Example #1
0
BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe,
	const BIGNUM *add, const BIGNUM *rem,
	void (*callback)(int,int,void *), void *cb_arg)
	{
	BIGNUM *rnd=NULL;
	BIGNUM t;
	int found=0;
	int i,j,c1=0;
	BN_CTX *ctx;
	int checks = BN_prime_checks_for_size(bits);

	ctx=BN_CTX_new();
	if (ctx == NULL) goto err;
	if (ret == NULL)
		{
		if ((rnd=BN_new()) == NULL) goto err;
		}
	else
		rnd=ret;
	BN_init(&t);
loop: 
	/* make a random number and set the top and bottom bits */
	if (add == NULL)
		{
		if (!probable_prime(rnd,bits)) goto err;
		}
	else
		{
		if (safe)
			{
			if (!probable_prime_dh_safe(rnd,bits,add,rem,ctx))
				 goto err;
			}
		else
			{
			if (!probable_prime_dh(rnd,bits,add,rem,ctx))
				goto err;
			}
		}
	/* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */
	if (callback != NULL) callback(0,c1++,cb_arg);

	if (!safe)
		{
		i=BN_is_prime_fasttest(rnd,checks,callback,ctx,cb_arg,0);
		if (i == -1) goto err;
		if (i == 0) goto loop;
		}
	else
		{
		/* for "safe prime" generation,
		 * check that (p-1)/2 is prime.
		 * Since a prime is odd, We just
		 * need to divide by 2 */
		if (!BN_rshift1(&t,rnd)) goto err;

		for (i=0; i<checks; i++)
			{
			j=BN_is_prime_fasttest(rnd,1,callback,ctx,cb_arg,0);
			if (j == -1) goto err;
			if (j == 0) goto loop;

			j=BN_is_prime_fasttest(&t,1,callback,ctx,cb_arg,0);
			if (j == -1) goto err;
			if (j == 0) goto loop;

			if (callback != NULL) callback(2,c1-1,cb_arg);
			/* We have a safe prime test pass */
			}
		}
	/* we have a prime :-) */
	found = 1;
err:
	if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd);
	BN_free(&t);
	if (ctx != NULL) BN_CTX_free(ctx);
	return(found ? rnd : NULL);
	}
Example #2
0
int BN_is_prime_fasttest(const BIGNUM *a, int checks,
		void (*callback)(int,int,void *),
		BN_CTX *ctx_passed, void *cb_arg,
		int do_trial_division)
	{
	int i, j, ret = -1;
	int k;
	BN_CTX *ctx = NULL;
	BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
	BN_MONT_CTX *mont = NULL;
	const BIGNUM *A = NULL;

	if (BN_cmp(a, BN_value_one()) <= 0)
		return 0;
	
	if (checks == BN_prime_checks)
		checks = BN_prime_checks_for_size(BN_num_bits(a));

	/* first look for small factors */
	if (!BN_is_odd(a))
		return 0;
	if (do_trial_division)
		{
		for (i = 1; i < NUMPRIMES; i++)
			if (BN_mod_word(a, primes[i]) == 0) 
				return 0;
		if (callback != NULL) callback(1, -1, cb_arg);
		}

	if (ctx_passed != NULL)
		ctx = ctx_passed;
	else
		if ((ctx=BN_CTX_new()) == NULL)
			goto err;
	BN_CTX_start(ctx);

	/* A := abs(a) */
	if (a->neg)
		{
		BIGNUM *t;
		if ((t = BN_CTX_get(ctx)) == NULL) goto err;
		BN_copy(t, a);
		t->neg = 0;
		A = t;
		}
	else
		A = a;
	A1 = BN_CTX_get(ctx);
	A1_odd = BN_CTX_get(ctx);
	check = BN_CTX_get(ctx);
	if (check == NULL) goto err;

	/* compute A1 := A - 1 */
	if (!BN_copy(A1, A))
		goto err;
	if (!BN_sub_word(A1, 1))
		goto err;
	if (BN_is_zero(A1))
		{
		ret = 0;
		goto err;
		}

	/* write  A1  as  A1_odd * 2^k */
	k = 1;
	while (!BN_is_bit_set(A1, k))
		k++;
	if (!BN_rshift(A1_odd, A1, k))
		goto err;

	/* Montgomery setup for computations mod A */
	mont = BN_MONT_CTX_new();
	if (mont == NULL)
		goto err;
	if (!BN_MONT_CTX_set(mont, A, ctx))
		goto err;
	
	for (i = 0; i < checks; i++)
		{
		if (!BN_pseudo_rand_range(check, A1))
			goto err;
		if (!BN_add_word(check, 1))
			goto err;
		/* now 1 <= check < A */

		j = witness(check, A, A1, A1_odd, k, ctx, mont);
		if (j == -1) goto err;
		if (j)
			{
			ret=0;
			goto err;
			}
		if (callback != NULL) callback(1,i,cb_arg);
		}
	ret=1;
err:
	if (ctx != NULL)
		{
		BN_CTX_end(ctx);
		if (ctx_passed == NULL)
			BN_CTX_free(ctx);
		}
	if (mont != NULL)
		BN_MONT_CTX_free(mont);

	return(ret);
	}
Example #3
0
int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
	const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
	{
	BIGNUM *t;
	int found=0;
	int i,j,c1=0;
	BN_CTX *ctx;
	int checks = BN_prime_checks_for_size(bits);

	if (bits < 2)
		{
		/* There are no prime numbers this small. */
		BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
		return 0;
		}
	else if (bits == 2 && safe)
		{
		/* The smallest safe prime (7) is three bits. */
		BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
		return 0;
		}

	ctx=BN_CTX_new();
	if (ctx == NULL) goto err;
	BN_CTX_start(ctx);
	t = BN_CTX_get(ctx);
	if(!t) goto err;
loop: 
	/* make a random number and set the top and bottom bits */
	if (add == NULL)
		{
		if (!probable_prime(ret,bits)) goto err;
		}
	else
		{
		if (safe)
			{
			if (!probable_prime_dh_safe(ret,bits,add,rem,ctx))
				 goto err;
			}
		else
			{
			if (!bn_probable_prime_dh(ret,bits,add,rem,ctx))
				goto err;
			}
		}
	/* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */
	if(!BN_GENCB_call(cb, 0, c1++))
		/* aborted */
		goto err;

	if (!safe)
		{
		i=BN_is_prime_fasttest_ex(ret,checks,ctx,0,cb);
		if (i == -1) goto err;
		if (i == 0) goto loop;
		}
	else
		{
		/* for "safe prime" generation,
		 * check that (p-1)/2 is prime.
		 * Since a prime is odd, We just
		 * need to divide by 2 */
		if (!BN_rshift1(t,ret)) goto err;

		for (i=0; i<checks; i++)
			{
			j=BN_is_prime_fasttest_ex(ret,1,ctx,0,cb);
			if (j == -1) goto err;
			if (j == 0) goto loop;

			j=BN_is_prime_fasttest_ex(t,1,ctx,0,cb);
			if (j == -1) goto err;
			if (j == 0) goto loop;

			if(!BN_GENCB_call(cb, 2, c1-1))
				goto err;
			/* We have a safe prime test pass */
			}
		}
	/* we have a prime :-) */
	found = 1;
err:
	if (ctx != NULL)
		{
		BN_CTX_end(ctx);
		BN_CTX_free(ctx);
		}
	bn_check_top(ret);
	return found;
	}
Example #4
0
int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
                            int do_trial_division, BN_GENCB *cb)
{
    int i, j, ret = -1;
    int k;
    BN_CTX *ctx = NULL;
    BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
    BN_MONT_CTX *mont = NULL;

    if (BN_cmp(a, BN_value_one()) <= 0)
        return 0;

    if (checks == BN_prime_checks)
        checks = BN_prime_checks_for_size(BN_num_bits(a));

    /* first look for small factors */
    if (!BN_is_odd(a))
        /* a is even => a is prime if and only if a == 2 */
        return BN_is_word(a, 2);
    if (do_trial_division) {
        for (i = 1; i < NUMPRIMES; i++) {
            BN_ULONG mod = BN_mod_word(a, primes[i]);
            if (mod == (BN_ULONG)-1)
                goto err;
            if (mod == 0)
                return BN_is_word(a, primes[i]);
        }
        if (!BN_GENCB_call(cb, 1, -1))
            goto err;
    }

    if (ctx_passed != NULL)
        ctx = ctx_passed;
    else if ((ctx = BN_CTX_new()) == NULL)
        goto err;
    BN_CTX_start(ctx);

    A1 = BN_CTX_get(ctx);
    A1_odd = BN_CTX_get(ctx);
    check = BN_CTX_get(ctx);
    if (check == NULL)
        goto err;

    /* compute A1 := a - 1 */
    if (!BN_copy(A1, a))
        goto err;
    if (!BN_sub_word(A1, 1))
        goto err;
    if (BN_is_zero(A1)) {
        ret = 0;
        goto err;
    }

    /* write  A1  as  A1_odd * 2^k */
    k = 1;
    while (!BN_is_bit_set(A1, k))
        k++;
    if (!BN_rshift(A1_odd, A1, k))
        goto err;

    /* Montgomery setup for computations mod a */
    mont = BN_MONT_CTX_new();
    if (mont == NULL)
        goto err;
    if (!BN_MONT_CTX_set(mont, a, ctx))
        goto err;

    for (i = 0; i < checks; i++) {
        if (!BN_priv_rand_range(check, A1))
            goto err;
        if (!BN_add_word(check, 1))
            goto err;
        /* now 1 <= check < a */

        j = witness(check, a, A1, A1_odd, k, ctx, mont);
        if (j == -1)
            goto err;
        if (j) {
            ret = 0;
            goto err;
        }
        if (!BN_GENCB_call(cb, 1, i))
            goto err;
    }
    ret = 1;
 err:
    if (ctx != NULL) {
        BN_CTX_end(ctx);
        if (ctx_passed == NULL)
            BN_CTX_free(ctx);
    }
    BN_MONT_CTX_free(mont);

    return ret;
}
Example #5
0
int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
                         const BIGNUM *rem, BN_GENCB *cb) {
  BIGNUM *t;
  int found = 0;
  int i, j, c1 = 0;
  BN_CTX *ctx;
  int checks = BN_prime_checks_for_size(bits);

  if (bits < 2) {
    /* There are no prime numbers this small. */
    OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL);
    return 0;
  } else if (bits == 2 && safe) {
    /* The smallest safe prime (7) is three bits. */
    OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL);
    return 0;
  }

  ctx = BN_CTX_new();
  if (ctx == NULL) {
    goto err;
  }
  BN_CTX_start(ctx);
  t = BN_CTX_get(ctx);
  if (!t) {
    goto err;
  }

loop:
  /* make a random number and set the top and bottom bits */
  if (add == NULL) {
    if (!probable_prime(ret, bits)) {
      goto err;
    }
  } else {
    if (safe) {
      if (!probable_prime_dh_safe(ret, bits, add, rem, ctx)) {
        goto err;
      }
    } else {
      if (!probable_prime_dh(ret, bits, add, rem, ctx)) {
        goto err;
      }
    }
  }

  if (!BN_GENCB_call(cb, BN_GENCB_GENERATED, c1++)) {
    /* aborted */
    goto err;
  }

  if (!safe) {
    i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
    if (i == -1) {
      goto err;
    } else if (i == 0) {
      goto loop;
    }
  } else {
    /* for "safe prime" generation, check that (p-1)/2 is prime. Since a prime
     * is odd, We just need to divide by 2 */
    if (!BN_rshift1(t, ret)) {
      goto err;
    }

    for (i = 0; i < checks; i++) {
      j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, NULL);
      if (j == -1) {
        goto err;
      } else if (j == 0) {
        goto loop;
      }

      j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, NULL);
      if (j == -1) {
        goto err;
      } else if (j == 0) {
        goto loop;
      }

      if (!BN_GENCB_call(cb, i, c1 - 1)) {
        goto err;
      }
      /* We have a safe prime test pass */
    }
  }

  /* we have a prime :-) */
  found = 1;

err:
  if (ctx != NULL) {
    BN_CTX_end(ctx);
    BN_CTX_free(ctx);
  }

  return found;
}
Example #6
0
int BN_enhanced_miller_rabin_primality_test(
    enum bn_primality_result_t *out_result, const BIGNUM *w, int iterations,
    BN_CTX *ctx, BN_GENCB *cb) {
  /* Enhanced Miller-Rabin is only valid on odd integers greater than 3. */
  if (!BN_is_odd(w) || BN_cmp_word(w, 3) <= 0) {
    OPENSSL_PUT_ERROR(BN, BN_R_INVALID_INPUT);
    return 0;
  }

  if (iterations == BN_prime_checks) {
    iterations = BN_prime_checks_for_size(BN_num_bits(w));
  }

  int ret = 0;
  BN_MONT_CTX *mont = NULL;

  BN_CTX_start(ctx);

  BIGNUM *w1 = BN_CTX_get(ctx);
  if (w1 == NULL ||
      !BN_copy(w1, w) ||
      !BN_sub_word(w1, 1)) {
    goto err;
  }

  /* Write w1 as m*2^a (Steps 1 and 2). */
  int a = 0;
  while (!BN_is_bit_set(w1, a)) {
    a++;
  }
  BIGNUM *m = BN_CTX_get(ctx);
  if (m == NULL ||
      !BN_rshift(m, w1, a)) {
    goto err;
  }

  BIGNUM *b = BN_CTX_get(ctx);
  BIGNUM *g = BN_CTX_get(ctx);
  BIGNUM *z = BN_CTX_get(ctx);
  BIGNUM *x = BN_CTX_get(ctx);
  BIGNUM *x1 = BN_CTX_get(ctx);
  if (b == NULL ||
      g == NULL ||
      z == NULL ||
      x == NULL ||
      x1 == NULL) {
    goto err;
  }

  /* Montgomery setup for computations mod A */
  mont = BN_MONT_CTX_new();
  if (mont == NULL ||
      !BN_MONT_CTX_set(mont, w, ctx)) {
    goto err;
  }

  /* The following loop performs in inner iteration of the Enhanced Miller-Rabin
   * Primality test (Step 4). */
  for (int i = 1; i <= iterations; i++) {
    /* Step 4.1-4.2 */
    if (!BN_rand_range_ex(b, 2, w1)) {
      goto err;
    }

    /* Step 4.3-4.4 */
    if (!BN_gcd(g, b, w, ctx)) {
      goto err;
    }
    if (BN_cmp_word(g, 1) > 0) {
      *out_result = bn_composite;
      ret = 1;
      goto err;
    }

    /* Step 4.5 */
    if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) {
      goto err;
    }

    /* Step 4.6 */
    if (BN_is_one(z) || BN_cmp(z, w1) == 0) {
      goto loop;
    }

    /* Step 4.7 */
    for (int j = 1; j < a; j++) {
      if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
        goto err;
      }
      if (BN_cmp(z, w1) == 0) {
        goto loop;
      }
      if (BN_is_one(z)) {
        goto composite;
      }
    }

    /* Step 4.8-4.9 */
    if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
      goto err;
    }

    /* Step 4.10-4.11 */
    if (!BN_is_one(z) && !BN_copy(x, z)) {
      goto err;
    }

 composite:
    /* Step 4.12-4.14 */
    if (!BN_copy(x1, x) ||
        !BN_sub_word(x1, 1) ||
        !BN_gcd(g, x1, w, ctx)) {
      goto err;
    }
    if (BN_cmp_word(g, 1) > 0) {
      *out_result = bn_composite;
    } else {
      *out_result = bn_non_prime_power_composite;
    }

    ret = 1;
    goto err;

 loop:
    /* Step 4.15 */
    if (!BN_GENCB_call(cb, 1, i)) {
      goto err;
    }
  }

  *out_result = bn_probably_prime;
  ret = 1;

err:
  BN_MONT_CTX_free(mont);
  BN_CTX_end(ctx);

  return ret;
}
Example #7
0
/*
 * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test.
 * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero).
 * The Step numbers listed in the code refer to the enhanced case.
 *
 * if enhanced is set, then status returns one of the following:
 *     BN_PRIMETEST_PROBABLY_PRIME
 *     BN_PRIMETEST_COMPOSITE_WITH_FACTOR
 *     BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME
 * if enhanced is zero, then status returns either
 *     BN_PRIMETEST_PROBABLY_PRIME or
 *     BN_PRIMETEST_COMPOSITE
 *
 * returns 0 if there was an error, otherwise it returns 1.
 */
int bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
                             BN_GENCB *cb, int enhanced, int *status)
{
    int i, j, a, ret = 0;
    BIGNUM *g, *w1, *w3, *x, *m, *z, *b;
    BN_MONT_CTX *mont = NULL;

    /* w must be odd */
    if (!BN_is_odd(w))
        return 0;

    BN_CTX_start(ctx);
    g = BN_CTX_get(ctx);
    w1 = BN_CTX_get(ctx);
    w3 = BN_CTX_get(ctx);
    x = BN_CTX_get(ctx);
    m = BN_CTX_get(ctx);
    z = BN_CTX_get(ctx);
    b = BN_CTX_get(ctx);

    if (!(b != NULL
            /* w1 := w - 1 */
            && BN_copy(w1, w)
            && BN_sub_word(w1, 1)
            /* w3 := w - 3 */
            && BN_copy(w3, w)
            && BN_sub_word(w3, 3)))
        goto err;

    /* check w is larger than 3, otherwise the random b will be too small */
    if (BN_is_zero(w3) || BN_is_negative(w3))
        goto err;

    /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */
    a = 1;
    while (!BN_is_bit_set(w1, a))
        a++;
    /* (Step 2) m = (w-1) / 2^a */
    if (!BN_rshift(m, w1, a))
        goto err;

    /* Montgomery setup for computations mod a */
    mont = BN_MONT_CTX_new();
    if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx))
        goto err;

    if (iterations == BN_prime_checks)
        iterations = BN_prime_checks_for_size(BN_num_bits(w));

    /* (Step 4) */
    for (i = 0; i < iterations; ++i) {
        /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */
        if (!BN_priv_rand_range(b, w3) || !BN_add_word(b, 2)) /* 1 < b < w-1 */
            goto err;

        if (enhanced) {
            /* (Step 4.3) */
            if (!BN_gcd(g, b, w, ctx))
                goto err;
            /* (Step 4.4) */
            if (!BN_is_one(g)) {
                *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
                ret = 1;
                goto err;
            }
        }
        /* (Step 4.5) z = b^m mod w */
        if (!BN_mod_exp_mont(z, b, m, w, ctx, mont))
            goto err;
        /* (Step 4.6) if (z = 1 or z = w-1) */
        if (BN_is_one(z) || BN_cmp(z, w1) == 0)
            goto outer_loop;
        /* (Step 4.7) for j = 1 to a-1 */
        for (j = 1; j < a ; ++j) {
            /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */
            if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
                goto err;
            /* (Step 4.7.3) */
            if (BN_cmp(z, w1) == 0)
                goto outer_loop;
            /* (Step 4.7.4) */
            if (BN_is_one(z))
                goto composite;
        }
        /* At this point z = b^((w-1)/2) mod w */
        /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */
        if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
            goto err;
        /* (Step 4.10) */
        if (BN_is_one(z))
            goto composite;
        /* (Step 4.11) x = b^(w-1) mod w */
        if (!BN_copy(x, z))
            goto err;
composite:
        if (enhanced) {
            /* (Step 4.1.2) g = GCD(x-1, w) */
            if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx))
                goto err;
            /* (Steps 4.1.3 - 4.1.4) */
            if (BN_is_one(g))
                *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME;
            else
                *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
        } else {
            *status = BN_PRIMETEST_COMPOSITE;
        }
        ret = 1;
        goto err;
outer_loop: ;
        /* (Step 4.1.5) */
        if (!BN_GENCB_call(cb, 1, i))
            goto err;
    }
    /* (Step 5) */
    *status = BN_PRIMETEST_PROBABLY_PRIME;
    ret = 1;
err:
    BN_clear(g);
    BN_clear(w1);
    BN_clear(w3);
    BN_clear(x);
    BN_clear(m);
    BN_clear(z);
    BN_clear(b);
    BN_CTX_end(ctx);
    BN_MONT_CTX_free(mont);
    return ret;
}