static void _BezierPatchHighQuality(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType, int maxVertices) {
	const float third = 1.0f / 3.0f;

	// Downsample until it fits, in case crazy tesselation factors are sent.
	while ((tess_u + 1) * (tess_v + 1) > maxVertices) {
		tess_u /= 2;
		tess_v /= 2;
	}

	// First compute all the vertices and put them in an array
	SimpleVertex *&vertices = (SimpleVertex*&)dest;

	Vec3Packedf *horiz = new Vec3Packedf[(tess_u + 1) * 4];
	Vec3Packedf *horiz2 = horiz + (tess_u + 1) * 1;
	Vec3Packedf *horiz3 = horiz + (tess_u + 1) * 2;
	Vec3Packedf *horiz4 = horiz + (tess_u + 1) * 3;

	Vec3Packedf *derivU1 = new Vec3Packedf[(tess_u + 1) * 4];
	Vec3Packedf *derivU2 = derivU1 + (tess_u + 1) * 1;
	Vec3Packedf *derivU3 = derivU1 + (tess_u + 1) * 2;
	Vec3Packedf *derivU4 = derivU1 + (tess_u + 1) * 3;

	bool computeNormals = patch.computeNormals;

	// Precompute the horizontal curves to we only have to evaluate the vertical ones.
	for (int i = 0; i < tess_u + 1; i++) {
		float u = ((float)i / (float)tess_u);
		horiz[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
		horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
		horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
		horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);

		if (computeNormals) {
			derivU1[i] = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
			derivU2[i] = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
			derivU3[i] = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
			derivU4[i] = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);
		}
	}


	for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
		for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
			float u = ((float)tile_u / (float)tess_u);
			float v = ((float)tile_v / (float)tess_v);
			float bu = u;
			float bv = v;

			// TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors.
			const Vec3Packedf &pos1 = horiz[tile_u];
			const Vec3Packedf &pos2 = horiz2[tile_u];
			const Vec3Packedf &pos3 = horiz3[tile_u];
			const Vec3Packedf &pos4 = horiz4[tile_u];

			SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];

			if (computeNormals) {
				const Vec3Packedf &derivU1_ = derivU1[tile_u];
				const Vec3Packedf &derivU2_ = derivU2[tile_u];
				const Vec3Packedf &derivU3_ = derivU3[tile_u];
				const Vec3Packedf &derivU4_ = derivU4[tile_u];

				Vec3Packedf derivU = Bernstein3D(derivU1_, derivU2_, derivU3_, derivU4_, bv);
				Vec3Packedf derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv);

				vert.nrm = Cross(derivU, derivV).Normalized();
				if (patch.patchFacing)
					vert.nrm *= -1.0f;
			}
			else {
				vert.nrm.SetZero();
			}

			vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv);

			if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
				// Generate texcoord
				vert.uv[0] = u + patch.u_index * third;
				vert.uv[1] = v + patch.v_index * third;
			} else {
				// Sample UV from control points
				patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]);
			} 

			if (origVertType & GE_VTYPE_COL_MASK) {
				patch.sampleColor(u, v, vert.color);
			} else {
				memcpy(vert.color, patch.points[0]->color, 4);
			}
		}
	}
	delete[] derivU1;
	delete[] horiz;

	GEPatchPrimType prim_type = patch.primType;
	// Combine the vertices into triangles.
	for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
		for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
			int total = patch.index * (tess_u + 1) * (tess_v + 1);
			int idx0 = total + tile_v * (tess_u + 1) + tile_u;
			int idx1 = total + tile_v * (tess_u + 1) + tile_u + 1;
			int idx2 = total + (tile_v + 1) * (tess_u + 1) + tile_u;
			int idx3 = total + (tile_v + 1) * (tess_u + 1) + tile_u + 1;

			CopyQuadIndex(indices, prim_type, idx0, idx1, idx2, idx3);
			count += 6;
		}
	}
	dest += (tess_u + 1) * (tess_v + 1) * sizeof(SimpleVertex);
}
Example #2
0
static void _BezierPatchHighQuality(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
	const float third = 1.0f / 3.0f;

	// First compute all the vertices and put them in an array
	SimpleVertex *&vertices = (SimpleVertex*&)dest;

	PrecomputedCurves<Vec3f> prepos(tess_u + 1);
	PrecomputedCurves<Vec4f> precol(tess_u + 1);
	PrecomputedCurves<Math3D::Vec2f> pretex(tess_u + 1);
	PrecomputedCurves<Vec3f> prederivU(tess_u + 1);

	const bool computeNormals = patch.computeNormals;
	const bool sampleColors = (origVertType & GE_VTYPE_COL_MASK) != 0;
	const bool sampleTexcoords = (origVertType & GE_VTYPE_TC_MASK) != 0;

	// Precompute the horizontal curves to we only have to evaluate the vertical ones.
	for (int i = 0; i < tess_u + 1; i++) {
		float u = ((float)i / (float)tess_u);
		prepos.horiz1[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
		prepos.horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
		prepos.horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
		prepos.horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);

		if (sampleColors) {
			precol.horiz1[i] = Bernstein3D(patch.points[0]->color_32, patch.points[1]->color_32, patch.points[2]->color_32, patch.points[3]->color_32, u);
			precol.horiz2[i] = Bernstein3D(patch.points[4]->color_32, patch.points[5]->color_32, patch.points[6]->color_32, patch.points[7]->color_32, u);
			precol.horiz3[i] = Bernstein3D(patch.points[8]->color_32, patch.points[9]->color_32, patch.points[10]->color_32, patch.points[11]->color_32, u);
			precol.horiz4[i] = Bernstein3D(patch.points[12]->color_32, patch.points[13]->color_32, patch.points[14]->color_32, patch.points[15]->color_32, u);
		}
		if (sampleTexcoords) {
			pretex.horiz1[i] = Bernstein3D(Math3D::Vec2f(patch.points[0]->uv), Math3D::Vec2f(patch.points[1]->uv), Math3D::Vec2f(patch.points[2]->uv), Math3D::Vec2f(patch.points[3]->uv), u);
			pretex.horiz2[i] = Bernstein3D(Math3D::Vec2f(patch.points[4]->uv), Math3D::Vec2f(patch.points[5]->uv), Math3D::Vec2f(patch.points[6]->uv), Math3D::Vec2f(patch.points[7]->uv), u);
			pretex.horiz3[i] = Bernstein3D(Math3D::Vec2f(patch.points[8]->uv), Math3D::Vec2f(patch.points[9]->uv), Math3D::Vec2f(patch.points[10]->uv), Math3D::Vec2f(patch.points[11]->uv), u);
			pretex.horiz4[i] = Bernstein3D(Math3D::Vec2f(patch.points[12]->uv), Math3D::Vec2f(patch.points[13]->uv), Math3D::Vec2f(patch.points[14]->uv), Math3D::Vec2f(patch.points[15]->uv), u);
		}

		if (computeNormals) {
			prederivU.horiz1[i] = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
			prederivU.horiz2[i] = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
			prederivU.horiz3[i] = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
			prederivU.horiz4[i] = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);
		}
	}


	for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
		for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
			float u = ((float)tile_u / (float)tess_u);
			float v = ((float)tile_v / (float)tess_v);
			float bv = v;

			SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];

			if (computeNormals) {
				const Vec3f derivU = prederivU.Bernstein3D(tile_u, bv);
				const Vec3f derivV = prepos.Bernstein3DDerivative(tile_u, bv);

				vert.nrm = Cross(derivU, derivV).Normalized();
				if (patch.patchFacing)
					vert.nrm *= -1.0f;
			} else {
				vert.nrm.SetZero();
			}

			vert.pos = prepos.Bernstein3D(tile_u, bv);

			if (!sampleTexcoords) {
				// Generate texcoord
				vert.uv[0] = u + patch.u_index * third;
				vert.uv[1] = v + patch.v_index * third;
			} else {
				// Sample UV from control points
				const Math3D::Vec2f res = pretex.Bernstein3D(tile_u, bv);
				vert.uv[0] = res.x;
				vert.uv[1] = res.y;
			} 

			if (sampleColors) {
				vert.color_32 = precol.Bernstein3D(tile_u, bv).ToRGBA();
			} else {
				memcpy(vert.color, patch.points[0]->color, 4);
			}
		}
	}

	GEPatchPrimType prim_type = patch.primType;
	// Combine the vertices into triangles.
	for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
		for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
			int total = patch.index * (tess_u + 1) * (tess_v + 1);
			int idx0 = total + tile_v * (tess_u + 1) + tile_u;
			int idx1 = total + tile_v * (tess_u + 1) + tile_u + 1;
			int idx2 = total + (tile_v + 1) * (tess_u + 1) + tile_u;
			int idx3 = total + (tile_v + 1) * (tess_u + 1) + tile_u + 1;

			CopyQuadIndex(indices, prim_type, idx0, idx1, idx2, idx3);
			count += 6;
		}
	}
	dest += (tess_u + 1) * (tess_v + 1) * sizeof(SimpleVertex);
}
Example #3
0
void _BezierPatchHighQuality(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
	const float third = 1.0f / 3.0f;
	// Full correct tesselation of bezier patches.
	// Note: Does not handle splines correctly.

	// First compute all the vertices and put them in an array
	SimpleVertex *vertices = new SimpleVertex[(tess_u + 1) * (tess_v + 1)];

	Vec3Packedf *horiz = new Vec3Packedf[(tess_u + 1) * 4];
	Vec3Packedf *horiz2 = horiz + (tess_u + 1) * 1;
	Vec3Packedf *horiz3 = horiz + (tess_u + 1) * 2;
	Vec3Packedf *horiz4 = horiz + (tess_u + 1) * 3;

	// Precompute the horizontal curves to we only have to evaluate the vertical ones.
	for (int i = 0; i < tess_u + 1; i++) {
		float u = ((float)i / (float)tess_u);
		horiz[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
		horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
		horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
		horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);
	}

	bool computeNormals = gstate.isLightingEnabled();

	for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
		for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
			float u = ((float)tile_u / (float)tess_u);
			float v = ((float)tile_v / (float)tess_v);
			float bu = u;
			float bv = v;

			// TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors.
			const Vec3Packedf &pos1 = horiz[tile_u];
			const Vec3Packedf &pos2 = horiz2[tile_u];
			const Vec3Packedf &pos3 = horiz3[tile_u];
			const Vec3Packedf &pos4 = horiz4[tile_u];

			SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];

			if (computeNormals) {
				Vec3Packedf derivU1 = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, bu);
				Vec3Packedf derivU2 = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, bu);
				Vec3Packedf derivU3 = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, bu);
				Vec3Packedf derivU4 = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, bu);
				Vec3Packedf derivU = Bernstein3D(derivU1, derivU2, derivU3, derivU4, bv);
				Vec3Packedf derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv);

				// TODO: Interpolate normals instead of generating them, if available?
				vert.nrm = Cross(derivU, derivV).Normalized();
				if (gstate.patchfacing & 1)
					vert.nrm *= -1.0f;
			}
			else {
				vert.nrm.SetZero();
			}

			vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv);

			if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
				// Generate texcoord
				vert.uv[0] = u + patch.u_index * third;
				vert.uv[1] = v + patch.v_index * third;
			} else {
				// Sample UV from control points
				patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]);
			} 

			if (origVertType & GE_VTYPE_COL_MASK) {
				patch.sampleColor(u, v, vert.color);
			} else {
				memcpy(vert.color, patch.points[0]->color, 4);
			}
		}
	}
	delete[] horiz;

	// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
	for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
		for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
			float u = ((float)tile_u / (float)tess_u);
			float v = ((float)tile_v / (float)tess_v);

			const SimpleVertex *v0 = &vertices[tile_v * (tess_u + 1) + tile_u];
			const SimpleVertex *v1 = &vertices[tile_v * (tess_u + 1) + tile_u + 1];
			const SimpleVertex *v2 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u];
			const SimpleVertex *v3 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u + 1];

			CopyQuad(dest, v0, v1, v2, v3);
			count += 6;
		}
	}

	delete[] vertices;
}
Example #4
0
void TesselateBezierPatch(u8 *&dest, int &count, const BezierPatch &patch, u32 origVertType) {
	const float third = 1.0f / 3.0f;

	if (g_Config.bLowQualitySplineBezier) {
		// Fast and easy way - just draw the control points, generate some very basic normal vector subsitutes.
		// Very inaccurate though but okay for Loco Roco. Maybe should keep it as an option.

		float u_base = patch.u_index / 3.0f;
		float v_base = patch.v_index / 3.0f;

		for (int tile_v = 0; tile_v < 3; tile_v++) {
			for (int tile_u = 0; tile_u < 3; tile_u++) {
				int point_index = tile_u + tile_v * 4;

				SimpleVertex v0 = *patch.points[point_index];
				SimpleVertex v1 = *patch.points[point_index+1];
				SimpleVertex v2 = *patch.points[point_index+4];
				SimpleVertex v3 = *patch.points[point_index+5];

				// Generate UV. TODO: Do this even if UV specified in control points?
				if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
					float u = u_base + tile_u * third;
					float v = v_base + tile_v * third;
					v0.uv[0] = u;
					v0.uv[1] = v;
					v1.uv[0] = u + third;
					v1.uv[1] = v;
					v2.uv[0] = u;
					v2.uv[1] = v + third;
					v3.uv[0] = u + third;
					v3.uv[1] = v + third;
				}

				// Generate normal if lighting is enabled (otherwise there's no point).
				// This is a really poor quality algorithm, we get facet normals.
				if (gstate.isLightingEnabled()) {
					Vec3f norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
					norm.Normalize();
					if (gstate.patchfacing & 1)
						norm *= -1.0f;
					v0.nrm = norm;
					v1.nrm = norm;
					v2.nrm = norm;
					v3.nrm = norm;
				}

				CopyQuad(dest, &v0, &v1, &v2, &v3);
				count += 6;
			}
		}
	} else {
		// Full correct tesselation of bezier patches.
		// Note: Does not handle splines correctly.

		int tess_u = gstate.getPatchDivisionU();
		int tess_v = gstate.getPatchDivisionV();

		// First compute all the vertices and put them in an array
		SimpleVertex *vertices = new SimpleVertex[(tess_u + 1) * (tess_v + 1)];

		Vec3f *horiz = new Vec3f[(tess_u + 1) * 4];
		Vec3f *horiz2 = horiz + (tess_u + 1) * 1;
		Vec3f *horiz3 = horiz + (tess_u + 1) * 2;
		Vec3f *horiz4 = horiz + (tess_u + 1) * 3;

		// Precompute the horizontal curves to we only have to evaluate the vertical ones.
		for (int i = 0; i < tess_u + 1; i++) {
			float u = ((float)i / (float)tess_u);
			horiz[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
			horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
			horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
			horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);
		}

		bool computeNormals = gstate.isLightingEnabled();

		for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
			for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
				float u = ((float)tile_u / (float)tess_u);
				float v = ((float)tile_v / (float)tess_v);
				float bu = u;
				float bv = v;

				// TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors.
				const Vec3f &pos1 = horiz[tile_u];
				const Vec3f &pos2 = horiz2[tile_u];
				const Vec3f &pos3 = horiz3[tile_u];
				const Vec3f &pos4 = horiz4[tile_u];

				SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];

				if (computeNormals) {
					Vec3f derivU1 = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, bu);
					Vec3f derivU2 = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, bu);
					Vec3f derivU3 = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, bu);
					Vec3f derivU4 = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, bu);
					Vec3f derivU = Bernstein3D(derivU1, derivU2, derivU3, derivU4, bv);
					Vec3f derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv);

					// TODO: Interpolate normals instead of generating them, if available?
					vert.nrm = Cross(derivU, derivV).Normalized();
					if (gstate.patchfacing & 1)
						vert.nrm *= -1.0f;
				} else {
					vert.nrm.SetZero();
				}

				vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv);

				if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
					// Generate texcoord
					vert.uv[0] = u + patch.u_index * third;
					vert.uv[1] = v + patch.v_index * third;
				} else {
					// Sample UV from control points
					patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]);
				}

				if (origVertType & GE_VTYPE_COL_MASK) {
					patch.sampleColor(u, v, vert.color);
				} else {
					memcpy(vert.color, patch.points[0]->color, 4);
				}
			}
		}
		delete [] horiz;

		// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
		for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
			for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
				float u = ((float)tile_u / (float)tess_u);
				float v = ((float)tile_v / (float)tess_v);

				const SimpleVertex *v0 = &vertices[tile_v * (tess_u + 1) + tile_u];
				const SimpleVertex *v1 = &vertices[tile_v * (tess_u + 1) + tile_u + 1];
				const SimpleVertex *v2 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u];
				const SimpleVertex *v3 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u + 1];

				CopyQuad(dest, v0, v1, v2, v3);
				count += 6;
			}
		}

		delete [] vertices;
	}
}