univ(WamWord term_word, WamWord list_word)
{
  WamWord word, tag_mask;
  WamWord *adr;
  WamWord car_word;
  int lst_length;
  WamWord *arg1_adr;
  WamWord *term_adr, *lst_adr, *stc_adr;
  WamWord functor_word, functor_tag;
  int functor;
  int arity;


  Pl_Set_C_Bip_Name("=..", 2);

  DEREF(term_word, word, tag_mask);

  if (tag_mask == TAG_REF_MASK)
    goto list_to_term;

				/* from term to list functor+args */

  if (tag_mask == TAG_LST_MASK)
    {
      adr = UnTag_LST(word);
      car_word = Tag_ATM(ATOM_CHAR('.'));
      lst_length = 1 + 2;
      arg1_adr = &Car(adr);
    }
  else if (tag_mask == TAG_STC_MASK)
    {
      adr = UnTag_STC(word);
      car_word = Tag_ATM(Functor(adr));
      lst_length = 1 + Arity(adr);
      arg1_adr = &Arg(adr, 0);
    }
#ifndef NO_USE_FD_SOLVER
  else if (tag_mask == TAG_FDV_MASK)
    {
      adr = UnTag_FDV(word);
      car_word = Tag_REF(adr);	/* since Dont_Separate_Tag */
      lst_length = 1 + 0;
    } 
#endif
  else				/* TAG_ATM/INT/FLT_MASK */
    {
      car_word = word;
      lst_length = 1 + 0;
    }

  Pl_Check_For_Un_List(list_word);

  Pl_Unset_C_Bip_Name();

  for (;;)
    {
      if (!Pl_Get_List(list_word) || !Pl_Unify_Value(car_word))
	return FALSE;

      list_word = Pl_Unify_Variable();

      if (--lst_length == 0)
	break;

      car_word = *arg1_adr++;
    }

  return Pl_Get_Nil(list_word);

  /* from list functor+args to term */

list_to_term:

  term_adr = UnTag_REF(word);

  DEREF(list_word, word, tag_mask);
  if (tag_mask == TAG_REF_MASK)
    Pl_Err_Instantiation();

  if (word == NIL_WORD)
    Pl_Err_Domain(pl_domain_non_empty_list, list_word);

  if (tag_mask != TAG_LST_MASK)
    Pl_Err_Type(pl_type_list, list_word);

  lst_adr = UnTag_LST(word);
  DEREF(Car(lst_adr), functor_word, functor_tag);
  if (functor_tag == TAG_REF_MASK)
    Pl_Err_Instantiation();

  DEREF(Cdr(lst_adr), word, tag_mask);

  if (word == NIL_WORD)
    {
      if (functor_tag != TAG_ATM_MASK && functor_tag != TAG_INT_MASK &&
	  functor_tag != TAG_FLT_MASK)
	Pl_Err_Type(pl_type_atomic, functor_word);

      term_word = functor_word;
      goto finish;
    }

  if (functor_tag != TAG_ATM_MASK)
    Pl_Err_Type(pl_type_atom, functor_word);

  if (tag_mask == TAG_REF_MASK)
    Pl_Err_Instantiation();

  if (tag_mask != TAG_LST_MASK)
    Pl_Err_Type(pl_type_list, list_word);

  functor = UnTag_ATM(functor_word);

  stc_adr = H;

  H++;				/* space for f/n maybe lost if a list */
  arity = 0;

  for (;;)
    {
      arity++;
      lst_adr = UnTag_LST(word);
      DEREF(Car(lst_adr), word, tag_mask);
      Do_Copy_Of_Word(tag_mask, word); /* since Dont_Separate_Tag */
      Global_Push(word);

      DEREF(Cdr(lst_adr), word, tag_mask);
      if (word == NIL_WORD)
	break;

      if (tag_mask == TAG_REF_MASK)
	Pl_Err_Instantiation();

      if (tag_mask != TAG_LST_MASK)
	Pl_Err_Type(pl_type_list, list_word);
    }

  if (arity > MAX_ARITY)
    Pl_Err_Representation(pl_representation_max_arity);

  if (functor == ATOM_CHAR('.') && arity == 2)	/* a list */
    term_word = Tag_LST(stc_adr + 1);
  else
    {
      *stc_adr = Functor_Arity(functor, arity);
      term_word = Tag_STC(stc_adr);
    }

finish:
  Bind_UV(term_adr, term_word);
  Pl_Unset_C_Bip_Name();
  return TRUE;
}
Example #7
0
 inline const std::vector<double>& Im() const { return Arg(0); }
Example #8
0
/*-------------------------------------------------------------------------*
 * COPY_TERM_REC                                                           *
 *                                                                         *
 * p is the next address to use to store the rest of a term.               *
 *-------------------------------------------------------------------------*/
static void
Copy_Term_Rec(WamWord *dst_adr, WamWord *src_adr, WamWord **p)
{
    WamWord word, tag_mask;
    WamWord *adr;
    WamWord *q;
    int i;

terminal_rec:

    DEREF(*src_adr, word, tag_mask);

    switch (Tag_From_Tag_Mask(tag_mask))
    {
    case REF:
        adr = UnTag_REF(word);
        q = *p;
        if (adr < q && adr >= base_copy)	/* already a copy */
        {
            *dst_adr = word;
            return;
        }

        if (top_vars >= end_vars)
            Pl_Err_Representation(pl_representation_too_many_variables);

        *top_vars++ = word;	                /* word to restore    */
        *top_vars++ = (WamWord) adr;	        /* address to restore */
        *adr = *dst_adr = Tag_REF(dst_adr);	/* bind to a new copy */
        return;

#ifndef NO_USE_FD_SOLVER
    case FDV:
        adr = UnTag_FDV(word);
        q = *p;
        if (adr < q && adr >= base_copy)	/* already a copy */
        {
            *dst_adr = Tag_REF(adr);	/* since Dont_Separate_Tag */
            return;
        }

        if (top_vars >= end_vars)
            Pl_Err_Representation(pl_representation_too_many_variables);

        *top_vars++ = word;	        /* word to restore    */
        *top_vars++ = (WamWord) adr;	/* address to restore */
        q = *p;
        *p = q + Fd_Copy_Variable(q, adr);
        *adr = *dst_adr = Tag_REF(q);	/* bind to a new copy */
        return;
#endif

    case FLT:
        adr = UnTag_FLT(word);
        q = *p;
        q[0] = adr[0];
#if WORD_SIZE == 32
        q[1] = adr[1];
        *p = q + 2;
#else
        *p = q + 1;
#endif
        *dst_adr = Tag_FLT(q);
        return;

    case LST:
        adr = UnTag_LST(word);
        q = *p;
        *dst_adr = Tag_LST(q);

        *p = &Cdr(q) + 1;
        q = &Car(q);
        adr = &Car(adr);
        Copy_Term_Rec(q++, adr++, p);

        dst_adr = q;
        src_adr = adr;
        goto terminal_rec;

    case STC:
        adr = UnTag_STC(word);
        q = *p;
        *dst_adr = Tag_STC(q);

        Functor_And_Arity(q) = Functor_And_Arity(adr);

        i = Arity(adr);
        *p = &Arg(q, i - 1) + 1;

        q = &Arg(q, 0);
        adr = &Arg(adr, 0);
        while (--i)
            Copy_Term_Rec(q++, adr++, p);

        dst_adr = q;
        src_adr = adr;
        goto terminal_rec;

    default:
        *dst_adr = word;
        return;
    }
}
Example #9
0
/*-------------------------------------------------------------------------*
 * PL_COPY_CONTIGUOUS_TERM                                                 *
 *                                                                         *
 * Copy a contiguous term (dereferenced), the result is a contiguous term. *
 *-------------------------------------------------------------------------*/
void
Pl_Copy_Contiguous_Term(WamWord *dst_adr, WamWord *src_adr)
#define Old_Adr_To_New_Adr(adr)  ((dst_adr)+((adr)-(src_adr)))
{
    WamWord word, *adr;
    WamWord *q;
    int i;

terminal_rec:

    word = *src_adr;

    switch (Tag_Of(word))
    {
    case REF:
        adr = UnTag_REF(word);
        q = Old_Adr_To_New_Adr(adr);
        *dst_adr = Tag_REF(q);
        if (adr > src_adr)	/* only useful for Dont_Separate_Tag */
            Pl_Copy_Contiguous_Term(q, adr);
        return;

#ifndef NO_USE_FD_SOLVER
    case FDV:
        adr = UnTag_FDV(word);
        Fd_Copy_Variable(dst_adr, adr);
        return;
#endif

    case FLT:
        adr = UnTag_FLT(word);
        q = Old_Adr_To_New_Adr(adr);
        q[0] = adr[0];
#if WORD_SIZE == 32
        q[1] = adr[1];
#endif
        *dst_adr = Tag_FLT(q);
        return;

    case LST:
        adr = UnTag_LST(word);
        q = Old_Adr_To_New_Adr(adr);
        *dst_adr = Tag_LST(q);
        q = &Car(q);
        adr = &Car(adr);
        Pl_Copy_Contiguous_Term(q++, adr++);
        dst_adr = q;
        src_adr = adr;
        goto terminal_rec;

    case STC:
        adr = UnTag_STC(word);
        q = Old_Adr_To_New_Adr(adr);
        *dst_adr = Tag_STC(q);

        Functor_And_Arity(q) = Functor_And_Arity(adr);

        i = Arity(adr);

        q = &Arg(q, 0);
        adr = &Arg(adr, 0);
        while (--i)
            Pl_Copy_Contiguous_Term(q++, adr++);

        dst_adr = q;
        src_adr = adr;
        goto terminal_rec;

    default:
        *dst_adr = word;
        return;
    }
}
Example #10
0
int Thread::Start(void * arg)
{
   Arg(arg); // store user data
   int code = pthread_create(&(m_id), NULL, Thread::EntryPoint, this);
   return code;
}
Example #11
0
int CmdMerge::execute (std::string& output)
{
  context.footnote ("The 'merge' command is deprecated, and will be removed in a subsequent release.");

  // invoke gc and commit before merging in order to update data files
  context.tdb2.gc ();
  context.tdb2.commit ();

  std::vector <std::string> words = context.a3.extract_words ();
  std::string file;
  if (words.size ())
    file = words[0];

  std::string pushfile = "";
  std::string tmpfile = "";

  std::string sAutopush = lowerCase (context.config.get        ("merge.autopush"));
  bool        bAutopush =            context.config.getBoolean ("merge.autopush");

  Uri uri (file, "merge");
  uri.parse();

  if (uri._data.length ())
  {
    Directory location (context.config.get ("data.location"));

    // be sure that uri points to a file
    uri.append ("undo.data");

    Transport* transport;
    if ((transport = Transport::getTransport (uri)) != NULL )
    {
      tmpfile = location._data + "/undo_remote.data";
      transport->recv (tmpfile);
      delete transport;

      file = tmpfile;
    }
    else
      file = uri._path;

    // XXX the following function could indicate whether a modification was
    // performed without an exception (by returning a boolean, within a status
    // object or with a specific function)
    try
    {
        context.tdb2.merge (file);
    }
    catch (const std::string& e) {
        if (e == STRING_TDB2_UP_TO_DATE)
        {
            output += e + "\n";
            return 0;
        }
        else
            throw e;
    }

    output += std::string (STRING_CMD_MERGE_COMPLETE) + "\n";

    if (tmpfile != "")
      remove (tmpfile.c_str ());

    if (((sAutopush == "ask") && (confirm (format (STRING_CMD_MERGE_CONFIRM, uri.ToString ()))))
       || (bAutopush))
    {
      // Derive autopush uri from merge.default.uri? otherwise: change prompt above

      // Change the "merge" command to "push".
      std::vector <Arg>::iterator i;
      for (i = context.a3.begin (); i != context.a3.end (); ++i)
      {
        if (i->_category == Arg::cat_command)
        {
          i->_raw = "push";
          break;
        }
      }

      // Append the URI argument.
      context.a3.push_back (Arg (uri._data, Arg::cat_literal));

      std::string out;
      assert (context.commands["push"]);
      context.commands["push"]->execute (out);
    }
  }
  else
    throw std::string (STRING_CMD_MERGE_NO_URI);

  return 0;
}
Example #12
0
Arg operator /(const Arg& arg1, double b) noexcept{
	return Arg(arg1.value/b);
}
Example #13
0
Arg operator *(double a, const Arg& arg2) noexcept{
	return Arg(a*arg2.value);
}
Example #14
0
Arg operator -(const Arg& arg1, const Arg& arg2) noexcept{
	return Arg(arg1.value-arg2.value);
}
Example #15
0
QVariant MethodCaller::onMethodCalled(QVariantList arguments)
{
	QVariant returnValue;
	qDebug() << "MethodCaller::onMethodCalled: Method called for object" << m_objectName << "with arguments" << arguments;
	if (m_method.parameterCount() != arguments.length())
	{
		qDebug() << "MethodCaller::onMethodCalled: Invalid number of parameters for call; expected:" << m_method.parameterCount() << "got" << arguments.length();
	}
	else
	{
		if (m_method.returnType() == QMetaType::Void)	//method has no return value
		{
			m_method.invoke(m_pTargetObject,
							Arg(0, arguments),
							Arg(1, arguments),
							Arg(2, arguments),
							Arg(3, arguments),
							Arg(4, arguments),
							Arg(5, arguments),
							Arg(6, arguments),
							Arg(7, arguments),
							Arg(8, arguments));
		}
		else
		{
			void *retVal = QMetaType::create(m_method.returnType());
			if (retVal)
			{
				m_method.invoke(m_pTargetObject,
								QGenericReturnArgument(m_method.typeName(), retVal),
								Arg(0, arguments),
								Arg(1, arguments),
								Arg(2, arguments),
								Arg(3, arguments),
								Arg(4, arguments),
								Arg(5, arguments),
								Arg(6, arguments),
								Arg(7, arguments),
								Arg(8, arguments));
				returnValue = QVariant(m_method.returnType(), retVal);
				QMetaType::destroy(m_method.returnType(), retVal);
			}
			else
			{
				qDebug() << "MethodCaller::onMethodCalled:" << m_method.typeName() << "is a non-supported value type.";
			}
		}
	}
	return returnValue;
}
Example #16
0
/*-------------------------------------------------------------------------*
 * NORMALIZE                                                               *
 *                                                                         *
 * This functions normalizes a term.                                       *
 * Input:                                                                  *
 *    e_word: term to normalize                                            *
 *    sign  : current sign of the term (-1 or +1)                          *
 *                                                                         *
 * Output:                                                                 *
 *    p     : the associated polynomial term                               *
 *                                                                         *
 * Normalizes the term and loads it into p.                                *
 * Non-Linear operations are simplified and loaded into a stack to be      *
 * executed later.                                                         *
 *                                                                         *
 * T1*T2 : T1 and T2 are normalized to give the polynomials p1 and p2, with*
 *         p1 = c1 + a1X1 + a2X2 + ... + anXn                              *
 *         p2 = c2 + b1X1 + b2X2 + ... + bmXm                              *
 *         and replaced by c1*c2 +                                         *
 *                         a1X1 * c2 + a1X1 * b1X1 + ... + a1X1 * bmXm     *
 *                         ...                                             *
 *                         anX1 * c2 + anXn * b1X1 + ... + anXn * bmXm     *
 *                                                                         *
 * T1**T2: T1 and T2 are loaded into 2 new words word1 and word2 that can  *
 *         be integers or variables (tagged words). The code emitted       *
 *         depends on 3 possibilities (var**var is not allowed)            *
 *         (+ optim 1**T2, 0**T2, T1**0, T1**1), NB 0**0=1                 *
 *-------------------------------------------------------------------------*/
static Bool
Normalize(WamWord e_word, int sign, Poly *p)
{
  WamWord word, tag_mask;
  WamWord *adr;
  WamWord *fdv_adr;
  WamWord word1, word2, word3;
  WamWord f_n, le_word, re_word;
  int i;
  PlLong n1, n2, n3;

 terminal_rec:

  DEREF(e_word, word, tag_mask);

  if (tag_mask == TAG_FDV_MASK)
    {
      fdv_adr = UnTag_FDV(word);
      Add_Monom(p, sign, 1, Tag_REF(fdv_adr));
      return TRUE;
    }

  if (tag_mask == TAG_INT_MASK)
    {
      n1 = UnTag_INT(word);
      if (n1 > MAX_COEF_FOR_SORT)
	sort = TRUE;

      Add_Cst_To_Poly(p, sign, n1);
      return TRUE;
    }

  if (tag_mask == TAG_REF_MASK)
    {
      if (vars_sp - vars_tbl >= VARS_STACK_SIZE)
	Pl_Err_Resource(pl_resource_too_big_fd_constraint);

      *vars_sp++ = word;
      Add_Monom(p, sign, 1, word);
      return TRUE;
    }

  if (tag_mask == TAG_ATM_MASK)
    {
      word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
      Pl_Unify_Value(e_word);
      Pl_Unify_Integer(0);
    type_error:
      Pl_Err_Type(pl_type_fd_evaluable, word);
    }

  if (tag_mask != TAG_STC_MASK)
    goto type_error;


  adr = UnTag_STC(word);

  f_n = Functor_And_Arity(adr);
  for (i = 0; i < NB_OF_OP; i++)
    if (arith_tbl[i] == f_n)
      break;

  le_word = Arg(adr, 0);
  re_word = Arg(adr, 1);

  switch (i)
    {
    case PLUS_1:
      e_word = le_word;
      goto terminal_rec;

    case PLUS_2:
      if (!Normalize(le_word, sign, p))
	return FALSE;
      e_word = re_word;
      goto terminal_rec;

    case MINUS_2:
      if (!Normalize(le_word, sign, p))
	return FALSE;
      e_word = re_word;
      sign = -sign;
      goto terminal_rec;

    case MINUS_1:
      e_word = le_word;
      sign = -sign;
      goto terminal_rec;

    case TIMES_2:
#ifdef DEVELOP_TIMES_2
#if 1				/* optimize frequent use: INT*VAR */
      DEREF(le_word, word, tag_mask);
      if (tag_mask != TAG_INT_MASK)
	goto any;

      n1 = UnTag_INT(word);

      if (n1 > MAX_COEF_FOR_SORT)
	sort = TRUE;

      DEREF(re_word, word, tag_mask);
      if (tag_mask != TAG_REF_MASK)
	{
	  if (tag_mask != TAG_FDV_MASK)
	    goto any;
	  else
	    {
	      fdv_adr = UnTag_FDV(word);
	      word = Tag_REF(fdv_adr);
	    }
	}
      Add_Monom(p, sign, n1, word);
      return TRUE;
    any:
#endif
      {
	Poly p1, p2;
	int i1, i2;

	New_Poly(p1);
	New_Poly(p2);

	if (!Normalize(le_word, 1, &p1) || !Normalize(re_word, 1, &p2))
	  return FALSE;

	Add_Cst_To_Poly(p, sign, p1.c * p2.c);

	for (i1 = 0; i1 < p1.nb_monom; i1++)
	  {
	    Add_Monom(p, sign, p1.m[i1].a * p2.c, p1.m[i1].x_word);
	    for (i2 = 0; i2 < p2.nb_monom; i2++)
	      if (!Add_Multiply_Monom(p, sign, p1.m + i1, p2.m + i2))
		return FALSE;
	  }

	for (i2 = 0; i2 < p2.nb_monom; i2++)
	  Add_Monom(p, sign, p2.m[i2].a * p1.c, p2.m[i2].x_word);

	return TRUE;
      }
#else
      if (!Load_Term_Into_Word(le_word, &word1) ||
	  !Load_Term_Into_Word(re_word, &word2))
	return FALSE;

      if (Tag_Is_INT(word1))
	{
	  n1 = UnTag_INT(word1);
	  if (Tag_Is_INT(word2))
	    {
	      n2 = UnTag_INT(word2);
	      n1 = n1 * n2;
	      Add_Cst_To_Poly(p, sign, n1);
	      return TRUE;
	    }

	  Add_Monom(p, sign, n1, word2);
	  return TRUE;
	}

      if (Tag_Is_INT(word2))
	{
	  n2 = UnTag_INT(word2);
	  Add_Monom(p, sign, n2, word1);
	  return TRUE;
	}


      word1 = (word1 == word2)
	? Push_Delayed_Cstr(DC_X2_EQ_Y, word1, 0, 0)
	: Push_Delayed_Cstr(DC_XY_EQ_Z, word1, word2, 0);

      Add_Monom(p, sign, 1, word1);
      return TRUE;
#endif

    case POWER_2:
      if (!Load_Term_Into_Word(le_word, &word1) ||
	  !Load_Term_Into_Word(re_word, &word2))
	return FALSE;

      if (Tag_Is_INT(word1))
	{
	  n1 = UnTag_INT(word1);
	  if (Tag_Is_INT(word2))
	    {
	      n2 = UnTag_INT(word2);
	      if ((n1 = Pl_Power(n1, n2)) < 0)
		return FALSE;

	      Add_Cst_To_Poly(p, sign, n1);
	      return TRUE;
	    }

	  if (n1 == 1)
	    {
	      Add_Cst_To_Poly(p, sign, 1);
	      return TRUE;
	    }

	  word = (n1 == 0)
	    ? Push_Delayed_Cstr(DC_ZERO_POWER_N_EQ_Y, word2, 0, 0)
	    : Push_Delayed_Cstr(DC_A_POWER_N_EQ_Y, word1, word2, 0);
	  goto end_power;
	}

      if (Tag_Mask_Of(word2) != TAG_INT_MASK)
	Pl_Err_Instantiation();
      else
	{
	  n2 = UnTag_INT(word2);
	  if (n2 == 0)
	    {
	      Add_Cst_To_Poly(p, sign, 1);
	      return TRUE;
	    }

	  word = (n2 == 1)
	    ? word1
	    : (n2 == 2)
	    ? Push_Delayed_Cstr(DC_X2_EQ_Y, word1, 0, 0)
	    : Push_Delayed_Cstr(DC_X_POWER_A_EQ_Y, word1, word2, 0);
	}
    end_power:
      Add_Monom(p, sign, 1, word);
      return TRUE;

    case MIN_2:
      if (!Load_Term_Into_Word(le_word, &word1) ||
	  !Load_Term_Into_Word(re_word, &word2))
	return FALSE;

      if (Tag_Is_INT(word1))
	{
	  n1 = UnTag_INT(word1);
	  if (Tag_Is_INT(word2))
	    {
	      n2 = UnTag_INT(word2);
	      n1 = math_min(n1, n2);
	      Add_Cst_To_Poly(p, sign, n1);
	      return TRUE;
	    }

	  word = Push_Delayed_Cstr(DC_MIN_X_A_EQ_Z, word2, word1, 0);
	  goto end_min;
	}

      if (Tag_Is_INT(word2))
	word = Push_Delayed_Cstr(DC_MIN_X_A_EQ_Z, word1, word2, 0);
      else
	word = Push_Delayed_Cstr(DC_MIN_X_Y_EQ_Z, word1, word2, 0);

    end_min:
      Add_Monom(p, sign, 1, word);
      return TRUE;

    case MAX_2:
      if (!Load_Term_Into_Word(le_word, &word1) ||
	  !Load_Term_Into_Word(re_word, &word2))
	return FALSE;

      if (Tag_Is_INT(word1))
	{
	  n1 = UnTag_INT(word1);
	  if (Tag_Is_INT(word2))
	    {
	      n2 = UnTag_INT(word2);
	      n1 = math_max(n1, n2);
	      Add_Cst_To_Poly(p, sign, n1);
	      return TRUE;
	    }

	  word = Push_Delayed_Cstr(DC_MAX_X_A_EQ_Z, word2, word1, 0);
	  goto end_max;
	}

      if (Tag_Is_INT(word2))
	word = Push_Delayed_Cstr(DC_MAX_X_A_EQ_Z, word1, word2, 0);
      else
	word = Push_Delayed_Cstr(DC_MAX_X_Y_EQ_Z, word1, word2, 0);

    end_max:
      Add_Monom(p, sign, 1, word);
      return TRUE;

    case DIST_2:
      if (!Load_Term_Into_Word(le_word, &word1) ||
	  !Load_Term_Into_Word(re_word, &word2))
	return FALSE;

      if (Tag_Is_INT(word1))
	{
	  n1 = UnTag_INT(word1);
	  if (Tag_Is_INT(word2))
	    {
	      n2 = UnTag_INT(word2);
	      n1 = (n1 >= n2) ? n1 - n2 : n2 - n1;
	      Add_Cst_To_Poly(p, sign, n1);
	      return TRUE;
	    }

	  word = Push_Delayed_Cstr(DC_ABS_X_MINUS_A_EQ_Z, word2, word1, 0);
	  goto end_dist;
	}

      if (Tag_Is_INT(word2))
	word = Push_Delayed_Cstr(DC_ABS_X_MINUS_A_EQ_Z, word1, word2, 0);
      else
	word = Push_Delayed_Cstr(DC_ABS_X_MINUS_Y_EQ_Z, word1, word2, 0);

    end_dist:
      Add_Monom(p, sign, 1, word);
      return TRUE;

    case QUOT_2:
      word3 = Make_Self_Ref(H);	/* word3 = remainder */
      Global_Push(word3);
      goto quot_rem;

    case REM_2:
      word3 = Make_Self_Ref(H);	/* word3 = remainder */
      Global_Push(word3);
      goto quot_rem;

    case QUOT_REM_3:
    quot_rem:
    if (!Load_Term_Into_Word(le_word, &word1) ||
	!Load_Term_Into_Word(re_word, &word2) ||
	(i == QUOT_REM_3 && !Load_Term_Into_Word(Arg(adr, 2), &word3)))
      return FALSE;

    if (Tag_Is_INT(word1))
      {
	n1 = UnTag_INT(word1);
	if (Tag_Is_INT(word2))
	  {
	    n2 = UnTag_INT(word2);
	    if (n2 == 0)
	      return FALSE;
	    n3 = n1 % n2;

	    if (i == QUOT_2 || i == QUOT_REM_3)
	      {
		if (i == QUOT_REM_3)
		  PRIM_CSTR_2(pl_x_eq_c, word3, word);
		else
		  H--;	/* recover word3 space */
		n3 = n1 / n2;
	      }

	    Add_Cst_To_Poly(p, sign, n3);
	    return TRUE;
	  }

	word = Push_Delayed_Cstr(DC_QUOT_REM_A_Y_R_EQ_Z, word1, word2,
				 word3);
	goto end_quot_rem;
      }

    if (Tag_Is_INT(word2))
      word = Push_Delayed_Cstr(DC_QUOT_REM_X_A_R_EQ_Z, word1, word2,
			       word3);
    else
      word = Push_Delayed_Cstr(DC_QUOT_REM_X_Y_R_EQ_Z, word1, word2,
			       word3);

    end_quot_rem:
    Add_Monom(p, sign, 1, (i == REM_2) ? word3 : word);
    return TRUE;

    case DIV_2:
      if (!Load_Term_Into_Word(le_word, &word1) ||
	  !Load_Term_Into_Word(re_word, &word2))
	return FALSE;

      if (Tag_Is_INT(word1))
	{
	  n1 = UnTag_INT(word1);
	  if (Tag_Is_INT(word2))
	    {
	      n2 = UnTag_INT(word2);
	      if (n2 == 0 || n1 % n2 != 0)
		return FALSE;
	      n1 /= n2;
	      Add_Cst_To_Poly(p, sign, n1);
	      return TRUE;
	    }

	  word = Push_Delayed_Cstr(DC_DIV_A_Y_EQ_Z, word1, word2, 0);
	  goto end_div;
	}

      if (Tag_Is_INT(word2))
	word = Push_Delayed_Cstr(DC_DIV_X_A_EQ_Z, word1, word2, 0);
      else
	word = Push_Delayed_Cstr(DC_DIV_X_Y_EQ_Z, word1, word2, 0);

    end_div:
      Add_Monom(p, sign, 1, word);
      return TRUE;

    default:
      word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
      Pl_Unify_Atom(Functor(adr));
      Pl_Unify_Integer(Arity(adr));
      goto type_error;
    }

  return TRUE;
}
Example #17
0
  // Here is the test Eval function specialization. Here the CallExpr to the
  // function is created.
  CallExpr*
  EvaluateTSynthesizer::BuildEvalCallExpr(const QualType InstTy,
                                          Expr* SubTree,
                                        llvm::SmallVector<Expr*, 2>& CallArgs) {
    // Set up new context for the new FunctionDecl
    DeclContext* PrevContext = m_Sema->CurContext;

    m_Sema->CurContext = m_EvalDecl->getDeclContext();

    // Create template arguments
    Sema::InstantiatingTemplate Inst(*m_Sema, m_NoSLoc, m_EvalDecl);
    // Before instantiation we need the canonical type
    TemplateArgument Arg(InstTy.getCanonicalType());
    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, &Arg, 1U);

    // Substitute the declaration of the templated function, with the
    // specified template argument
    Decl* D = m_Sema->SubstDecl(m_EvalDecl,
                                m_EvalDecl->getDeclContext(),
                                MultiLevelTemplateArgumentList(TemplateArgs));

    FunctionDecl* Fn = dyn_cast<FunctionDecl>(D);

    // We expect incoming declarations (instantiations) and we
    // need to open the transaction to collect them.
    Transaction::State oldState = getTransaction()->getState();
    getTransaction()->setState(Transaction::kCollecting);

    // Creates new body of the substituted declaration
    m_Sema->InstantiateFunctionDefinition(Fn->getLocation(), Fn, true, true);

    m_Sema->CurContext = PrevContext;

    const FunctionProtoType* FPT = Fn->getType()->getAs<FunctionProtoType>();
    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
    llvm::ArrayRef<QualType> ArgTypes(FPT->arg_type_begin(),
                                      FPT->getNumArgs());
    QualType FnTy = m_Context->getFunctionType(Fn->getResultType(),
                                               ArgTypes,
                                               EPI);
    DeclRefExpr* DRE = m_Sema->BuildDeclRefExpr(Fn,
                                                FnTy,
                                                VK_RValue,
                                                m_NoSLoc
                                                ).takeAs<DeclRefExpr>();

    getTransaction()->setState(oldState);

    // TODO: Figure out a way to avoid passing in wrong source locations
    // of the symbol being replaced. This is important when we calculate the
    // size of the memory buffers and may lead to creation of wrong wrappers.
    Scope* S = m_Sema->getScopeForContext(m_Sema->CurContext);
    CallExpr* EvalCall = m_Sema->ActOnCallExpr(S,
                                               DRE,
                                               SubTree->getLocStart(),
                                               CallArgs,
                                               SubTree->getLocEnd()
                                               ).takeAs<CallExpr>();
    assert (EvalCall && "Cannot create call to Eval");

    return EvalCall;

  }
Example #18
0
/*-------------------------------------------------------------------------*
 * This file is not compiled separately but included twice by wam_inst.c:  *
 *    - to define the Unify function (classical unification).              *
 *    - to define the Unify_Occurs_Check function (+ occurs check).        *
 *-------------------------------------------------------------------------*/
Bool FC
UNIFY_FCT_NAME(WamWord start_u_word, WamWord start_v_word)
{
  WamWord u_word, u_tag_mask;
  WamWord v_word, v_tag_mask;
  WamWord *u_adr, *v_adr;
  int i;

 terminal_rec:

  DEREF(start_u_word, u_word, u_tag_mask);
  DEREF(start_v_word, v_word, v_tag_mask);

  if (u_tag_mask == TAG_REF_MASK)
    {
      u_adr = UnTag_REF(u_word);
      if (v_tag_mask == TAG_REF_MASK)
	{
	  v_adr = UnTag_REF(v_word);

	  if (u_adr > v_adr)
	    Bind_UV(u_adr, Tag_REF(v_adr));
	  else if (v_adr > u_adr)
	    Bind_UV(v_adr, Tag_REF(u_adr));
	}
      else
	{
#ifdef OCCURS_CHECK
	  if (!Is_A_Local_Adr(u_adr) &&	/* no binding from heap to local */
	      Check_If_Var_Occurs(u_adr, v_word))
	    return FALSE;
#endif
	  Do_Copy_Of_Word(v_tag_mask, v_word);
	  Bind_UV(u_adr, v_word);
	}

      return TRUE;
    }


  if (v_tag_mask == TAG_REF_MASK)
    {
      v_adr = UnTag_REF(v_word);

#ifdef OCCURS_CHECK
      if (!Is_A_Local_Adr(v_adr) &&	/* no binding from heap to local */
	  Check_If_Var_Occurs(v_adr, u_word))
	return FALSE;
#endif
      Do_Copy_Of_Word(u_tag_mask, u_word);
      Bind_UV(v_adr, u_word);

      return TRUE;
    }

  if (u_word == v_word)
    return TRUE;

  if (v_tag_mask == TAG_LST_MASK)
    {
      if (u_tag_mask != v_tag_mask)
	return FALSE;

      u_adr = UnTag_LST(u_word);
      v_adr = UnTag_LST(v_word);

      u_adr = &Car(u_adr);
      v_adr = &Car(v_adr);

      if (!UNIFY_FCT_NAME(*u_adr++, *v_adr++))
	return FALSE;

      start_u_word = *u_adr;
      start_v_word = *v_adr;
      goto terminal_rec;
    }

  if (v_tag_mask == TAG_STC_MASK)
    {
      if (u_tag_mask != v_tag_mask)
	return FALSE;

      u_adr = UnTag_STC(u_word);
      v_adr = UnTag_STC(v_word);

      if (Functor_And_Arity(u_adr) != Functor_And_Arity(v_adr))
	return FALSE;

      i = Arity(u_adr);
      u_adr = &Arg(u_adr, 0);
      v_adr = &Arg(v_adr, 0);
      while (--i)
	if (!UNIFY_FCT_NAME(*u_adr++, *v_adr++))
	  return FALSE;

      start_u_word = *u_adr;
      start_v_word = *v_adr;
      goto terminal_rec;
    }

#ifndef NO_USE_FD_SOLVER
  if (v_tag_mask == TAG_INT_MASK && u_tag_mask == TAG_FDV_MASK)
    return Fd_Unify_With_Integer(UnTag_FDV(u_word), UnTag_INT(v_word));
     
  if (v_tag_mask == TAG_FDV_MASK)
    {
      v_adr = UnTag_FDV(v_word);

      if (u_tag_mask == TAG_INT_MASK)
	return Fd_Unify_With_Integer(v_adr, UnTag_INT(u_word));

      if (u_tag_mask != v_tag_mask) /* i.e. TAG_FDV_MASK */
	return FALSE;
      
      return Fd_Unify_With_Fd_Var(UnTag_FDV(u_word), v_adr);
    }
#endif

  if (v_tag_mask == TAG_FLT_MASK)
    return (u_tag_mask == v_tag_mask && 
	    Pl_Obtain_Float(UnTag_FLT(u_word)) ==
	    Pl_Obtain_Float(UnTag_FLT(v_word)));

  return FALSE;
}
Example #19
0
 inline const double Im(const unsigned int i) const { return Arg(0,i); }
Example #20
0
static const Type *getFullyQualifiedTemplateType(const ASTContext &Ctx,
                                                 const Type *TypePtr) {
  // DependentTemplateTypes exist within template declarations and
  // definitions. Therefore we shouldn't encounter them at the end of
  // a translation unit. If we do, the caller has made an error.
  assert(!isa<DependentTemplateSpecializationType>(TypePtr));
  // In case of template specializations, iterate over the arguments
  // and fully qualify them as well.
  if (const auto *TST = dyn_cast<const TemplateSpecializationType>(TypePtr)) {
    bool MightHaveChanged = false;
    SmallVector<TemplateArgument, 4> FQArgs;
    for (TemplateSpecializationType::iterator I = TST->begin(), E = TST->end();
         I != E; ++I) {
      // Cheap to copy and potentially modified by
      // getFullyQualifedTemplateArgument.
      TemplateArgument Arg(*I);
      MightHaveChanged |= getFullyQualifiedTemplateArgument(Ctx, Arg);
      FQArgs.push_back(Arg);
    }

    // If a fully qualified arg is different from the unqualified arg,
    // allocate new type in the AST.
    if (MightHaveChanged) {
      QualType QT = Ctx.getTemplateSpecializationType(
          TST->getTemplateName(), FQArgs.data(), FQArgs.size(),
          TST->getCanonicalTypeInternal());
      // getTemplateSpecializationType returns a fully qualified
      // version of the specialization itself, so no need to qualify
      // it.
      return QT.getTypePtr();
    }
  } else if (const auto *TSTRecord = dyn_cast<const RecordType>(TypePtr)) {
    // We are asked to fully qualify and we have a Record Type,
    // which can point to a template instantiation with no sugar in any of
    // its template argument, however we still need to fully qualify them.

    if (const auto *TSTDecl =
        dyn_cast<ClassTemplateSpecializationDecl>(TSTRecord->getDecl())) {
      const TemplateArgumentList &TemplateArgs = TSTDecl->getTemplateArgs();

      bool MightHaveChanged = false;
      SmallVector<TemplateArgument, 4> FQArgs;
      for (unsigned int I = 0, E = TemplateArgs.size(); I != E; ++I) {
        // cheap to copy and potentially modified by
        // getFullyQualifedTemplateArgument
        TemplateArgument Arg(TemplateArgs[I]);
        MightHaveChanged |= getFullyQualifiedTemplateArgument(Ctx, Arg);
        FQArgs.push_back(Arg);
      }

      // If a fully qualified arg is different from the unqualified arg,
      // allocate new type in the AST.
      if (MightHaveChanged) {
        TemplateName TN(TSTDecl->getSpecializedTemplate());
        QualType QT = Ctx.getTemplateSpecializationType(
            TN, FQArgs.data(), FQArgs.size(),
            TSTRecord->getCanonicalTypeInternal());
        // getTemplateSpecializationType returns a fully qualified
        // version of the specialization itself, so no need to qualify
        // it.
        return QT.getTypePtr();
      }
    }
  }
  return TypePtr;
}
Example #21
0
int main( int argc, char **argv )
{
	UNUSED(argc);
	UNUSED(argv);
	
	#if defined(_MSC_VER) && defined(_DEBUG) && defined(ENABLE_LEAK_FINDER)
	InitLeakFinder();
	#endif
	
	// Magic code to produce dump-files on Windows if the server crashes:
	#if defined(_WIN32) && !defined(_WIN64) && defined(_MSC_VER)
	HINSTANCE hDbgHelp = LoadLibrary("DBGHELP.DLL");
	g_WriteMiniDump = (pMiniDumpWriteDump)GetProcAddress(hDbgHelp, "MiniDumpWriteDump");
	if (g_WriteMiniDump != NULL)
	{
		_snprintf_s(g_DumpFileName, ARRAYCOUNT(g_DumpFileName), _TRUNCATE, "crash_mcs_%x.dmp", GetCurrentProcessId());
		SetUnhandledExceptionFilter(LastChanceExceptionFilter);
		
		// Parse arguments for minidump flags:
		for (int i = 0; i < argc; i++)
		{
			if (_stricmp(argv[i], "/cdg") == 0)
			{
				// Add globals to the dump
				g_DumpFlags = (MINIDUMP_TYPE)(g_DumpFlags | MiniDumpWithDataSegs);
			}
			else if (_stricmp(argv[i], "/cdf") == 0)
			{
				// Add full memory to the dump (HUUUGE file)
				g_DumpFlags = (MINIDUMP_TYPE)(g_DumpFlags | MiniDumpWithFullMemory);
			}
		}  // for i - argv[]
	}
	#endif  // _WIN32 && !_WIN64
	// End of dump-file magic

	#ifdef _WIN32
	if (!SetConsoleCtrlHandler((PHANDLER_ROUTINE)CtrlHandler, TRUE))
	{
		LOGERROR("Could not install the Windows CTRL handler!");
	}
	#endif
	
	#if defined(_DEBUG) && defined(_MSC_VER)
	_CrtSetDbgFlag ( _CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF );
	
	// _X: The simple built-in CRT leak finder - simply break when allocating the Nth block ({N} is listed in the leak output)
	// Only useful when the leak is in the same sequence all the time
	// _CrtSetBreakAlloc(85950);
	
	#endif  // _DEBUG && _MSC_VER

	#ifndef _DEBUG
	std::signal(SIGSEGV, NonCtrlHandler);
	std::signal(SIGTERM, NonCtrlHandler);
	std::signal(SIGINT,  NonCtrlHandler);
	std::signal(SIGABRT, NonCtrlHandler);
	#ifdef SIGABRT_COMPAT
	std::signal(SIGABRT_COMPAT, NonCtrlHandler);
	#endif // SIGABRT_COMPAT
	#endif

	// DEBUG: test the dumpfile creation:
	// *((int *)0) = 0;
	
	// Check if comm logging is to be enabled:
	for (int i = 0; i < argc; i++)
	{
		AString Arg(argv[i]);
		if (
			(NoCaseCompare(Arg, "/commlog") == 0) ||
			(NoCaseCompare(Arg, "/logcomm") == 0)
		)
		{
			g_ShouldLogCommIn = true;
			g_ShouldLogCommOut = true;
		}
		else if (
			(NoCaseCompare(Arg, "/commlogin") == 0) ||
			(NoCaseCompare(Arg, "/comminlog") == 0) ||
			(NoCaseCompare(Arg, "/logcommin") == 0)
		)
		{
			g_ShouldLogCommIn = true;
		}
		else if (
			(NoCaseCompare(Arg, "/commlogout") == 0) ||
			(NoCaseCompare(Arg, "/commoutlog") == 0) ||
			(NoCaseCompare(Arg, "/logcommout") == 0)
		)
		{
			g_ShouldLogCommOut = true;
		}
		else if (NoCaseCompare(Arg, "nooutbuf") == 0)
		{
			setvbuf(stdout, NULL, _IONBF, 0);
		}
	}  // for i - argv[]
	
	#if !defined(ANDROID_NDK)
	try
	#endif
	{
		cRoot Root;	
		Root.Start();
	}
	#if !defined(ANDROID_NDK)
	catch( std::exception& e )
	{
		LOGERROR("Standard exception: %s", e.what() );
	}
	catch( ... )
	{
		LOGERROR("Unknown exception!");
	}
	#endif


	#if defined(_MSC_VER) && defined(_DEBUG) && defined(ENABLE_LEAK_FINDER)
	DeinitLeakFinder();
	#endif

	g_SERVER_TERMINATED = true;

	return EXIT_SUCCESS;
}
Example #22
0
 void Eval(EvaluationContext& EC)
 {
     NumberToken Arg(Utilities::GetNumberToken(m_LocalScope[0]));
     EC.EvalStack.push_back(Types::Object(boost::apply_visitor(Sqrt(),Arg)));
 }
Example #23
0
/*-------------------------------------------------------------------------*
 * LOAD_MATH_EXPRESSION                                                    *
 *                                                                         *
 *-------------------------------------------------------------------------*/
static WamWord
Load_Math_Expression(WamWord exp)
{
  WamWord word, tag_mask;
  WamWord *adr;
  WamWord *lst_adr;
  ArithInf *arith;

  DEREF(exp, word, tag_mask);

  if (tag_mask == TAG_INT_MASK || tag_mask == TAG_FLT_MASK)
    return word;

  if (tag_mask == TAG_LST_MASK)
    {
      lst_adr = UnTag_LST(word);
      DEREF(Cdr(lst_adr), word, tag_mask);
      if (word != NIL_WORD)
	{
	  word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
	  Pl_Unify_Atom(ATOM_CHAR('.'));
	  Pl_Unify_Integer(2);
	  Pl_Err_Type(pl_type_evaluable, word);
	}
      DEREF(Car(lst_adr), word, tag_mask);
      if (tag_mask == TAG_REF_MASK)
	Pl_Err_Instantiation();

      if (tag_mask != TAG_INT_MASK) 
	{
	  Pl_Err_Type(pl_type_integer, word);
	}
      return word;
    }

  if (tag_mask == TAG_STC_MASK)
    {
      adr = UnTag_STC(word);

      arith = (ArithInf *) Pl_Hash_Find(arith_tbl, Functor_And_Arity(adr));
      if (arith == NULL)
	{
	  word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
	  Pl_Unify_Atom(Functor(adr));
	  Pl_Unify_Integer(Arity(adr));
	  Pl_Err_Type(pl_type_evaluable, word);
	}
      
      if (Arity(adr) == 1)
	return (*(arith->fct)) (Load_Math_Expression(Arg(adr, 0)));

      return (*(arith->fct)) (Load_Math_Expression(Arg(adr, 0)),
			      Load_Math_Expression(Arg(adr, 1)));
    }

  if (tag_mask == TAG_REF_MASK)
    Pl_Err_Instantiation();

  if (tag_mask == TAG_ATM_MASK)
    {
      word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
      Pl_Unify_Value(exp);
      Pl_Unify_Integer(0);		/* then type_error */
    }

  Pl_Err_Type(pl_type_evaluable, word);
  return word;
}
Example #24
0
int LightmassMain(int argc, ANSICHAR* argv[])
{
	GStartupTime = FPlatformTime::Seconds();

	// Create lightmass log file
	GLog->AddOutputDevice( FLightmassLog::Get() );

	// Initialize FCommandLine
	InitCommandLine(argc, argv);

	// Output devices.
	GError = FPlatformOutputDevices::GetError(); 
	GWarn = FPlatformOutputDevices::GetWarn();

#if USE_LOCAL_SWARM_INTERFACE
	FString CommandLine = FCommandLine::Get();
	if (!FParse::Param(*CommandLine, TEXT("-Messaging")))
	{
		CommandLine += TEXT(" -Messaging");
	}

	GEngineLoop.PreInit(*CommandLine);

	// Tell the module manager is may now process newly-loaded UObjects when new C++ modules are loaded
	FModuleManager::Get().StartProcessingNewlyLoadedObjects();

	FModuleManager::LoadModuleChecked<IMessagingModule>("Messaging");
	FModuleManager::Get().LoadModule(TEXT("Settings"));
	IPluginManager::Get().LoadModulesForEnabledPlugins(ELoadingPhase::PreDefault);
#endif

	UE_LOG(LogLightmass, Display,  TEXT("Lightmass %s started on: %s. Command-line: %s"), FPlatformMisc::GetUBTPlatform(), FPlatformProcess::ComputerName(), FCommandLine::Get() );

	// parse commandline options
	bool bRunUnitTest = false;
	bool bDumpTextures = false;
	FGuid SceneGuid(0x0123, 0x4567, 0x89AB, 0xCDEF); // default scene guid if none specified
	int32 NumThreads = FPlatformMisc::NumberOfCoresIncludingHyperthreads(); // default to the number of processors
	bool bCompareFiles = false;
	FString File1;
	FString File2;
	float ErrorThreshold = 0.000001f; // default error tolerance to allow in lighting comparisons

	// Override 'NumThreads' with the environment variable, if it's set.
	{
		TCHAR* SwarmMaxCoresVariable = new TCHAR[32768];
		FPlatformMisc::GetEnvironmentVariable( TEXT("Swarm_MaxCores"), SwarmMaxCoresVariable, 32768 );
		int32 SwarmMaxCores = FCString::Atoi( SwarmMaxCoresVariable );
		if ( SwarmMaxCores >= 1 && SwarmMaxCores < 128 )
		{
			NumThreads = SwarmMaxCores;
		}
		delete [] SwarmMaxCoresVariable;
	}

	for (int32 ArgIndex = 1; ArgIndex < argc; ArgIndex++)
	{
		if ((FCStringAnsi::Stricmp(argv[ArgIndex], "-help") == 0) || (FCStringAnsi::Stricmp(argv[ArgIndex], "-?") == 0))
		{
			UE_LOG(LogLightmass, Display, TEXT("Usage:\n  UnrealLightmass\n\t[SceneGuid]\n\t[-debug]\n\t[-unittest]\n\t[-dumptex]\n\t[-numthreads N]\n\t[-compare Dir1 Dir2 [-error N]]"));
			UE_LOG(LogLightmass, Display, TEXT(""));
			UE_LOG(LogLightmass, Display, TEXT("  SceneGuid : Guid of a scene file. 0x0000012300004567000089AB0000CDEF is the default"));
			UE_LOG(LogLightmass, Display, TEXT("  -debug : Processes all mappings in the scene, instead of getting tasks from Swarm Coordinator"));
			UE_LOG(LogLightmass, Display, TEXT("  -unittest : Runs a series of validations, then quits"));
			UE_LOG(LogLightmass, Display, TEXT("  -dumptex : Outputs .bmp files to the current directory of 2D lightmap/shadowmap results"));
			UE_LOG(LogLightmass, Display, TEXT("  -compare : Compares the binary dumps created by UnrealEd to compare Unreal vs LM lighting runs"));
			UE_LOG(LogLightmass, Display, TEXT("  -error : Controls the threshold that an error is counted when comparing with -compare"));
			return 0;
		}
		else if (FCStringAnsi::Stricmp(argv[ArgIndex], "-unittest") == 0)
		{
			bRunUnitTest = true;
		}
		else if (FCStringAnsi::Stricmp(argv[ArgIndex], "-dumptex") == 0)
		{
			bDumpTextures = true;
		}
		else if (FCStringAnsi::Stricmp(argv[ArgIndex], "-usedebug") == 0)
		{
			// Warning!  This will only process mapping tasks and will skip other types of tasks.
			GDebugMode = true;
		}
		else if (FCStringAnsi::Stricmp(argv[ArgIndex], "-stats") == 0)
		{
			GReportDetailedStats = true;
		}
		else if (FCStringAnsi::Stricmp(argv[ArgIndex], "-numthreads") == 0)
		{
			// use the next parameter as the number of threads (it must exist, or we fail)
			NumThreads = 0;
			if (ArgIndex < argc - 1)
			{
				NumThreads = FCString::Atoi(*FString(argv[++ArgIndex]));
			}

			// validate it
			if (NumThreads == 0)
			{
				UE_LOG(LogLightmass, Display, TEXT("The number of threads was not specified properly, use \"-numthreads N\""));
				return 1;
			}
		}
		else if (FCStringAnsi::Stricmp(argv[ArgIndex], "-compare") == 0)
		{
			bCompareFiles = true;

			if (ArgIndex >= argc - 2)
			{
				UE_LOG(LogLightmass, Display, TEXT("-compare requires two directories to compare (-compare Dir1 Dir2)"));
				return 1;
			}
			// cache the files to compare
			File1 = *FString(argv[++ArgIndex]);
			File2 = *FString(argv[++ArgIndex]);
		}
		else if (FCStringAnsi::Stricmp(argv[ArgIndex], "-error") == 0)
		{
			// use the next parameter as the number of threads (it must exist, or we fail)
			if (ArgIndex >= argc - 1)
			{
				UE_LOG(LogLightmass, Display, TEXT("-error requires an error value following (-error N)"));
				return 1;
			}

			ErrorThreshold = FCString::Atof(*FString(argv[++ArgIndex]));
		}
		// look for just a Guid on the commandline
		else if (FCStringAnsi::Strlen(argv[ArgIndex]) == 32)
		{
			// break up the string into 4 components
			FString Arg(argv[ArgIndex]);

			// we use _tcstoul to import base 16
#if PLATFORM_USES_MICROSOFT_LIBC_FUNCTIONS
			SceneGuid.A = _tcstoul(*Arg.Mid(0, 8), NULL, 16);
			SceneGuid.B = _tcstoul(*Arg.Mid(8, 8), NULL, 16);
			SceneGuid.C = _tcstoul(*Arg.Mid(16, 8), NULL, 16);
			SceneGuid.D = _tcstoul(*Arg.Mid(24, 8), NULL, 16);
#else
			SceneGuid.A = wcstoul(*Arg.Mid(0, 8), NULL, 16);
			SceneGuid.B = wcstoul(*Arg.Mid(8, 8), NULL, 16);
			SceneGuid.C = wcstoul(*Arg.Mid(16, 8), NULL, 16);
			SceneGuid.D = wcstoul(*Arg.Mid(24, 8), NULL, 16);
#endif
		}
	}

	// if we want to run the unit test, do that, then nothing else
	if (bRunUnitTest)
	{
		// this is an ongoing compiler/runtime test for all templates and whatnot
		TestLightmass();
		return 0;
	}

	if (bCompareFiles)
	{
		CompareLightingResults(*File1, *File2, ErrorThreshold);
		return 0;
	}

	// Start the static lighting processing
	UE_LOG(LogLightmass, Display,  TEXT("Processing scene GUID: %08X%08X%08X%08X with %d threads"), SceneGuid.A, SceneGuid.B, SceneGuid.C, SceneGuid.D, NumThreads );
	BuildStaticLighting(SceneGuid, NumThreads, bDumpTextures);

#if USE_LOCAL_SWARM_INTERFACE
	FEngineLoop::AppPreExit();
	FModuleManager::Get().UnloadModulesAtShutdown();

	FTaskGraphInterface::Shutdown();
	FEngineLoop::AppExit();
#endif

	return 0;
}
Example #25
0
/* The bytecode interpreter for the NFA */
static int re_match(value re,
                    unsigned char * starttxt,
                    register unsigned char * txt,
                    register unsigned char * endtxt,
                    int accept_partial_match)
{
  register value * pc;
  intnat instr;
  struct backtrack_stack * stack;
  union backtrack_point * sp;
  value cpool;
  value normtable;
  unsigned char c;
  union backtrack_point back;

  { int i;
    struct re_group * p;
    unsigned char ** q;
    for (p = &re_group[1], i = Numgroups(re); i > 1; i--, p++)
      p->start = p->end = NULL;
    for (q = &re_register[0], i = Numregisters(re); i > 0; i--, q++)
      *q = NULL;
  }

  pc = &Field(Prog(re), 0);
  stack = &initial_stack;
  sp = stack->point;
  cpool = Cpool(re);
  normtable = Normtable(re);
  re_group[0].start = txt;

  while (1) {
    instr = Long_val(*pc++);
    switch (Opcode(instr)) {
    case CHAR:
      if (txt == endtxt) goto prefix_match;
      if (*txt != Arg(instr)) goto backtrack;
      txt++;
      break;
    case CHARNORM:
      if (txt == endtxt) goto prefix_match;
      if (Byte_u(normtable, *txt) != Arg(instr)) goto backtrack;
      txt++;
      break;
    case STRING: {
      unsigned char * s =
        (unsigned char *) String_val(Field(cpool, Arg(instr)));
      while ((c = *s++) != 0) {
        if (txt == endtxt) goto prefix_match;
        if (c != *txt) goto backtrack;
        txt++;
      }
      break;
    }
    case STRINGNORM: {
      unsigned char * s =
        (unsigned char *) String_val(Field(cpool, Arg(instr)));
      while ((c = *s++) != 0) {
        if (txt == endtxt) goto prefix_match;
        if (c != Byte_u(normtable, *txt)) goto backtrack;
        txt++;
      }
      break;
    }
    case CHARCLASS:
      if (txt == endtxt) goto prefix_match;
      if (! In_bitset(String_val(Field(cpool, Arg(instr))), *txt, c))
        goto backtrack;
      txt++;
      break;
    case BOL:
      if (txt > starttxt && txt[-1] != '\n') goto backtrack;
      break;
    case EOL:
      if (txt < endtxt && *txt != '\n') goto backtrack;
      break;
    case WORDBOUNDARY:
      /* At beginning and end of text: no
         At beginning of text: OK if current char is a letter
         At end of text: OK if previous char is a letter
         Otherwise:
           OK if previous char is a letter and current char not a letter
           or previous char is not a letter and current char is a letter */
      if (txt == starttxt) {
        if (txt == endtxt) goto prefix_match;
        if (Is_word_letter(txt[0])) break;
        goto backtrack;
      } else if (txt == endtxt) {
        if (Is_word_letter(txt[-1])) break;
        goto backtrack;
      } else {
        if (Is_word_letter(txt[-1]) != Is_word_letter(txt[0])) break;
        goto backtrack;
      }
    case BEGGROUP: {
      int group_no = Arg(instr);
      struct re_group * group = &(re_group[group_no]);
      back.undo.loc = &(group->start);
      back.undo.val = group->start;
      group->start = txt;
      goto push;
    }
    case ENDGROUP: {
      int group_no = Arg(instr);
      struct re_group * group = &(re_group[group_no]);
      back.undo.loc = &(group->end);
      back.undo.val = group->end;
      group->end = txt;
      goto push;
    }
    case REFGROUP: {
      int group_no = Arg(instr);
      struct re_group * group = &(re_group[group_no]);
      unsigned char * s;
      if (group->start == NULL || group->end == NULL) goto backtrack;
      for (s = group->start; s < group->end; s++) {
        if (txt == endtxt) goto prefix_match;
        if (*s != *txt) goto backtrack;
        txt++;
      }
      break;
    }
    case ACCEPT:
      goto accept;
    case SIMPLEOPT: {
      char * set = String_val(Field(cpool, Arg(instr)));
      if (txt < endtxt && In_bitset(set, *txt, c)) txt++;
      break;
    }
    case SIMPLESTAR: {
      char * set = String_val(Field(cpool, Arg(instr)));
      while (txt < endtxt && In_bitset(set, *txt, c))
        txt++;
      break;
    }
    case SIMPLEPLUS: {
      char * set = String_val(Field(cpool, Arg(instr)));
      if (txt == endtxt) goto prefix_match;
      if (! In_bitset(set, *txt, c)) goto backtrack;
      txt++;
      while (txt < endtxt && In_bitset(set, *txt, c))
        txt++;
      break;
    }
    case GOTO:
      pc = pc + SignedArg(instr);
      break;
    case PUSHBACK:
      back.pos.pc = Set_tag(pc + SignedArg(instr));
      back.pos.txt = txt;
      goto push;
    case SETMARK: {
      int reg_no = Arg(instr);
      unsigned char ** reg = &(re_register[reg_no]);
      back.undo.loc = reg;
      back.undo.val = *reg;
      *reg = txt;
      goto push;
    }
    case CHECKPROGRESS: {
      int reg_no = Arg(instr);
      if (re_register[reg_no] == txt)
        goto backtrack;
      break;
    }
    default:
      caml_fatal_error ("impossible case in re_match");
    }
    /* Continue with next instruction */
    continue;

  push:
    /* Push an item on the backtrack stack and continue with next instr */
    if (sp == stack->point + BACKTRACK_STACK_BLOCK_SIZE) {
      struct backtrack_stack * newstack =
        caml_stat_alloc(sizeof(struct backtrack_stack));
      newstack->previous = stack;
      stack = newstack;
      sp = stack->point;
    }
    *sp = back;
    sp++;
    continue;

  prefix_match:
    /* We get here when matching failed because the end of text
       was encountered. */
    if (accept_partial_match) goto accept;

  backtrack:
    /* We get here when matching fails.  Backtrack to most recent saved
       program point, undoing variable assignments on the way. */
    while (1) {
      if (sp == stack->point) {
        struct backtrack_stack * prevstack = stack->previous;
        if (prevstack == NULL) return 0;
        caml_stat_free(stack);
        stack = prevstack;
        sp = stack->point + BACKTRACK_STACK_BLOCK_SIZE;
      }
      sp--;
      if (Tag_is_set(sp->pos.pc)) {
        pc = Clear_tag(sp->pos.pc);
        txt = sp->pos.txt;
        break;
      } else {
        *(sp->undo.loc) = sp->undo.val;
      }
    }
    continue;
  }

 accept:
  /* We get here when the regexp was successfully matched */
  free_backtrack_stack(stack);
  re_group[0].end = txt;
  return 1;
}
Example #26
0
 const QByteArray& operator[](int index) const   { return Arg(index); }
Example #27
0
/*-------------------------------------------------------------------------*
 * SHOW_STRUCTURE                                                          *
 *                                                                         *
 *-------------------------------------------------------------------------*/
static void
Show_Structure(int depth, int prec, int context, WamWord *stc_adr)
{
  WamWord word, tag_mask;
  WamWord *adr;
  WamWord f_n = Functor_And_Arity(stc_adr);
  int functor = Functor(stc_adr);
  int arity = Arity(stc_adr);
  OperInf *oper;
  int nb_args_to_disp;
  int i, j, n;
  char str[32];
  Bool bracket;
  Bool surround_space;
  char *p;


  depth--;

  if (name_vars && f_n == dollar_varname_1 && stc_adr >= name_number_above_H)
    {
      DEREF(Arg(stc_adr, 0), word, tag_mask);
      if (tag_mask == TAG_ATM_MASK)
	{
	  p = pl_atom_tbl[UnTag_ATM(word)].name;
	  if (Is_Valid_Var_Name(p))
	    {
	      Out_String(p);
	      pl_last_writing = W_IDENTIFIER;
	      return;
	    }
	}
    }

  if (number_vars && f_n == dollar_var_1 && stc_adr >= name_number_above_H)
    {
      DEREF(Arg(stc_adr, 0), word, tag_mask);
      if (tag_mask == TAG_INT_MASK && (n = UnTag_INT(word)) >= 0)
	{
	  i = n % 26;
	  j = n / 26;

	  Out_Char('A' + i);

	  if (j)
	    {
	      sprintf(str, "%d", j);
	      Out_String(str);
	    }

	  pl_last_writing = W_IDENTIFIER;
	  return;
	}
    }

  if (ignore_op || arity > 2)
    goto functional;

  if (f_n == curly_brackets_1)
    {
      Out_Char('{');
      if (space_args)
	Out_Space();
      Show_Term(depth, MAX_PREC, GENERAL_TERM, Arg(stc_adr, 0));
      if (space_args)
	Out_Space();
      Out_Char('}');
      return;
    }

  bracket = FALSE;

  if (arity == 1 && (oper = Pl_Lookup_Oper(functor, PREFIX)))
    {
#if 1
      /* Koen de Bosschere says "in case of ambiguity :          */
      /* select the associative operator over the nonassociative */
      /* select prefix over postfix".                            */

      OperInf *oper1;

      if (oper->prec > oper->right
	  && (oper1 = Pl_Lookup_Oper(functor, POSTFIX))
	  && oper1->left == oper1->prec)
	{
	  oper = oper1;
	  goto postfix;
	}
#endif
      if (oper->prec > prec || (context == INSIDE_LEFT_ASSOC_OP &&
				(oper->prec == oper->right
				 && oper->prec == prec)))
	{			/* prevent also the case: fy T yf(x) */
	  Out_Char('(');
	  bracket = TRUE;
	}


      Show_Atom(GENERAL_TERM, functor);

      last_prefix_op = W_PREFIX_OP_ANY;

      if (space_args
#if SPACE_ARGS_RESTRICTED	/* space_args -> space after fx operator */
	  && oper->prec > oper->right
#endif
	  )
	Out_Space();
      else
	if (strcmp(pl_atom_tbl[functor].name, "-") == 0)
	  {
	    last_prefix_op = W_PREFIX_OP_MINUS;
	    p_bracket_minus = &bracket;
	  }

      Show_Term(depth, oper->right, INSIDE_ANY_OP, Arg(stc_adr, 0));
      last_prefix_op = W_NO_PREFIX_OP;

      /* Here we need a while(bracket--) instead of if(bracket) because
       * in some cases with the minus op and additional bracket is needed.
       * Example: with op(100, xfx, &) (recall the prec of - is 200). 
       * The term ((-(1)) & b must be displayed as: (- (1)) & b
       * Concerning the sub-term - (1), the first ( is emitted  10 lines above
       * because the precedence of - (200) is > precedence of & (100).
       * The second ( is emitted by Need_Space() because the argument of - begins 
       * by a digit. At the return we have to close 2 ).
       */

      while (bracket--)	
	Out_Char(')');

      return;
    }


  if (arity == 1 && (oper = Pl_Lookup_Oper(functor, POSTFIX)))
    {
    postfix:
      if (oper->prec > prec)
	{
	  Out_Char('(');
	  bracket = TRUE;
	}

      context =
	(oper->left == oper->prec) ? INSIDE_LEFT_ASSOC_OP : INSIDE_ANY_OP;

      Show_Term(depth, oper->left, context, Arg(stc_adr, 0));

      if (space_args
#if SPACE_ARGS_RESTRICTED	/* space_args -> space before xf operator */
	  && oper->prec > oper->left
#endif
	  )
	Out_Space();

      Show_Atom(GENERAL_TERM, functor);

      if (bracket)
	Out_Char(')');

      return;
    }


  if (arity == 2 && (oper = Pl_Lookup_Oper(functor, INFIX)))
    {
      if (oper->prec > prec || (context == INSIDE_LEFT_ASSOC_OP &&
				(oper->prec == oper->right
				 && oper->prec == prec)))
	{			/* prevent also the case: T xfy U yf(x) */
	  Out_Char('(');
	  bracket = TRUE;
	}

      context =
	(oper->left == oper->prec) ? INSIDE_LEFT_ASSOC_OP : INSIDE_ANY_OP;

      Show_Term(depth, oper->left, context, Arg(stc_adr, 0));

#if 1 /* to show | unquoted if it is an infix operator with prec > 1000 */
      if (functor == ATOM_CHAR('|') && oper->prec > 1000)
	{
	  if (space_args)
	    Out_Space();
	  Out_Char('|');
	  if (space_args)
	    Out_Space();
	}
      else
#endif
	if (functor == ATOM_CHAR(','))
	  {
	    Out_Char(',');
	    if (space_args)
	      Out_Space();
	  }
	else
	  {
	    surround_space = FALSE;

	    if (pl_atom_tbl[functor].prop.type == IDENTIFIER_ATOM ||
		pl_atom_tbl[functor].prop.type == OTHER_ATOM ||
		(space_args
#ifdef SPACE_ARGS_RESTRICTED	/* space_args -> space around xfx operators */
		 && oper->left != oper->prec && oper->right != oper->prec
#endif
		 ))
	      {
		surround_space = TRUE;
		Out_Space();
	      }

	    Show_Atom(GENERAL_TERM, functor);

	    if (surround_space)
	      Out_Space();
	  }

      Show_Term(depth, oper->right, INSIDE_ANY_OP, Arg(stc_adr, 1));

      if (bracket)
	Out_Char(')');

      return;
    }



 functional:			/* functional notation */

  Show_Atom(GENERAL_TERM, functor);
  Out_Char('(');

  nb_args_to_disp = i = (arity < depth + 1 || depth < 0) ? arity : depth + 1;
  adr = &Arg(stc_adr, 0);

  goto start_display;

  do
    {
      Out_Char(',');
      if (space_args)
	Out_Space();
    start_display:
      Show_Term(depth, MAX_ARG_OF_FUNCTOR_PREC, GENERAL_TERM, *adr++);
    }
  while (--i);

  if (arity != nb_args_to_disp)
    {
      Out_Char(',');
      if (space_args)
	Out_Space();
      Show_Atom(GENERAL_TERM, atom_dots);
    }

  Out_Char(')');
}
Example #28
0
/*-------------------------------------------------------------------------*
 * SIMPLIFY                                                                *
 *                                                                         *
 * This function returns the result of the simplified boolean expression   *
 * given in e_word. NOT operators are only applied to variables.           *
 *                                                                         *
 * Input:                                                                  *
 *    sign  : current sign of the boolean term (-1 (inside a ~) or +1)     *
 *    e_word: boolean term to simplify                                     *
 *                                                                         *
 * Output:                                                                 *
 *    The returned result is a pointer to a node of the following form:    *
 *                                                                         *
 *    for binary boolean not operator (~):                                 *
 *        [1]: variable involved (tagged word)                             *
 *        [0]: operator NOT                                                *
 *                                                                         *
 *    for unary boolean operators (<=> ~<=> ==> ~==> /\ ~/\ \/ ~\/):       *
 *        [2]: right boolean exp (pointer to node)                         *
 *        [1]: left  boolean exp (pointer to node)                         *
 *        [0]: operator (EQUIV, NEQUIV, IMPLY, NIMPLY, AND, NAND, OR, NOR) *
 *                                                                         *
 *    for boolean false value (0):                                         *
 *        [0]: ZERO                                                        *
 *                                                                         *
 *    for boolean true value (1):                                          *
 *        [0]: ONE                                                         *
 *                                                                         *
 *    for boolean variable:                                                *
 *        [0]: tagged word                                                 *
 *                                                                         *
 *    for binary math operators (= \= < >= > <=) (partial / full AC):      *
 *        [2]: right math exp (tagged word)                                *
 *        [1]: left  math exp (tagged word)                                *
 *        [0]: operator (EQ, NEQ, LT, LTE, EQ_F, NEQ_F, LT_F, LTE_F)       *
 *             (GT, GTE, GT_F, and GTE_F becomes LT, LTE, LT_F and LTE_F)  *
 *                                                                         *
 * These nodes are stored in a hybrid stack. NB: XOR same as NEQUIV        *
 *-------------------------------------------------------------------------*/
static WamWord *
Simplify(int sign, WamWord e_word)
{
  WamWord word, tag_mask;
  WamWord *adr;
  WamWord f_n, le_word, re_word;
  int op, n;
  WamWord *exp, *sp1;
  WamWord l, r;

#ifdef DEBUG
  printf("ENTERING %5ld: %2d: ", sp - stack, sign);
  Pl_Write(e_word);
  printf("\n");
#endif

  exp = sp;

  if (sp - stack > BOOL_STACK_SIZE - 5)
    Pl_Err_Resource(pl_resource_too_big_fd_constraint);

  DEREF(e_word, word, tag_mask);
  if (tag_mask == TAG_REF_MASK || tag_mask == TAG_FDV_MASK)
    {
      adr = UnTag_Address(word);
      if (vars_sp - vars_tbl == VARS_STACK_SIZE)
	Pl_Err_Resource(pl_resource_too_big_fd_constraint);

      *vars_sp++ = word;
      *vars_sp++ = 0;		/* bool var */

      if (sign != 1)
	*sp++ = NOT;

      *sp++ = Tag_REF(adr);
      return exp;
    }

  if (tag_mask == TAG_INT_MASK)
    {
      n = UnTag_INT(word);
      if ((unsigned) n > 1)
	goto type_error;

      *sp++ = ZERO + ((sign == 1) ? n : 1 - n);
      return exp;
    }

  if (tag_mask == TAG_ATM_MASK)
    {
      word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
      Pl_Unify_Value(e_word);
      Pl_Unify_Integer(0);
    type_error:
      Pl_Err_Type(pl_type_fd_bool_evaluable, word);
    }


  if (tag_mask != TAG_STC_MASK)
    goto type_error;

  adr = UnTag_STC(word);

  f_n = Functor_And_Arity(adr);
  if (bool_xor == f_n)
    op = NEQUIV;
  else
    {
      for (op = 0; op < NB_OF_OP; op++)
	if (bool_tbl[op] == f_n)
	  break;

      if (op == NB_OF_OP)
	{
	  word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
	  Pl_Unify_Atom(Functor(adr));
	  Pl_Unify_Integer(Arity(adr));
	  goto type_error;
	}
    }

  le_word = Arg(adr, 0);
  re_word = Arg(adr, 1);

  if (op == NOT)
    return Simplify(-sign, le_word);

  if (sign != 1)
    op = (op % 2 == EQ % 2) ? op + 1 : op - 1;

  if (op >= EQ && op <= LTE_F)
    {
      Add_Fd_Variables(le_word);
      Add_Fd_Variables(re_word);

      n = (op == GT || op == GT_F) ? op - 2 :
	(op == GTE || op == GTE_F) ? op + 2 : op;

      *sp++ = n;
      *sp++ = (n == op) ? le_word : re_word;
      *sp++ = (n == op) ? re_word : le_word;
      return exp;
    }

  sp += 3;
  exp[0] = op;
  exp[1] = (WamWord) Simplify(1, le_word);
  sp1 = sp;
  exp[2] = (WamWord) Simplify(1, re_word);

  l = *(WamWord *) (exp[1]);
  r = *(WamWord *) (exp[2]);

  /* NB: beware when calling below Simplify() (while has been just called above)
   * this can ran into stack overflow (N^2 space complexity). 
   * Try to recover the stack before calling Simplify().
   * Other stack recovery are less important (e.g. when only using exp[1]).
   *
   * In the following exp[] += sizeof(WamWord) is used to "skip" the NOT
   * in a simplification (points to the next cell).
   */

  switch (op)
    {
    case EQUIV:
      if (l == ZERO)		/* 0 <=> R is ~R */
	{
	  sp = exp;
	  return Simplify(-1, re_word);
	}

      if (l == ONE)		/* 1 <=> R is R */
	{
	  return (WamWord *) exp[2];
	}

      if (r == ZERO)		/* L <=> 0 is ~L */
	{
	  sp = exp;
	  return Simplify(-1, le_word);
	}

      if (r == ONE)		/* L <=> 1 is L */
	{
	  sp = sp1;
	  return (WamWord *) exp[1];
	}

      if (l == NOT)		/* ~X <=> R is X <=> ~R */
	{
	  exp[1] += sizeof(WamWord); 
	  sp = sp1;
	  exp[2] = (WamWord) Simplify(-1, re_word);
	  break;
	}

      if (r == NOT)		/* L <=> ~X is ~L <=> X */
	{			/* NB: cannot recover the stack */	  
	  exp[1] = (WamWord) Simplify(-1, le_word);
	  exp[2] += sizeof(WamWord);
	  break;
	}
      break;

    case NEQUIV:
      if (l == ZERO)		/* 0 ~<=> R is R */
	{
	  return (WamWord *) exp[2];
	}

      if (l == ONE)		/* 1 ~<=> R is ~R */
	{
	  sp = exp;
	  return Simplify(-1, re_word);
	}

      if (r == ZERO)		/* L ~<=> 0 is L */
	{
	  sp = sp1;
	  return (WamWord *) exp[1];
	}

      if (r == ONE)		/* L ~<=> 1 is ~L */
	{
	  sp = exp;
	  return Simplify(-1, le_word);
	}

      if (l == NOT)		/* ~X ~<=> R is X <=> R */
	{
	  exp[0] = EQUIV;
	  exp[1] += sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L ~<=> ~X is L <=> X */
	{
	  exp[0] = EQUIV;
	  exp[2] += sizeof(WamWord);
	  break;
	}

      if (IsVar(l) && !IsVar(r)) /* X ~<=> R is X <=> ~R */
	{
	  exp[0] = EQUIV;
	  sp = sp1;
	  exp[2] = (WamWord) Simplify(-1, re_word);
	  break;
	}

      if (IsVar(r) && !IsVar(l)) /* L ~<=> X is L <=> ~X */
	{
	  exp[0] = EQUIV;	/* NB: cannot recover the stack */
	  exp[1] = (WamWord) Simplify(-1, le_word);
	  break;
	}
      break;

    case IMPLY:
      if (l == ZERO || r == ONE) /* 0 ==> R is 1 , L ==> 1 is 1 */
	{
	  sp = exp;
	  *sp++ = ONE;
	  break;
	}

      if (l == ONE)		/* 1 ==> R is R */
	{
	  return (WamWord *) exp[2];
	}

      if (r == ZERO)		/* L ==> 0 is ~L */
	return sp = exp, Simplify(-1, le_word);

      if (l == NOT)		/* ~X ==> R is X \/ R */
	{
	  exp[0] = OR;
	  exp[1] += sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L ==> ~X is X ==> ~L */
	{
	  exp[1] = exp[2] + sizeof(WamWord);
	  exp[2] = (WamWord) Simplify(-1, le_word);
	  break;
	}
      break;

    case NIMPLY:
      if (l == ZERO || r == ONE) /* 0 ~==> R is 0 , L ~==> 1 is 0 */
	{
	  sp = exp;
	  *sp++ = ZERO;
	  break;
	}

      if (l == ONE)		/* 1 ~==> R is ~R */
	{
	  sp = exp;
	  return Simplify(-1, re_word);
	}

      if (r == ZERO)		/* L ~==> 0 is L */
	{
	  sp = sp1;
	  return (WamWord *) exp[1];
	}

      if (l == NOT)		/* ~X ~==> R is X ~\/ R */
	{
	  exp[0] = NOR;
	  exp[1] += sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L ~==> ~X is L /\ X */
	{
	  exp[0] = AND;
	  exp[2] += sizeof(WamWord);
	  break;
	}
      break;

    case AND:
      if (l == ZERO || r == ZERO) /* 0 /\ R is 0 , L /\ 0 is 0 */
	{
	  sp = exp;
	  *sp++ = ZERO;
	  break;
	}

      if (l == ONE)		/* 1 /\ R is R */
	{
	  return (WamWord *) exp[2];
	}

      if (r == ONE)		/* L /\ 1 is L */
	{
	  sp = sp1;
	  return (WamWord *) exp[1];
	}

      if (l == NOT)		/* ~X /\ R is R ~==> X */
	{
	  exp[0] = NIMPLY;
	  word = exp[1];
	  exp[1] = exp[2];
	  exp[2] = word + sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L /\ ~X is L ~==> X */
	{
	  exp[0] = NIMPLY;
	  exp[2] += sizeof(WamWord);
	  break;
	}
      break;

    case NAND:
      if (l == ZERO || r == ZERO) /* 0 ~/\ R is 1 , L ~/\ 0 is 1 */
	{
	  sp = exp;
	  *sp++ = ONE;
	  break;
	}

      if (l == ONE)		/* 1 ~/\ R is ~R */
	{
	  sp = exp;
	  return Simplify(-1, re_word);
	}

      if (r == ONE)		/* L ~/\ 1 is ~L */
	{
	  sp = exp;
	  return Simplify(-1, le_word);
	}

      if (l == NOT)		/* ~X ~/\ R is R ==> X */
	{
	  exp[0] = IMPLY;
	  word = exp[1];
	  exp[1] = exp[2];
	  exp[2] = word + sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L ~/\ ~X is L ==> X */
	{
	  exp[0] = IMPLY;
	  exp[2] += sizeof(WamWord);
	  break;
	}
      break;

    case OR:
      if (l == ONE || r == ONE)	/* 1 \/ R is 1 , L \/ 1 is 1 */
	{
	  sp = exp;
	  *sp++ = ONE;
	  break;
	}

      if (l == ZERO)		/* 0 \/ R is R */
	{
	  return (WamWord *) exp[2];
	}

      if (r == ZERO)		/* L \/ 0 is L */
	{
	  sp = sp1;
	  return (WamWord *) exp[1];
	}

      if (l == NOT)		/* ~X \/ R is X ==> R */
	{
	  exp[0] = IMPLY;
	  exp[1] += sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L \/ ~X is X ==> L */
	{
	  exp[0] = IMPLY;
	  word = exp[1];
	  exp[1] = exp[2] + sizeof(WamWord);
	  exp[2] = word;
	  break;
	}
      break;

    case NOR:
      if (l == ONE || r == ONE)	/* 1 ~\/ R is 0 , L ~\/ 1 is 0 */
	{
	  sp = exp;
	  *sp++ = ZERO;
	  break;
	}

      if (l == ZERO)		/* 0 ~\/ R is ~R */
	{
	  sp = exp;
	  return Simplify(-1, re_word);
	}

      if (r == ZERO)		/* L ~\/ 0 is ~L */
	{
	  sp = exp;
	  return Simplify(-1, le_word);
	}

      if (l == NOT)		/* ~X ~\/ R is X ~==> R */
	{
	  exp[0] = NIMPLY;
	  exp[1] += sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L ~\/ ~X is X ~==> L */
	{
	  exp[0] = NIMPLY;
	  word = exp[1];
	  exp[1] = exp[2] + sizeof(WamWord);
	  exp[2] = word;
	  break;
	}
      break;
    }

  return exp;
}
Example #29
0
/*static */
void * Thread::EntryPoint(void * pthis)
{
   Thread * pt = (Thread*)pthis;
   pthis->Run( Arg() );
}
Example #30
0
/**
  * \brief Define a parameter (option that requires a value)
  */
void SimpleCli::defineParam(const QByteArray& name, const QString& valueHelp, const QString& help)
{
	argdefs[name] = Arg(name, valueHelp, help, true);
	aliases[name] = name;
}