UINT64
bid64_round_integral_exact (UINT64 x _RND_MODE_PARAM _EXC_FLAGS_PARAM
			    _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif

  UINT64 res = 0xbaddbaddbaddbaddull;
  UINT64 x_sign;
  int exp;			// unbiased exponent
  // Note: C1 represents the significand (UINT64)
  BID_UI64DOUBLE tmp1;
  int x_nr_bits;
  int q, ind, shift;
  UINT64 C1;
  // UINT64 res is C* at first - represents up to 16 decimal digits <= 54 bits
  UINT128 fstar = { {0x0ull, 0x0ull} };
  UINT128 P128;

  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative

  // check for NaNs and infinities
  if ((x & MASK_NAN) == MASK_NAN) {	// check for NaN
    if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
      x = x & 0xfe00000000000000ull;	// clear G6-G12 and the payload bits
    else
      x = x & 0xfe03ffffffffffffull;	// clear G6-G12
    if ((x & MASK_SNAN) == MASK_SNAN) {	// SNaN
      // set invalid flag
      *pfpsf |= INVALID_EXCEPTION;
      // return quiet (SNaN)
      res = x & 0xfdffffffffffffffull;
    } else {	// QNaN
      res = x;
    }
    BID_RETURN (res);
  } else if ((x & MASK_INF) == MASK_INF) {	// check for Infinity
    res = x_sign | 0x7800000000000000ull;
    BID_RETURN (res);
  }
  // unpack x
  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
    // if the steering bits are 11 (condition will be 0), then 
    // the exponent is G[0:w+1]
    exp = ((x & MASK_BINARY_EXPONENT2) >> 51) - 398;
    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
    if (C1 > 9999999999999999ull) {	// non-canonical
      C1 = 0;
    }
  } else {	// if ((x & MASK_STEERING_BITS) != MASK_STEERING_BITS)
Example #2
0
BID_UINT64
bid64_nextup (BID_UINT64 x _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
	      _EXC_INFO_PARAM) {
#endif

  BID_UINT64 res;
  BID_UINT64 x_sign;
  BID_UINT64 x_exp;
  BID_UI64DOUBLE tmp1;
  int x_nr_bits;
  int q1, ind;
  BID_UINT64 C1;			// C1 represents x_signif (BID_UINT64)

  // check for NaNs and infinities
  if ((x & MASK_NAN) == MASK_NAN) {	// check for NaN
    if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
      x = x & 0xfe00000000000000ull;	// clear G6-G12 and the payload bits
    else
      x = x & 0xfe03ffffffffffffull;	// clear G6-G12
    if ((x & MASK_SNAN) == MASK_SNAN) {	// SNaN
      // set invalid flag
      *pfpsf |= BID_INVALID_EXCEPTION;
      // return quiet (SNaN)
      res = x & 0xfdffffffffffffffull;
    } else {	// QNaN
      res = x;
    }
    BID_RETURN (res);
  } else if ((x & MASK_INF) == MASK_INF) {	// check for Infinity
    if (!(x & 0x8000000000000000ull)) {	// x is +inf
      res = 0x7800000000000000ull;
    } else {	// x is -inf
      res = 0xf7fb86f26fc0ffffull;	// -MAXFP = -999...99 * 10^emax
    }
    BID_RETURN (res);
  }
  // unpack the argument
  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
    x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
    if (C1 > 9999999999999999ull) {	// non-canonical
      x_exp = 0;
      C1 = 0;
    }
  } else {
Example #3
0
UINT64
bid64_from_uint32 (unsigned int x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
  UINT64 res;

  res = x | 0x31c0000000000000ull;	// (exp << 53)) = biased exp. is 0
  BID_RETURN (res);
}
Example #4
0
BID_UINT32
bid32_nextup (BID_UINT32 x 
    _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
  BID_UINT32 res;
  BID_UINT32 x_sign;
  BID_UINT32 x_exp;
  BID_UI32FLOAT tmp1;
  int x_nr_bits;
  int q1, ind;
  BID_UINT32 C1; // C1 represents x_signif (BID_UINT32)

  // check for NaNs and infinities
  if ((x & MASK_NAN32) == MASK_NAN32) { // check for NaN
    if ((x & 0x000fffff) > 999999)
      x = x & 0xfe000000; // clear G6-G10 and the payload bits
    else
      x = x & 0xfe0fffff; // clear G6-G10
    if ((x & MASK_SNAN32) == MASK_SNAN32) { // SNaN
      // set invalid flag
      *pfpsf |= BID_INVALID_EXCEPTION;
      // return quiet (SNaN)
      res = x & 0xfdffffff;
    } else {	// QNaN
      res = x;
    }
    BID_RETURN (res);
  } else if ((x & MASK_INF32) == MASK_INF32) { // check for Infinity
    if (!(x & 0x80000000)) { // x is +inf
      res = 0x78000000;
    } else { // x is -inf
      res = 0xf7f8967f;	// -MAXFP = -9999999 * 10^emax
    }
    BID_RETURN (res);
  }
  // unpack the argument
  x_sign = x & MASK_SIGN32; // 0 for positive, MASK_SIGN32 for negative
  // if steering bits are 11 (condition will be 0), then exponent is G[0:7]
  if ((x & MASK_STEERING_BITS32) == MASK_STEERING_BITS32) {
    x_exp = (x & MASK_BINARY_EXPONENT2_32) >> 21; // biased
    C1 = (x & MASK_BINARY_SIG2_32) | MASK_BINARY_OR2_32;
    if (C1 > 9999999) {	// non-canonical
      x_exp = 0;
      C1 = 0;
    }
  } else {
Example #5
0
UINT128
bid128_from_uint32 (unsigned int x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
  UINT128 res;

  res.w[HIGH_128W] = 0x3040000000000000ull;
  res.w[LOW_128W] = x;
  BID_RETURN (res);
}
Example #6
0
UINT128
bid128_from_int32 (int x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
  UINT128 res;

  // if integer is negative, use the absolute value
  if ((x & SIGNMASK32) == SIGNMASK32) {
    res.w[HIGH_128W] = 0xb040000000000000ull;
    res.w[LOW_128W] = ~((unsigned int) x) + 1;	// 2's complement of x
  } else {
    res.w[HIGH_128W] = 0x3040000000000000ull;
    res.w[LOW_128W] = (unsigned int) x;
  }
  BID_RETURN (res);
}
Example #7
0
BID_UINT64
bid64_logb (BID_UINT64 x _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
  int ires, exponent_x;
  BID_UINT64 sign_x, coefficient_x;
  BID_UINT64 valid_x, res;

  valid_x = unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x);

  if (!valid_x) {
    // test if x is NaN/Inf
if ((x & 0x7800000000000000ull) == 0x7800000000000000ull) {
#ifdef BID_SET_STATUS_FLAGS
  if ((x & 0x7e00000000000000ull) == 0x7e00000000000000ull)	// sNaN
    __set_status_flags (pfpsf, BID_INVALID_EXCEPTION);
#endif
	res = (coefficient_x) & QUIET_MASK64;
if ((x & 0x7c00000000000000ull) == 0x7800000000000000ull) 
    res &= 0x7fffffffffffffffull;
	BID_RETURN (res);
}
  // x is 0
#ifdef BID_SET_STATUS_FLAGS
    __set_status_flags (pfpsf, BID_ZERO_DIVIDE_EXCEPTION);
#endif
	res = 0xf800000000000000ull;
	BID_RETURN (res);
}

  BIDECIMAL_CALL1_NORND (bid64_ilogb, ires, x);
  if (ires & 0x80000000)
    res = 0xb1c0000000000000ull | (BID_UINT64)(-ires); 
  else
    res = 0x31c0000000000000ull | (BID_UINT64)ires; 
  BID_RETURN (res);
}
Example #8
0
UINT128
bid128_from_int64 (SINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif

  UINT128 res;

  // if integer is negative, use the absolute value
  if ((x & SIGNMASK64) == SIGNMASK64) {
    res.w[HIGH_128W] = 0xb040000000000000ull;
    res.w[LOW_128W] = ~x + 1;	// 2's complement of x
  } else {
    res.w[HIGH_128W] = 0x3040000000000000ull;
    res.w[LOW_128W] = x;
  }
  BID_RETURN (res);
}
Example #9
0
UINT64
bid64_from_int32 (int x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
  UINT64 res;

  // if integer is negative, put the absolute value
  // in the lowest 32bits of the result
  if ((x & SIGNMASK32) == SIGNMASK32) {
    // negative int32
    x = ~x + 1;	// 2's complement of x
    res = (unsigned int) x | 0xb1c0000000000000ull;
    // (exp << 53)) = biased exp. is 0
  } else {	// positive int32
    res = x | 0x31c0000000000000ull;	// (exp << 53)) = biased exp. is 0
  }
  BID_RETURN (res);
}
Example #10
0
long long int
bid128_llrint (BID_UINT128 x _RND_MODE_PARAM _EXC_FLAGS_PARAM
    _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
  long long int res; // assume sizeof (long long) = 8

  if (rnd_mode == BID_ROUNDING_TO_NEAREST)
    BIDECIMAL_CALL1_NORND (bid128_to_int64_xrnint, res, x);
  else if (rnd_mode == BID_ROUNDING_TIES_AWAY)
    BIDECIMAL_CALL1_NORND (bid128_to_int64_xrninta, res, x);
  else if (rnd_mode == BID_ROUNDING_DOWN)
    BIDECIMAL_CALL1_NORND (bid128_to_int64_xfloor, res, x);
  else if (rnd_mode == BID_ROUNDING_UP)
    BIDECIMAL_CALL1_NORND (bid128_to_int64_xceil, res, x);
  else // if (rnd_mode == BID_ROUNDING_TO_ZERO)
    BIDECIMAL_CALL1_NORND (bid128_to_int64_xint, res, x);
  BID_RETURN (res);
}
Example #11
0
BID_UINT32
bid32_sub (BID_UINT32 x,
	   BID_UINT32 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
	   _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif

	BID_UINT32 r32;
#if DECIMAL_CALL_BY_REFERENCE
#if !DECIMAL_GLOBAL_ROUNDING
  _IDEC_round rnd_mode = *prnd_mode;
#endif
  x = *px;
  y = *py;
#endif

  if (((y & NAN_MASK32) != NAN_MASK32))
    y ^= 0x80000000;

	BIDECIMAL_CALL2 (bid32_add, r32, x, y);


	BID_RETURN(r32);
}
Example #12
0
UINT64
bid64_from_int64 (SINT64 x
		  _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
		  _EXC_INFO_PARAM) {
#endif

  UINT64 res;
  UINT64 x_sign, C;
  unsigned int q, ind;
  int incr_exp = 0;
  int is_midpoint_lt_even = 0, is_midpoint_gt_even = 0;
  int is_inexact_lt_midpoint = 0, is_inexact_gt_midpoint = 0;

  x_sign = x & 0x8000000000000000ull;
  // if the integer is negative, use the absolute value
  if (x_sign)
    C = ~((UINT64) x) + 1;
  else
    C = x;
  if (C <= BID64_SIG_MAX) {	// |C| <= 10^16-1 and the result is exact
    if (C < 0x0020000000000000ull) {	// C < 2^53
      res = x_sign | 0x31c0000000000000ull | C;
    } else {	// C >= 2^53
      res =
	x_sign | 0x6c70000000000000ull | (C & 0x0007ffffffffffffull);
    }
  } else {	// |C| >= 10^16 and the result may be inexact 
    // the smallest |C| is 10^16 which has 17 decimal digits
    // the largest |C| is 0x8000000000000000 = 9223372036854775808 w/ 19 digits
    if (C < 0x16345785d8a0000ull) {	// x < 10^17 
      q = 17;
      ind = 1;	// number of digits to remove for q = 17
    } else if (C < 0xde0b6b3a7640000ull) {	// C < 10^18
      q = 18;
      ind = 2;	// number of digits to remove for q = 18 
    } else {	// C < 10^19
      q = 19;
      ind = 3;	// number of digits to remove for q = 19
    }
    // overflow and underflow are not possible
    // Note: performace can be improved by inlining this call
    round64_2_18 (	// will work for 19 digits too if C fits in 64 bits
		   q, ind, C, &res, &incr_exp,
		   &is_midpoint_lt_even, &is_midpoint_gt_even,
		   &is_inexact_lt_midpoint, &is_inexact_gt_midpoint);
    if (incr_exp)
      ind++;
    // set the inexact flag
    if (is_inexact_lt_midpoint || is_inexact_gt_midpoint ||
	is_midpoint_lt_even || is_midpoint_gt_even)
      *pfpsf |= INEXACT_EXCEPTION;
    // general correction from RN to RA, RM, RP, RZ; result uses ind for exp
    if (rnd_mode != ROUNDING_TO_NEAREST) {
      if ((!x_sign
	   && ((rnd_mode == ROUNDING_UP && is_inexact_lt_midpoint)
	       ||
	       ((rnd_mode == ROUNDING_TIES_AWAY
		 || rnd_mode == ROUNDING_UP) && is_midpoint_gt_even)))
	  || (x_sign
	      && ((rnd_mode == ROUNDING_DOWN && is_inexact_lt_midpoint)
		  ||
		  ((rnd_mode == ROUNDING_TIES_AWAY
		    || rnd_mode == ROUNDING_DOWN)
		   && is_midpoint_gt_even)))) {
	res = res + 1;
	if (res == 0x002386f26fc10000ull) {	// res = 10^16 => rounding overflow
	  res = 0x00038d7ea4c68000ull;	// 10^15
	  ind = ind + 1;
	}
      } else if ((is_midpoint_lt_even || is_inexact_gt_midpoint) &&
		 ((x_sign && (rnd_mode == ROUNDING_UP ||
			      rnd_mode == ROUNDING_TO_ZERO)) ||
		  (!x_sign && (rnd_mode == ROUNDING_DOWN ||
			       rnd_mode == ROUNDING_TO_ZERO)))) {
	res = res - 1;
	// check if we crossed into the lower decade
	if (res == 0x00038d7ea4c67fffull) {	// 10^15 - 1
	  res = 0x002386f26fc0ffffull;	// 10^16 - 1
	  ind = ind - 1;
	}
      } else {
	;	// exact, the result is already correct
      }
    }
    if (res < 0x0020000000000000ull) {	// res < 2^53
      res = x_sign | (((UINT64) ind + 398) << 53) | res;
    } else {	// res >= 2^53 
      res =
	x_sign | 0x6000000000000000ull | (((UINT64) ind + 398) << 51) |
	(res & 0x0007ffffffffffffull);
    }
  }
  BID_RETURN (res);
}
Example #13
0
UINT64
bid64_from_uint64 (UINT64 x
		   _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
		   _EXC_INFO_PARAM) {
#endif

  UINT64 res;
  UINT128 x128, res128;
  unsigned int q, ind;
  int incr_exp = 0;
  int is_midpoint_lt_even = 0, is_midpoint_gt_even = 0;
  int is_inexact_lt_midpoint = 0, is_inexact_gt_midpoint = 0;

  if (x <= BID64_SIG_MAX) {	// x <= 10^16-1 and the result is exact
    if (x < 0x0020000000000000ull) {	// x < 2^53
      res = 0x31c0000000000000ull | x;
    } else {	// x >= 2^53
      res = 0x6c70000000000000ull | (x & 0x0007ffffffffffffull);
    }
  } else {	// x >= 10^16 and the result may be inexact 
    // the smallest x is 10^16 which has 17 decimal digits
    // the largest x is 0xffffffffffffffff = 18446744073709551615 w/ 20 digits
    if (x < 0x16345785d8a0000ull) {	// x < 10^17 
      q = 17;
      ind = 1;	// number of digits to remove for q = 17
    } else if (x < 0xde0b6b3a7640000ull) {	// x < 10^18
      q = 18;
      ind = 2;	// number of digits to remove for q = 18 
    } else if (x < 0x8ac7230489e80000ull) {	// x < 10^19
      q = 19;
      ind = 3;	// number of digits to remove for q = 19
    } else {	// x < 10^20
      q = 20;
      ind = 4;	// number of digits to remove for q = 20
    }
    // overflow and underflow are not possible
    // Note: performace can be improved by inlining this call
    if (q <= 19) {
      round64_2_18 (	// will work for 20 digits too if x fits in 64 bits
		     q, ind, x, &res, &incr_exp,
		     &is_midpoint_lt_even, &is_midpoint_gt_even,
		     &is_inexact_lt_midpoint, &is_inexact_gt_midpoint);
    } else {	// q = 20
      x128.w[1] = 0x0;
      x128.w[0] = x;
      round128_19_38 (q, ind, x128, &res128, &incr_exp,
		      &is_midpoint_lt_even, &is_midpoint_gt_even,
		      &is_inexact_lt_midpoint, &is_inexact_gt_midpoint);
      res = res128.w[0];	// res.w[1] is 0
    }
    if (incr_exp)
      ind++;
    // set the inexact flag
    if (is_inexact_lt_midpoint || is_inexact_gt_midpoint ||
	is_midpoint_lt_even || is_midpoint_gt_even)
      *pfpsf |= INEXACT_EXCEPTION;
    // general correction from RN to RA, RM, RP, RZ; result uses ind for exp
    if (rnd_mode != ROUNDING_TO_NEAREST) {
      if ((rnd_mode == ROUNDING_UP && is_inexact_lt_midpoint) ||
	  ((rnd_mode == ROUNDING_TIES_AWAY || rnd_mode == ROUNDING_UP)
	   && is_midpoint_gt_even)) {
	res = res + 1;
	if (res == 0x002386f26fc10000ull) {	// res = 10^16 => rounding overflow
	  res = 0x00038d7ea4c68000ull;	// 10^15
	  ind = ind + 1;
	}
      } else if ((is_midpoint_lt_even || is_inexact_gt_midpoint) &&
		 (rnd_mode == ROUNDING_DOWN ||
		  rnd_mode == ROUNDING_TO_ZERO)) {
	res = res - 1;
	// check if we crossed into the lower decade
	if (res == 0x00038d7ea4c67fffull) {	// 10^15 - 1
	  res = 0x002386f26fc0ffffull;	// 10^16 - 1
	  ind = ind - 1;
	}
      } else {
	;	// exact, the result is already correct
      }
    }
    if (res < 0x0020000000000000ull) {	// res < 2^53
      res = (((UINT64) ind + 398) << 53) | res;
    } else {	// res >= 2^53 
      res = 0x6000000000000000ull | (((UINT64) ind + 398) << 51) |
	(res & 0x0007ffffffffffffull);
    }
  }
  BID_RETURN (res);
}
Example #14
0
UINT64
bid64_scalb (UINT64 x,
	     int n _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
	     _EXC_INFO_PARAM) {
#endif
  UINT64 sign_x, coefficient_x, res;
  SINT64 exp64;
  int exponent_x, rmode;

#if DECIMAL_CALL_BY_REFERENCE
#if !DECIMAL_GLOBAL_ROUNDING
  _IDEC_round rnd_mode = *prnd_mode;
#endif
  x = *px;
  n = *pn;
#endif

  // unpack arguments, check for NaN or Infinity
  if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
    // x is Inf. or NaN or 0
#ifdef SET_STATUS_FLAGS
    if ((x & SNAN_MASK64) == SNAN_MASK64)	// y is sNaN
      __set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
    if (coefficient_x)
      res = coefficient_x & QUIET_MASK64;
	else {
       exp64 = (SINT64) exponent_x + (SINT64) n;
	   if(exp64<0) exp64=0;
	   if(exp64>MAX_DECIMAL_EXPONENT) exp64=MAX_DECIMAL_EXPONENT;
       exponent_x = exp64;
      res = very_fast_get_BID64 (sign_x, exponent_x, coefficient_x);	// 0
	}
    BID_RETURN (res);
  }

  exp64 = (SINT64) exponent_x + (SINT64) n;
  exponent_x = exp64;

  if ((UINT32) exponent_x <= MAX_DECIMAL_EXPONENT) {
    res = very_fast_get_BID64 (sign_x, exponent_x, coefficient_x);
    BID_RETURN (res);
  }
  // check for overflow
  if (exp64 > MAX_DECIMAL_EXPONENT) {
    // try to normalize coefficient
    while ((coefficient_x < 1000000000000000ull)
	   && (exp64 > MAX_DECIMAL_EXPONENT)) {
      // coefficient_x < 10^15, scale by 10
      coefficient_x = (coefficient_x << 1) + (coefficient_x << 3);
      exponent_x--;
      exp64--;
    }
    if (exp64 <= MAX_DECIMAL_EXPONENT) {
      res = very_fast_get_BID64 (sign_x, exponent_x, coefficient_x);
      BID_RETURN (res);
    } else
      exponent_x = 0x7fffffff;	// overflow
  }
  // exponent < 0
  // the BID pack routine will round the coefficient
  rmode = rnd_mode;
  res = get_BID64 (sign_x, exponent_x, coefficient_x, rmode, pfpsf);
  BID_RETURN (res);

}
Example #15
0
UINT64
bid64_minnum (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) {
#endif

    UINT64 res;
    int exp_x, exp_y;
    UINT64 sig_x, sig_y;
    UINT128 sig_n_prime;
    char x_is_zero = 0, y_is_zero = 0;

    // check for non-canonical x
    if ((x & MASK_NAN) == MASK_NAN) {	// x is NaN
        x = x & 0xfe03ffffffffffffull;	// clear G6-G12
        if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
            x = x & 0xfe00000000000000ull;	// clear G6-G12 and the payload bits
        }
    } else if ((x & MASK_INF) == MASK_INF) {	// check for Infinity
        x = x & (MASK_SIGN | MASK_INF);
    } else {	// x is not special
        // check for non-canonical values - treated as zero
        if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
            // if the steering bits are 11, then the exponent is G[0:w+1]
            if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
                    9999999999999999ull) {
                // non-canonical
                x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
            }	// else canonical
        }	// else canonical
    }

    // check for non-canonical y
    if ((y & MASK_NAN) == MASK_NAN) {	// y is NaN
        y = y & 0xfe03ffffffffffffull;	// clear G6-G12
        if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
            y = y & 0xfe00000000000000ull;	// clear G6-G12 and the payload bits
        }
    } else if ((y & MASK_INF) == MASK_INF) {	// check for Infinity
        y = y & (MASK_SIGN | MASK_INF);
    } else {	// y is not special
        // check for non-canonical values - treated as zero
        if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
            // if the steering bits are 11, then the exponent is G[0:w+1]
            if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
                    9999999999999999ull) {
                // non-canonical
                y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2);
            }	// else canonical
        }	// else canonical
    }

    // NaN (CASE1)
    if ((x & MASK_NAN) == MASK_NAN) {	// x is NAN
        if ((x & MASK_SNAN) == MASK_SNAN) {	// x is SNaN
            // if x is SNAN, then return quiet (x)
            *pfpsf |= INVALID_EXCEPTION;	// set exception if SNaN
            x = x & 0xfdffffffffffffffull;	// quietize x
            res = x;
        } else {	// x is QNaN
            if ((y & MASK_NAN) == MASK_NAN) {	// y is NAN
                if ((y & MASK_SNAN) == MASK_SNAN) {	// y is SNAN
                    *pfpsf |= INVALID_EXCEPTION;	// set invalid flag
                }
                res = x;
            } else {
                res = y;
            }
        }
        BID_RETURN (res);
    } else if ((y & MASK_NAN) == MASK_NAN) {	// y is NaN, but x is not
        if ((y & MASK_SNAN) == MASK_SNAN) {
            *pfpsf |= INVALID_EXCEPTION;	// set exception if SNaN
            y = y & 0xfdffffffffffffffull;	// quietize y
            res = y;
        } else {
            // will return x (which is not NaN)
            res = x;
        }
        BID_RETURN (res);
    }
    // SIMPLE (CASE2)
    // if all the bits are the same, these numbers are equal, return either number
    if (x == y) {
        res = x;
        BID_RETURN (res);
    }
    // INFINITY (CASE3)
    if ((x & MASK_INF) == MASK_INF) {
        // if x is neg infinity, there is no way it is greater than y, return x
        if (((x & MASK_SIGN) == MASK_SIGN)) {
            res = x;
            BID_RETURN (res);
        }
        // x is pos infinity, return y
        else {
            res = y;
            BID_RETURN (res);
        }
    } else if ((y & MASK_INF) == MASK_INF) {
        // x is finite, so if y is positive infinity, then x is less, return y
        //                 if y is negative infinity, then x is greater, return x
        res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
        BID_RETURN (res);
    }
    // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
    if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
        exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
        sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
    } else {