Example #1
0
/**
 * Module thread, should not return.
 */
static void AttitudeTask(void *parameters)
{

	uint8_t init = 0;
	AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);

	PIOS_ADC_Config((PIOS_ADC_RATE / 1000.0f) * UPDATE_RATE);

	// Keep flash CS pin high while talking accel
	PIOS_FLASH_DISABLE;		
	PIOS_ADXL345_Init();
			
	// Main task loop
	while (1) {
		
		if(xTaskGetTickCount() < 10000) {
			// For first 5 seconds use accels to get gyro bias
			accelKp = 1;
			// Decrease the rate of gyro learning during init
			accelKi = .5 / (1 + xTaskGetTickCount() / 5000);
		} else if (init == 0) {
			settingsUpdatedCb(AttitudeSettingsHandle());
			init = 1;
		}						
			
		PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);
		
		AttitudeRawData attitudeRaw;
		AttitudeRawGet(&attitudeRaw);		
		updateSensors(&attitudeRaw);		
		updateAttitude(&attitudeRaw);
		AttitudeRawSet(&attitudeRaw); 	

	}
}
Example #2
0
/**
 * Module thread, should not return.
 */
static void AttitudeTask(void *parameters)
{
	uint8_t init = 0;
	AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);

	PIOS_ADC_Config((PIOS_ADC_RATE / 1000.0f) * UPDATE_RATE);

	// Keep flash CS pin high while talking accel
	PIOS_FLASH_DISABLE;
	PIOS_ADXL345_Init();


	// Force settings update to make sure rotation loaded
	settingsUpdatedCb(AttitudeSettingsHandle());

	// Main task loop
	while (1) {

		FlightStatusData flightStatus;
		FlightStatusGet(&flightStatus);

		if((xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) {
			// For first 7 seconds use accels to get gyro bias
			accelKp = 1;
			accelKi = 0.9;
			yawBiasRate = 0.23;
			init = 0;
		}
		else if (zero_during_arming && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) {
			accelKp = 1;
			accelKi = 0.9;
			yawBiasRate = 0.23;
			init = 0;
		} else if (init == 0) {
			// Reload settings (all the rates)
			AttitudeSettingsAccelKiGet(&accelKi);
			AttitudeSettingsAccelKpGet(&accelKp);
			AttitudeSettingsYawBiasRateGet(&yawBiasRate);
			init = 1;
		}

		PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);

		AttitudeRawData attitudeRaw;
		AttitudeRawGet(&attitudeRaw);
		updateSensors(&attitudeRaw);
		updateAttitude(&attitudeRaw);
		AttitudeRawSet(&attitudeRaw);

	}
}
Example #3
0
/**
 * Module thread, should not return.
 */
static void guidanceTask(void *parameters)
{
	SystemSettingsData systemSettings;
	GuidanceSettingsData guidanceSettings;
	ManualControlCommandData manualControl;

	portTickType thisTime;
	portTickType lastUpdateTime;
	UAVObjEvent ev;
	
	float accel[3] = {0,0,0};
	uint32_t accel_accum = 0;
	
	float q[4];
	float Rbe[3][3];
	float accel_ned[3];
	
	// Main task loop
	lastUpdateTime = xTaskGetTickCount();
	while (1) {
		GuidanceSettingsGet(&guidanceSettings);

		// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
		if ( xQueueReceive(queue, &ev, guidanceSettings.UpdatePeriod / portTICK_RATE_MS) != pdTRUE )
		{
			AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_WARNING);
		} else {
			AlarmsClear(SYSTEMALARMS_ALARM_GUIDANCE);
		}
				
		// Collect downsampled attitude data
		AttitudeRawData attitudeRaw;
		AttitudeRawGet(&attitudeRaw);		
		accel[0] += attitudeRaw.accels[0];
		accel[1] += attitudeRaw.accels[1];
		accel[2] += attitudeRaw.accels[2];
		accel_accum++;
		
		// Continue collecting data if not enough time
		thisTime = xTaskGetTickCount();
		if( (thisTime - lastUpdateTime) < (guidanceSettings.UpdatePeriod / portTICK_RATE_MS) )
			continue;
		
		lastUpdateTime = xTaskGetTickCount();
		accel[0] /= accel_accum;
		accel[1] /= accel_accum;
		accel[2] /= accel_accum;
		
		//rotate avg accels into earth frame and store it
		AttitudeActualData attitudeActual;
		AttitudeActualGet(&attitudeActual);
		q[0]=attitudeActual.q1;
		q[1]=attitudeActual.q2;
		q[2]=attitudeActual.q3;
		q[3]=attitudeActual.q4;
		Quaternion2R(q, Rbe);
		for (uint8_t i=0; i<3; i++){
			accel_ned[i]=0;
			for (uint8_t j=0; j<3; j++)
				accel_ned[i] += Rbe[j][i]*accel[j];
		}
		accel_ned[2] += 9.81;
		
		NedAccelData accelData;
		NedAccelGet(&accelData);
		// Convert from m/s to cm/s
		accelData.North = accel_ned[0] * 100;
		accelData.East = accel_ned[1] * 100;
		accelData.Down = accel_ned[2] * 100;
		NedAccelSet(&accelData);
		
		
		ManualControlCommandGet(&manualControl);
		SystemSettingsGet(&systemSettings);
		GuidanceSettingsGet(&guidanceSettings);
		
		if ((manualControl.FlightMode == MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO) &&
		    ((systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_VTOL) ||
		     (systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_QUADP) ||
		     (systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_QUADX) ||
		     (systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_HEXA) ))
		{
			if(positionHoldLast == 0) {
				/* When enter position hold mode save current position */
				PositionDesiredData positionDesired;
				PositionActualData positionActual;
				PositionDesiredGet(&positionDesired);
				PositionActualGet(&positionActual);
				positionDesired.North = positionActual.North;
				positionDesired.East = positionActual.East;
				PositionDesiredSet(&positionDesired);
				positionHoldLast = 1;
			}
			
			if(guidanceSettings.GuidanceMode == GUIDANCESETTINGS_GUIDANCEMODE_DUAL_LOOP) 
				updateVtolDesiredVelocity();
			else
				manualSetDesiredVelocity();			
			updateVtolDesiredAttitude();
			
		} else {
			// Be cleaner and get rid of global variables
			northIntegral = 0;
			eastIntegral = 0;
			downIntegral = 0;
			positionHoldLast = 0;
		}
		
		accel[0] = accel[1] = accel[2] = 0;
		accel_accum = 0;
	}
}
Example #4
0
/**
 * Module task
 */
static void stabilizationTask(void* parameters)
{
	portTickType lastSysTime;
	portTickType thisSysTime;
	UAVObjEvent ev;


	ActuatorDesiredData actuatorDesired;
	StabilizationDesiredData stabDesired;
	RateDesiredData rateDesired;
	AttitudeActualData attitudeActual;
	AttitudeRawData attitudeRaw;
	SystemSettingsData systemSettings;
	FlightStatusData flightStatus;

	SettingsUpdatedCb((UAVObjEvent *) NULL);

	// Main task loop
	lastSysTime = xTaskGetTickCount();
	ZeroPids();
	while(1) {
		PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION);

		// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
		if ( xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE )
		{
			AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_WARNING);
			continue;
		}

		// Check how long since last update
		thisSysTime = xTaskGetTickCount();
		if(thisSysTime > lastSysTime) // reuse dt in case of wraparound
			dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f;
		lastSysTime = thisSysTime;

		FlightStatusGet(&flightStatus);
		StabilizationDesiredGet(&stabDesired);
		AttitudeActualGet(&attitudeActual);
		AttitudeRawGet(&attitudeRaw);
		RateDesiredGet(&rateDesired);
		SystemSettingsGet(&systemSettings);

#if defined(PIOS_QUATERNION_STABILIZATION)
		// Quaternion calculation of error in each axis.  Uses more memory.
		float rpy_desired[3];
		float q_desired[4];
		float q_error[4];
		float local_error[3];

		// Essentially zero errors for anything in rate or none
		if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
			rpy_desired[0] = stabDesired.Roll;
		else
			rpy_desired[0] = attitudeActual.Roll;

		if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
			rpy_desired[1] = stabDesired.Pitch;
		else
			rpy_desired[1] = attitudeActual.Pitch;

		if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
			rpy_desired[2] = stabDesired.Yaw;
		else
			rpy_desired[2] = attitudeActual.Yaw;

		RPY2Quaternion(rpy_desired, q_desired);
		quat_inverse(q_desired);
		quat_mult(q_desired, &attitudeActual.q1, q_error);
		quat_inverse(q_error);
		Quaternion2RPY(q_error, local_error);

#else
		// Simpler algorithm for CC, less memory
		float local_error[3] = {stabDesired.Roll - attitudeActual.Roll,
			stabDesired.Pitch - attitudeActual.Pitch,
			stabDesired.Yaw - attitudeActual.Yaw};
		local_error[2] = fmod(local_error[2] + 180, 360) - 180;
#endif


		for(uint8_t i = 0; i < MAX_AXES; i++) {
			gyro_filtered[i] = gyro_filtered[i] * gyro_alpha + attitudeRaw.gyros[i] * (1 - gyro_alpha);
		}

		float *attitudeDesiredAxis = &stabDesired.Roll;
		float *actuatorDesiredAxis = &actuatorDesired.Roll;
		float *rateDesiredAxis = &rateDesired.Roll;

		//Calculate desired rate
		for(uint8_t i=0; i< MAX_AXES; i++)
		{
			switch(stabDesired.StabilizationMode[i])
			{
				case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
					rateDesiredAxis[i] = attitudeDesiredAxis[i];
					axis_lock_accum[i] = 0;
					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
				{
					float weak_leveling = local_error[i] * weak_leveling_kp;

					if(weak_leveling > weak_leveling_max)
						weak_leveling = weak_leveling_max;
					if(weak_leveling < -weak_leveling_max)
						weak_leveling = -weak_leveling_max;

					rateDesiredAxis[i] = attitudeDesiredAxis[i] + weak_leveling;

					axis_lock_accum[i] = 0;
					break;
				}
				case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
					rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], local_error[i]);
					axis_lock_accum[i] = 0;
					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
					if(fabs(attitudeDesiredAxis[i]) > max_axislock_rate) {
						// While getting strong commands act like rate mode
						rateDesiredAxis[i] = attitudeDesiredAxis[i];
						axis_lock_accum[i] = 0;
					} else {
						// For weaker commands or no command simply attitude lock (almost) on no gyro change
						axis_lock_accum[i] += (attitudeDesiredAxis[i] - gyro_filtered[i]) * dT;
						if(axis_lock_accum[i] > max_axis_lock)
							axis_lock_accum[i] = max_axis_lock;
						else if(axis_lock_accum[i] < -max_axis_lock)
							axis_lock_accum[i] = -max_axis_lock;

						rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], axis_lock_accum[i]);
					}
					break;
			}
		}

		uint8_t shouldUpdate = 1;
		RateDesiredSet(&rateDesired);
		ActuatorDesiredGet(&actuatorDesired);
		//Calculate desired command
		for(int8_t ct=0; ct< MAX_AXES; ct++)
		{
			if(rateDesiredAxis[ct] > settings.MaximumRate[ct])
				rateDesiredAxis[ct] = settings.MaximumRate[ct];
			else if(rateDesiredAxis[ct] < -settings.MaximumRate[ct])
				rateDesiredAxis[ct] = -settings.MaximumRate[ct];

			switch(stabDesired.StabilizationMode[ct])
			{
				case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
				case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
				case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
				case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
				{
					float command = ApplyPid(&pids[PID_RATE_ROLL + ct],  rateDesiredAxis[ct] - gyro_filtered[ct]);
					actuatorDesiredAxis[ct] = bound(command);
					break;
				}
				case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE:
					switch (ct)
				{
					case ROLL:
						actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]);
						shouldUpdate = 1;
						break;
					case PITCH:
						actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]);
						shouldUpdate = 1;
						break;
					case YAW:
						actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]);
						shouldUpdate = 1;
						break;
				}
					break;

			}
		}

		// Save dT
		actuatorDesired.UpdateTime = dT * 1000;

		if(PARSE_FLIGHT_MODE(flightStatus.FlightMode) == FLIGHTMODE_MANUAL)
			shouldUpdate = 0;

		if(shouldUpdate)
		{
			actuatorDesired.Throttle = stabDesired.Throttle;
			if(dT > 15)
				actuatorDesired.NumLongUpdates++;
			ActuatorDesiredSet(&actuatorDesired);
		}

		if(flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED ||
		   (lowThrottleZeroIntegral && stabDesired.Throttle < 0) ||
		   !shouldUpdate)
		{
			ZeroPids();
		}


		// Clear alarms
		AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION);
	}
}
/**
 * Telemetry transmit task. Processes queue events and periodic updates.
 */
static void telemetryRxTask(void *parameters)
{
	uint32_t inputPort;
	uint8_t	c;

	// Task loop
	while (1) {
#if defined(PIOS_INCLUDE_USB_HID)
		// Determine input port (USB takes priority over telemetry port)
		if (PIOS_USB_HID_CheckAvailable(0)) {
			inputPort = PIOS_COM_TELEM_USB;
		} else
#endif /* PIOS_INCLUDE_USB_HID */
		{
			inputPort = telemetryPort;
		}

		mavlink_channel_t mavlink_chan = MAVLINK_COMM_0;

		// Block until a byte is available
		PIOS_COM_ReceiveBuffer(inputPort, &c, 1, portMAX_DELAY);

		// And process it

		if (mavlink_parse_char(mavlink_chan, c, &rx_msg, &rx_status))
		{

			// Handle packet with waypoint component
			mavlink_wpm_message_handler(&rx_msg);

			// Handle packet with parameter component
			mavlink_pm_message_handler(mavlink_chan, &rx_msg);

			switch (rx_msg.msgid)
			{
			case MAVLINK_MSG_ID_HEARTBEAT:
			{
				// Check if this is the gcs
				mavlink_heartbeat_t beat;
				mavlink_msg_heartbeat_decode(&rx_msg, &beat);
				if (beat.type == MAV_TYPE_GCS)
				{
					// Got heartbeat from the GCS, we're good!
					lastOperatorHeartbeat = xTaskGetTickCount() * portTICK_RATE_MS;
				}
			}
			break;
			case MAVLINK_MSG_ID_SET_MODE:
			{
				mavlink_set_mode_t mode;
				mavlink_msg_set_mode_decode(&rx_msg, &mode);
				// Check if this system should change the mode
				if (mode.target_system == mavlink_system.sysid)
				{
					FlightStatusData flightStatus;
					FlightStatusGet(&flightStatus);

					switch (mode.base_mode)
					{
					case MAV_MODE_MANUAL_ARMED:
					{
						flightStatus.FlightMode = FLIGHTSTATUS_FLIGHTMODE_MANUAL;
						flightStatus.Armed = FLIGHTSTATUS_ARMED_ARMED;
					}
					break;
					case MAV_MODE_MANUAL_DISARMED:
					{
						flightStatus.FlightMode = FLIGHTSTATUS_FLIGHTMODE_MANUAL;
						flightStatus.Armed = FLIGHTSTATUS_ARMED_DISARMED;
					}
					break;
					case MAV_MODE_PREFLIGHT:
					{
						flightStatus.Armed = FLIGHTSTATUS_ARMED_DISARMED;
					}
					break;
					case MAV_MODE_STABILIZE_ARMED:
					{
						flightStatus.FlightMode = FLIGHTSTATUS_FLIGHTMODE_STABILIZED1;
						flightStatus.Armed = FLIGHTSTATUS_ARMED_ARMED;
					}
					break;
					case MAV_MODE_GUIDED_ARMED:
					{
						flightStatus.FlightMode = FLIGHTSTATUS_FLIGHTMODE_STABILIZED2;
						flightStatus.Armed = FLIGHTSTATUS_ARMED_ARMED;
					}
					break;
					case MAV_MODE_AUTO_ARMED:
					{
						flightStatus.FlightMode = FLIGHTSTATUS_FLIGHTMODE_STABILIZED3;
						flightStatus.Armed = FLIGHTSTATUS_ARMED_ARMED;
					}
					break;
					}

					bool newHilEnabled = (mode.base_mode & MAV_MODE_FLAG_DECODE_POSITION_HIL);
					if (newHilEnabled != hilEnabled)
					{
						if (newHilEnabled)
						{
							// READ-ONLY flag write to ActuatorCommand
							UAVObjMetadata meta;
							UAVObjHandle handle = ActuatorCommandHandle();
							UAVObjGetMetadata(handle, &meta);
							meta.access = ACCESS_READONLY;
							UAVObjSetMetadata(handle, &meta);

							mavlink_missionlib_send_gcs_string("ENABLING HIL SIMULATION");
							mavlink_missionlib_send_gcs_string("+++++++++++++++++++++++");
							mavlink_missionlib_send_gcs_string("BLOCKING ALL ACTUATORS");
						}
						else
						{
							// READ-ONLY flag write to ActuatorCommand
							UAVObjMetadata meta;
							UAVObjHandle handle = ActuatorCommandHandle();
							UAVObjGetMetadata(handle, &meta);
							meta.access = ACCESS_READWRITE;
							UAVObjSetMetadata(handle, &meta);

							mavlink_missionlib_send_gcs_string("DISABLING HIL SIMULATION");
							mavlink_missionlib_send_gcs_string("+++++++++++++++++++++++");
							mavlink_missionlib_send_gcs_string("ACTIVATING ALL ACTUATORS");
						}
					}
					hilEnabled = newHilEnabled;

					FlightStatusSet(&flightStatus);

					// Check HIL
					bool hilEnabled = (mode.base_mode & MAV_MODE_FLAG_DECODE_POSITION_HIL);
					enableHil(hilEnabled);
				}
			}
			break;
			case MAVLINK_MSG_ID_HIL_STATE:
			{
				if (hilEnabled)
				{
					mavlink_hil_state_t hil;
					mavlink_msg_hil_state_decode(&rx_msg, &hil);

					// Write GPSPosition
					GPSPositionData gps;
					GPSPositionGet(&gps);
					gps.Altitude = hil.alt/10;
					gps.Latitude = hil.lat/10;
					gps.Longitude = hil.lon/10;
					GPSPositionSet(&gps);

					// Write PositionActual
					PositionActualData pos;
					PositionActualGet(&pos);
					// FIXME WRITE POSITION HERE
					PositionActualSet(&pos);

					// Write AttitudeActual
					AttitudeActualData att;
					AttitudeActualGet(&att);
					att.Roll = hil.roll;
					att.Pitch = hil.pitch;
					att.Yaw = hil.yaw;
					// FIXME
					//att.RollSpeed = hil.rollspeed;
					//att.PitchSpeed = hil.pitchspeed;
					//att.YawSpeed = hil.yawspeed;

					// Convert to quaternion formulation
					RPY2Quaternion(&attitudeActual.Roll, &attitudeActual.q1);
					// Write AttitudeActual
					AttitudeActualSet(&att);

					// Write AttitudeRaw
					AttitudeRawData raw;
					AttitudeRawGet(&raw);
					raw.gyros[0] = hil.rollspeed;
					raw.gyros[1] = hil.pitchspeed;
					raw.gyros[2] = hil.yawspeed;
					raw.accels[0] = hil.xacc;
					raw.accels[1] = hil.yacc;
					raw.accels[2] = hil.zacc;
					//				raw.magnetometers[0] = hil.xmag;
					//				raw.magnetometers[0] = hil.ymag;
					//				raw.magnetometers[0] = hil.zmag;
					AttitudeRawSet(&raw);
				}
			}
			break;
			case MAVLINK_MSG_ID_COMMAND_LONG:
			{
				// FIXME Implement
			}
			break;
			}
		}
	}
}
/**
 * Processes queue events
 */
static void processObjEvent(UAVObjEvent * ev)
{
	UAVObjMetadata metadata;
	//	FlightTelemetryStatsData flightStats;
	//	GCSTelemetryStatsData gcsTelemetryStatsData;
	//	int32_t retries;
	//	int32_t success;

	if (ev->obj == 0) {
		updateTelemetryStats();
	} else if (ev->obj == GCSTelemetryStatsHandle()) {
		gcsTelemetryStatsUpdated();
	} else if (ev->obj == TelemetrySettingsHandle()) {
		updateSettings();
	} else {

		// Get object metadata
		UAVObjGetMetadata(ev->obj, &metadata);

		// If this is a metaobject then make necessary telemetry updates
		if (UAVObjIsMetaobject(ev->obj)) {
			updateObject(UAVObjGetLinkedObj(ev->obj));	// linked object will be the actual object the metadata are for
		}

		mavlink_message_t msg;

		mavlink_system.sysid = 20;
		mavlink_system.compid = MAV_COMP_ID_IMU;
		mavlink_system.type = MAV_TYPE_FIXED_WING;
		uint8_t mavClass = MAV_AUTOPILOT_OPENPILOT;

		AlarmsClear(SYSTEMALARMS_ALARM_TELEMETRY);

		// Setup type and object id fields
		uint32_t objId = UAVObjGetID(ev->obj);

		//		uint64_t timeStamp = 0;
		switch(objId) {
		case BAROALTITUDE_OBJID:
		{
			BaroAltitudeGet(&baroAltitude);
			pressure.press_abs = baroAltitude.Pressure*10.0f;
			pressure.temperature = baroAltitude.Temperature*100.0f;
			mavlink_msg_scaled_pressure_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &pressure);
			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);
			break;
		}
		case FLIGHTTELEMETRYSTATS_OBJID:
		{
			//				FlightTelemetryStatsData flightTelemetryStats;
			FlightTelemetryStatsGet(&flightStats);

			// XXX this is a hack to make it think it got a confirmed
			// connection
			flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_CONNECTED;
			GCSTelemetryStatsGet(&gcsTelemetryStatsData);
			gcsTelemetryStatsData.Status = GCSTELEMETRYSTATS_STATUS_CONNECTED;
			//
			//
			//				//mavlink_msg_heartbeat_send(MAVLINK_COMM_0,mavlink_system.type,mavClass);
			//				mavlink_msg_heartbeat_pack(mavlink_system.sysid, mavlink_system.compid, &msg, mavlink_system.type, mavClass);
			//				// Copy the message to the send buffer
			//				uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			//				// Send buffer
			//				PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);
			break;
		}
		case SYSTEMSTATS_OBJID:
		{
			FlightStatusData flightStatus;
			FlightStatusGet(&flightStatus);

			uint8_t system_state = MAV_STATE_UNINIT;
			uint8_t base_mode = 0;
			uint8_t custom_mode = 0;

			// Set flight mode
			switch (flightStatus.FlightMode)
			{
			case FLIGHTSTATUS_FLIGHTMODE_MANUAL:
				base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
				break;
			case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
				base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
				break;
			case FLIGHTSTATUS_FLIGHTMODE_STABILIZED1:
				base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
				break;
			case FLIGHTSTATUS_FLIGHTMODE_STABILIZED2:
				base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
				break;
			case FLIGHTSTATUS_FLIGHTMODE_STABILIZED3:
				base_mode |= MAV_MODE_FLAG_AUTO_ENABLED;
				break;
			case FLIGHTSTATUS_FLIGHTMODE_VELOCITYCONTROL:
				base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
				break;
			default:
				base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
				break;
			}

			// Set arming state
			switch (flightStatus.Armed)
			{
			case FLIGHTSTATUS_ARMED_ARMING:
			case FLIGHTSTATUS_ARMED_ARMED:
				system_state = MAV_STATE_ACTIVE;
				base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
				break;
			case FLIGHTSTATUS_ARMED_DISARMED:
				system_state = MAV_STATE_STANDBY;
				base_mode &= !MAV_MODE_FLAG_SAFETY_ARMED;
				break;
			}

			// Set HIL
			if (hilEnabled) base_mode |= MAV_MODE_FLAG_HIL_ENABLED;

			mavlink_msg_heartbeat_send(MAVLINK_COMM_0, mavlink_system.type, mavClass, base_mode, custom_mode, system_state);

			SystemStatsData stats;
			SystemStatsGet(&stats);
			FlightBatteryStateData flightBatteryData;
			FlightBatteryStateGet(&flightBatteryData);
			FlightBatterySettingsData flightBatterySettings;
			FlightBatterySettingsGet(&flightBatterySettings);

			uint16_t batteryVoltage = (uint16_t)(flightBatteryData.Voltage*1000.0f);
			int16_t batteryCurrent = -1; // -1: Not present / not estimated
			int8_t batteryPercent = -1; // -1: Not present / not estimated
			//			if (flightBatterySettings.SensorCalibrations[FLIGHTBATTERYSETTINGS_SENSORCALIBRATIONS_CURRENTFACTOR] == 0)
			//			{
			// Factor is zero, sensor is not present
			// Estimate remaining capacity based on lipo curve
			batteryPercent = 100.0f*((flightBatteryData.Voltage - 9.6f)/(12.6f - 9.6f));
			//			}
			//			else
			//			{
			//				// Use capacity and current
			//				batteryPercent = 100.0f*((flightBatterySettings.Capacity - flightBatteryData.ConsumedEnergy) / flightBatterySettings.Capacity);
			//				batteryCurrent = flightBatteryData.Current*100;
			//			}

				mavlink_msg_sys_status_send(MAVLINK_COMM_0, 0xFF, 0xFF, 0xFF, ((uint16_t)stats.CPULoad*10), batteryVoltage, batteryCurrent, batteryPercent, 0, 0, 0, 0, 0, 0);
//				// Copy the message to the send buffer
//				uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
//				// Send buffer
//				PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);
			break;
		}
		case ATTITUDERAW_OBJID:
		{
			AttitudeRawGet(&attitudeRaw);

			// Copy data
			attitude_raw.xacc = attitudeRaw.accels[ATTITUDERAW_ACCELS_X];
			attitude_raw.yacc = attitudeRaw.accels[ATTITUDERAW_ACCELS_Y];
			attitude_raw.zacc = attitudeRaw.accels[ATTITUDERAW_ACCELS_Z];
			attitude_raw.xgyro = attitudeRaw.gyros[ATTITUDERAW_GYROS_X];
			attitude_raw.ygyro = attitudeRaw.gyros[ATTITUDERAW_GYROS_Y];
			attitude_raw.zgyro = attitudeRaw.gyros[ATTITUDERAW_GYROS_Z];
			attitude_raw.xmag = attitudeRaw.magnetometers[ATTITUDERAW_MAGNETOMETERS_X];
			attitude_raw.ymag = attitudeRaw.magnetometers[ATTITUDERAW_MAGNETOMETERS_Y];
			attitude_raw.zmag = attitudeRaw.magnetometers[ATTITUDERAW_MAGNETOMETERS_Z];

			mavlink_msg_raw_imu_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &attitude_raw);
			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);

			if (hilEnabled)
			{
				mavlink_hil_controls_t controls;

				// Copy data
				controls.roll_ailerons = 0.1;
				controls.pitch_elevator = 0.1;
				controls.yaw_rudder = 0.0;
				controls.throttle = 0.8;

				mavlink_msg_hil_controls_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &controls);
				// Copy the message to the send buffer
				len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
				// Send buffer
				PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);
			}
			break;
		}
		case ATTITUDEMATRIX_OBJID:
		{
			AttitudeMatrixGet(&attitudeMatrix);

			// Copy data
			attitude.roll = attitudeMatrix.Roll;
			attitude.pitch = attitudeMatrix.Pitch;
			attitude.yaw = attitudeMatrix.Yaw;

			attitude.rollspeed = attitudeMatrix.AngularRates[0];
			attitude.pitchspeed = attitudeMatrix.AngularRates[1];
			attitude.yawspeed = attitudeMatrix.AngularRates[2];

			mavlink_msg_attitude_encode(mavlink_system.sysid,
					mavlink_system.compid, &msg, &attitude);
			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);
			break;
		}
		case GPSPOSITION_OBJID:
		{
			GPSPositionGet(&gpsPosition);
			gps_raw.time_usec = 0;
			gps_raw.lat = gpsPosition.Latitude*10;
			gps_raw.lon = gpsPosition.Longitude*10;
			gps_raw.alt = gpsPosition.Altitude*10;
			gps_raw.eph = gpsPosition.HDOP*100;
			gps_raw.epv = gpsPosition.VDOP*100;
			gps_raw.cog = gpsPosition.Heading*100;
			gps_raw.satellites_visible = gpsPosition.Satellites;
			gps_raw.fix_type = gpsPosition.Status;
			mavlink_msg_gps_raw_int_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &gps_raw);
			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);

			//			mavlink_msg_gps_raw_int_send(MAVLINK_COMM_0, gps_raw.usec, gps_raw.lat, gps_raw.lon, gps_raw.alt, gps_raw.eph, gps_raw.epv, gps_raw.hdg, gps_raw.satellites_visible, gps_raw.fix_type, 0);

			break;
		}
		case POSITIONACTUAL_OBJID:
		{
			PositionActualData pos;
			PositionActualGet(&pos);
			mavlink_local_position_ned_t m_pos;
			m_pos.time_boot_ms = 0;
			m_pos.x = pos.North;
			m_pos.y = pos.East;
			m_pos.z = pos.Down;
			m_pos.vx = 0.0f;
			m_pos.vy = 0.0f;
			m_pos.vz = 0.0f;

			mavlink_msg_local_position_ned_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &m_pos);

			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(telemetryPort, mavlinkTxBuf, len);
		}
		break;
		case ACTUATORCOMMAND_OBJID:
		{
			mavlink_rc_channels_scaled_t rc;
			float val;
			ManualControlCommandRollGet(&val);
			rc.chan1_scaled = val*1000;
			ManualControlCommandPitchGet(&val);
			rc.chan2_scaled = val*1000;
			ManualControlCommandYawGet(&val);
			rc.chan3_scaled = val*1000;
			ManualControlCommandThrottleGet(&val);
			rc.chan4_scaled = val*1000;

			ActuatorCommandData act;
			ActuatorCommandGet(&act);

			rc.chan5_scaled = act.Channel[0];
			rc.chan6_scaled = act.Channel[1];
			rc.chan7_scaled = act.Channel[2];
			rc.chan8_scaled = act.Channel[3];

			ManualControlCommandData cmd;
			ManualControlCommandGet(&cmd);

			rc.rssi = ((uint8_t)(cmd.Connected == MANUALCONTROLCOMMAND_CONNECTED_TRUE))*255;
			rc.port = 0;

			mavlink_msg_rc_channels_scaled_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &rc);


			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(PIOS_COM_TELEM_RF, mavlinkTxBuf, len);
			break;
		}
		case MANUALCONTROLCOMMAND_OBJID:
		{
			mavlink_rc_channels_scaled_t rc;
			float val;
			ManualControlCommandRollGet(&val);
			rc.chan1_scaled = val*1000;
			ManualControlCommandPitchGet(&val);
			rc.chan2_scaled = val*1000;
			ManualControlCommandYawGet(&val);
			rc.chan3_scaled = val*1000;
			ManualControlCommandThrottleGet(&val);
			rc.chan4_scaled = val*1000;

			rc.chan5_scaled = 0;
			rc.chan6_scaled = 0;
			rc.chan7_scaled = 0;
			rc.chan8_scaled = 0;

			ManualControlCommandData cmd;
			ManualControlCommandGet(&cmd);

			rc.rssi = ((uint8_t)(cmd.Connected == MANUALCONTROLCOMMAND_CONNECTED_TRUE))*255;
			rc.port = 0;

			mavlink_msg_rc_channels_scaled_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &rc);


			// Copy the message to the send buffer
			uint16_t len = mavlink_msg_to_send_buffer(mavlinkTxBuf, &msg);
			// Send buffer
			PIOS_COM_SendBufferNonBlocking(PIOS_COM_TELEM_RF, mavlinkTxBuf, len);
			break;
		}
		default:
		{
			//printf("unknown object: %x\n",(unsigned int)objId);
			break;
		}
		}
	}
}