void setUp(void)
{
    SystemTestSetup(1, false);
    uint8_t version_data[DEFAULT_SIZE], tag_data[DEFAULT_SIZE];
    ByteBuffer version_buffer, tag_buffer;
    version_buffer = ByteBuffer_CreateAndAppendCString(version_data, sizeof(version_data), "v1.0");
    tag_buffer = ByteBuffer_CreateAndAppendCString(tag_data, sizeof(tag_data), "SomeTagValue");

    ByteBuffer key_buffers[TOTAL_PUT_KEYS];
    ByteBuffer value_buffers[TOTAL_PUT_KEYS];
    unsigned int i;
    for (i=0; i<TOTAL_PUT_KEYS; i++)
    {
    	key_buffers[i] = generate_entry_key_by_index(i);

    	printf("key: %s", (char *)key_buffers[i].array.data);
    	value_buffers[i] = generate_entry_value_by_index(i);

        KineticEntry putEntry = {
   	       .key = key_buffers[i],
   	       .tag = tag_buffer,
   	       .newVersion = version_buffer,
           .algorithm = KINETIC_ALGORITHM_SHA1,
           .value = value_buffers[i],
           .force = true,
           .synchronization = KINETIC_SYNCHRONIZATION_WRITETHROUGH,
        };

        KineticStatus status = KineticClient_Put(Fixture.session, &putEntry, NULL);
        TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);

        ByteBuffer_Free(key_buffers[i]);
        ByteBuffer_Free(value_buffers[i]);
    }
}

void tearDown(void)
{
    SystemTestShutDown();
}

void test_media_scan_should_succeed_for_existing_key_range(void)
{
	KineticMediaScan_Operation mediascan_operation = {"my_key         1","my_key         5", true, true};
	KineticCommand_Priority priority = PRIORITY_NORMAL;

	KineticStatus status = KineticAdminClient_MediaScan(Fixture.session, &mediascan_operation, priority);
	TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
}
void test_put_get_delete_one_entry_by_one_entry(void)
{
    uint8_t version_data[DEFAULT_BUFFER_SIZE], tag_data[DEFAULT_BUFFER_SIZE], value_data[DEFAULT_BUFFER_SIZE];
    ByteBuffer version_buffer, tag_buffer, value_buffer;
    version_buffer = ByteBuffer_CreateAndAppendCString(version_data, sizeof(version_data), "v1.0");
    ExpectedVersionBuffer = ByteBuffer_CreateAndAppendCString(version_data, sizeof(version_data), "v1.0");
    tag_buffer = ByteBuffer_CreateAndAppendCString(tag_data, sizeof(tag_data), "SomeTagValue");
    ExpectedTagBuffer = ByteBuffer_CreateAndAppendCString(tag_data, sizeof(tag_data), "SomeTagValue");
    value_buffer = ByteBuffer_Create(value_data, DEFAULT_BUFFER_SIZE, 0);

    unsigned int i;
    for (i=0; i<KV_PAIRS_PER_GROUP; i++)
    {
    	// put object
        KineticEntry putEntry = {
   	       .key = generate_entry_key_by_index(i),
   	       .tag = tag_buffer,
   	       .newVersion = version_buffer,
           .algorithm = KINETIC_ALGORITHM_SHA1,
           .value = generate_entry_value_by_index(i),
           .force = true,
           .synchronization = KINETIC_SYNCHRONIZATION_WRITETHROUGH,
        };

        KineticStatus status = KineticClient_Put(Fixture.session, &putEntry, NULL);
        TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);

        ByteBuffer_Reset(&value_buffer);

        // get object
		value_buffer = ByteBuffer_Create(value_data, DEFAULT_BUFFER_SIZE, 0);
		KineticEntry getEntry = {
	        .key = generate_entry_key_by_index(i),
			.dbVersion = version_buffer,
	        .tag = tag_buffer,
			.value = value_buffer,
	    };

	    status = KineticClient_Get(Fixture.session, &getEntry, NULL);

	    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
	    TEST_ASSERT_EQUAL_ByteBuffer(ExpectedVersionBuffer, getEntry.dbVersion);
	    TEST_ASSERT_ByteBuffer_NULL(getEntry.newVersion);
	    TEST_ASSERT_EQUAL_ByteBuffer(generate_entry_key_by_index(i), getEntry.key);
	    TEST_ASSERT_EQUAL_ByteBuffer(ExpectedTagBuffer, getEntry.tag);
	    TEST_ASSERT_EQUAL(KINETIC_ALGORITHM_SHA1, getEntry.algorithm);
	    TEST_ASSERT_EQUAL_ByteBuffer(generate_entry_value_by_index(i), getEntry.value);

	    TEST_ASSERT_EQUAL_ByteBuffer(ExpectedVersionBuffer, version_buffer);
   	    // delete object
	    KineticEntry deleteEntry = {
	        .key = generate_entry_key_by_index(i),
			.dbVersion = version_buffer,
	    };
	    TEST_ASSERT_EQUAL_ByteBuffer(ExpectedVersionBuffer, version_buffer);
	    status = KineticClient_Delete(Fixture.session, &deleteEntry, NULL);
	    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
	    TEST_ASSERT_EQUAL(0, deleteEntry.value.bytesUsed);

   	    // get object again
     	status = KineticClient_Get(Fixture.session, &getEntry, NULL);
     	TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_NOT_FOUND, status);
    }
}

void test_put_get_delete_one_group_by_one_group(void)
{
    uint8_t version_data[DEFAULT_BUFFER_SIZE], tag_data[DEFAULT_BUFFER_SIZE], value_data[DEFAULT_BUFFER_SIZE];
    ByteBuffer version_buffer, tag_buffer, value_buffer;
    version_buffer = ByteBuffer_CreateAndAppendCString(version_data, sizeof(version_data), "v1.0");
    ExpectedVersionBuffer = ByteBuffer_CreateAndAppendCString(version_data, sizeof(version_data), "v1.0");
    tag_buffer = ByteBuffer_CreateAndAppendCString(tag_data, sizeof(tag_data), "SomeTagValue");
    ExpectedTagBuffer = ByteBuffer_CreateAndAppendCString(tag_data, sizeof(tag_data), "SomeTagValue");
    value_buffer = ByteBuffer_Create(value_data, DEFAULT_BUFFER_SIZE, 0);

    unsigned int i, j;
    for (i =0; i<TOTAL_GROUPS; i++)
    {
    	KineticStatus status;

    	// put a group of entries
        for (j=0; j<KV_PAIRS_PER_GROUP; j++)
        {
            KineticEntry putEntry = {
       	       .key = generate_entry_key_by_index(i*KV_PAIRS_PER_GROUP + j),
       	       .tag = tag_buffer,
       	       .newVersion = version_buffer,
               .algorithm = KINETIC_ALGORITHM_SHA1,
               .value = generate_entry_value_by_index(i*KV_PAIRS_PER_GROUP + j),
               .force = true,
               .synchronization = KINETIC_SYNCHRONIZATION_WRITETHROUGH,
            };

            status = KineticClient_Put(Fixture.session, &putEntry, NULL);
            TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
        }

        // get key_range
        KineticKeyRange range = {
            .startKey = generate_entry_key_by_index(i*KV_PAIRS_PER_GROUP),
            .endKey = generate_entry_key_by_index(i*KV_PAIRS_PER_GROUP + KV_PAIRS_PER_GROUP -1),
            .startKeyInclusive = true,
            .endKeyInclusive = true,
            .maxReturned = KV_PAIRS_PER_GROUP,
        };

        ByteBuffer keyBuff[KV_PAIRS_PER_GROUP];
        uint8_t keysData[KV_PAIRS_PER_GROUP][DEFAULT_BUFFER_SIZE];
        for (j = 0; j < KV_PAIRS_PER_GROUP; j++) {
            memset(&keysData[j], 0, DEFAULT_BUFFER_SIZE);
            keyBuff[j] = ByteBuffer_Create(&keysData[j], DEFAULT_BUFFER_SIZE, 0);
        }
        ByteBufferArray keys = {.buffers = keyBuff, .count = KV_PAIRS_PER_GROUP, .used = 0};

        status = KineticClient_GetKeyRange(Fixture.session, &range, &keys, NULL);
        TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
        TEST_ASSERT_EQUAL(KV_PAIRS_PER_GROUP, keys.used);
        for (j = 0; j < KV_PAIRS_PER_GROUP; j++)
        {
        	TEST_ASSERT_EQUAL_ByteBuffer(generate_entry_key_by_index(i*KV_PAIRS_PER_GROUP + j), keys.buffers[j]);
        }

        // delete a group of entries
        for (j=0; j<KV_PAIRS_PER_GROUP; j++)
        {
        	ByteBuffer_Reset(&value_buffer);

   	        // get object
   			value_buffer = ByteBuffer_Create(value_data, DEFAULT_BUFFER_SIZE, 0);
   			KineticEntry getEntry = {
   		        .key = generate_entry_key_by_index(i*KV_PAIRS_PER_GROUP + j),
   				.dbVersion = version_buffer,
   		        .tag = tag_buffer,
   				.value = value_buffer,
   		    };

   		    status = KineticClient_Get(Fixture.session, &getEntry, NULL);

   		    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
   		    TEST_ASSERT_EQUAL_ByteBuffer(ExpectedVersionBuffer, getEntry.dbVersion);
   		    TEST_ASSERT_ByteBuffer_NULL(getEntry.newVersion);
   		    TEST_ASSERT_EQUAL_ByteBuffer(generate_entry_key_by_index(i*KV_PAIRS_PER_GROUP + j), getEntry.key);
   		    TEST_ASSERT_EQUAL_ByteBuffer(ExpectedTagBuffer, getEntry.tag);
   		    TEST_ASSERT_EQUAL(KINETIC_ALGORITHM_SHA1, getEntry.algorithm);
   		    TEST_ASSERT_EQUAL_ByteBuffer(generate_entry_value_by_index(i*KV_PAIRS_PER_GROUP + j), getEntry.value);
   		    TEST_ASSERT_EQUAL_ByteBuffer(ExpectedVersionBuffer, version_buffer);
        }

        // delete a group of entries
        for (j=0; j<KV_PAIRS_PER_GROUP; j++)
        {
        	   	    // delete object
  		    KineticEntry deleteEntry = {
   		        .key = generate_entry_key_by_index(i*KV_PAIRS_PER_GROUP + j),
   				.dbVersion = version_buffer,
   		    };
   		    TEST_ASSERT_EQUAL_ByteBuffer(ExpectedVersionBuffer, version_buffer);
   		    status = KineticClient_Delete(Fixture.session, &deleteEntry, NULL);
   		    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
   		    TEST_ASSERT_EQUAL(0, deleteEntry.value.bytesUsed);

   	   	    // get object again
        	ByteBuffer_Reset(&value_buffer);

   	        // get object
   			value_buffer = ByteBuffer_Create(value_data, DEFAULT_BUFFER_SIZE, 0);
   			KineticEntry getEntry = {
   		        .key = generate_entry_key_by_index(i*KV_PAIRS_PER_GROUP + j),
   				.dbVersion = version_buffer,
   		        .tag = tag_buffer,
   				.value = value_buffer,
   		    };
   	     	status = KineticClient_Get(Fixture.session, &getEntry, NULL);
   	     	TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_NOT_FOUND, status);
        }
    }
}
Example #3
0
void test_Flush_should_flush_pending_PUTs_and_DELETEs(void)
{
    // Arguments shared between entries
    uint8_t TagData[1024];
    ByteBuffer tagBuffer = ByteBuffer_CreateAndAppendCString(TagData, sizeof(TagData), "tag_val");
    uint8_t key1[10];
    ByteBuffer keyBuffer1 = ByteBuffer_CreateAndAppendCString(key1, sizeof(key1), "key1");
    uint8_t value1[10];
    ByteBuffer valueBuffer1 = ByteBuffer_CreateAndAppendCString(value1, sizeof(value1), "value1");
    uint8_t key2[10];
    ByteBuffer keyBuffer2 = ByteBuffer_CreateAndAppendCString(key2, sizeof(key2), "key2");
    uint8_t value2[10];
    ByteBuffer valueBuffer2 = ByteBuffer_CreateAndAppendCString(value2, sizeof(value2), "value2");

    // Do a blocking PUT ("key1" => "value1") so we can delete it later
    KineticEntry Entry = (KineticEntry) {
        .key = keyBuffer1,
        .tag = tagBuffer,
        .algorithm = KINETIC_ALGORITHM_SHA1,
        .value = valueBuffer1,
        .synchronization = KINETIC_SYNCHRONIZATION_WRITEBACK,
        .force = true,
    };
    KineticStatus status = KineticClient_Put(Fixture.session, &Entry, NULL);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);

    Entry = (KineticEntry) {
        .key = keyBuffer2,
        .tag = tagBuffer,
        .algorithm = KINETIC_ALGORITHM_SHA1,
        .value = valueBuffer2,
        .synchronization = KINETIC_SYNCHRONIZATION_WRITEBACK,
        .force = true,
    };

    status = KineticClient_Put(Fixture.session, &Entry, NULL);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);

    // Do an async DELETE so we can flush to complete it
    KineticEntry deleteEntry = {
        .key = keyBuffer1,
        .synchronization = KINETIC_SYNCHRONIZATION_WRITETHROUGH,
    };
    KineticCompletionClosure no_op_closure = {
        .callback = &no_op_callback,
    };
    status = KineticClient_Delete(Fixture.session, &deleteEntry, &no_op_closure);

    /* Now do a blocking flush and confirm that (key1,value1) has been
     * DELETEd and (key2,value2) have been PUT. */
    status = KineticClient_Flush(Fixture.session, NULL);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);

    // GET key1 --> expect NOT FOUND
    KineticEntry getEntry1 = {
        .key = keyBuffer1,
        .tag = tagBuffer,
        .value = valueBuffer1,
    };
    status = KineticClient_Get(Fixture.session, &getEntry1, NULL);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_NOT_FOUND, status);

    // GET key2 --> present
    KineticEntry getEntry2 = {
        .key = keyBuffer2,
        .tag = tagBuffer,
        .value = valueBuffer2,
    };
    status = KineticClient_Get(Fixture.session, &getEntry2, NULL);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
}
void setUp(void)
{
    SystemTestSetup(0, true);

    KeyBuffer = ByteBuffer_CreateAndAppendCString(KeyData, sizeof(KeyData), strKey);
    ExpectedKeyBuffer = ByteBuffer_CreateAndAppendCString(ExpectedKeyData, sizeof(ExpectedKeyData), strKey);
    TagBuffer = ByteBuffer_CreateAndAppendCString(TagData, sizeof(TagData), "SomeTagValue");
    ExpectedTagBuffer = ByteBuffer_CreateAndAppendCString(ExpectedTagData, sizeof(ExpectedTagData), "SomeTagValue");
    TestValue = ByteArray_CreateWithCString("lorem ipsum... blah blah blah... etc.");
    ValueBuffer = ByteBuffer_CreateAndAppendArray(ValueData, sizeof(ValueData), TestValue);

    // Setup to write some test data
    KineticEntry putEntry = {
        .key = KeyBuffer,
        .tag = TagBuffer,
        .algorithm = KINETIC_ALGORITHM_SHA1,
        .value = ValueBuffer,
        .force = true,
        .synchronization = KINETIC_SYNCHRONIZATION_FLUSH,
    };

    KineticStatus status = KineticClient_Put(Fixture.session, &putEntry, NULL);
    if (status != KINETIC_STATUS_SUCCESS) {
        failing = true;
        TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
    }

    // Validate the object exists initially
    KineticEntry getEntry = {
        .key = KeyBuffer,
        .tag = TagBuffer,
        .algorithm = KINETIC_ALGORITHM_SHA1,
        .value = ValueBuffer,
        .force = true,
        .synchronization = KINETIC_SYNCHRONIZATION_WRITETHROUGH,
    };
    status = KineticClient_Get(Fixture.session, &getEntry, NULL);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
    TEST_ASSERT_EQUAL_ByteArray(putEntry.key.array, getEntry.key.array);
    TEST_ASSERT_EQUAL_ByteArray(putEntry.tag.array, getEntry.tag.array);
    TEST_ASSERT_EQUAL(putEntry.algorithm, getEntry.algorithm);
    TEST_ASSERT_EQUAL_ByteBuffer(putEntry.value, getEntry.value);

    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);

    // Set the erase PIN to something non-empty
    strcpy(NewPinData, SESSION_PIN);
    OldPin = ByteArray_Create(OldPinData, 0);
    NewPin = ByteArray_Create(NewPinData, strlen(NewPinData));
    status = KineticAdminClient_SetErasePin(Fixture.adminSession,
        OldPin, NewPin);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
}

void tearDown(void)
{
    KineticStatus status = KINETIC_STATUS_INVALID;
    
    if (failing) { return; }

    // Validate the object no longer exists
    KineticEntry regetEntryMetadata = {
        .key = KeyBuffer,
        .tag = TagBuffer,
        .metadataOnly = true,
    };
    status = KineticClient_Get(Fixture.session, &regetEntryMetadata, NULL);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_NOT_FOUND, status);
    TEST_ASSERT_ByteArray_EMPTY(regetEntryMetadata.value.array);

    SystemTestShutDown();
}

void test_SecureErase_should_erase_device_contents(void)
{
    KineticStatus status = KineticAdminClient_SecureErase(Fixture.adminSession, NewPin);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
}

void test_InstantErase_should_erase_device_contents(void)
{
    KineticStatus status = KineticAdminClient_InstantErase(Fixture.adminSession, NewPin);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
}
void setUp(void)
{
    NewPinSet = false;
    Locked = false;

    SystemTestSetup(1, true);

    KeyBuffer = ByteBuffer_CreateAndAppendCString(KeyData, sizeof(KeyData), strKey);
    ExpectedKeyBuffer = ByteBuffer_CreateAndAppendCString(ExpectedKeyData, sizeof(ExpectedKeyData), strKey);
    TagBuffer = ByteBuffer_CreateAndAppendCString(TagData, sizeof(TagData), "SomeTagValue");
    ExpectedTagBuffer = ByteBuffer_CreateAndAppendCString(ExpectedTagData, sizeof(ExpectedTagData), "SomeTagValue");
    TestValue = ByteArray_CreateWithCString("lorem ipsum... blah blah blah... etc.");
    ValueBuffer = ByteBuffer_CreateAndAppendArray(ValueData, sizeof(ValueData), TestValue);

    // Setup to write some test data
    KineticEntry putEntry = {
        .key = KeyBuffer,
        .tag = TagBuffer,
        .algorithm = KINETIC_ALGORITHM_SHA1,
        .value = ValueBuffer,
        .force = true,
        .synchronization = KINETIC_SYNCHRONIZATION_FLUSH,
    };

    KineticStatus status = KineticClient_Put(Fixture.session, &putEntry, NULL);

    // Validate the object exists initially
    KineticEntry getEntry = {
        .key = KeyBuffer,
        .tag = TagBuffer,
        .algorithm = KINETIC_ALGORITHM_SHA1,
        .value = ValueBuffer,
        .force = true,
        .synchronization = KINETIC_SYNCHRONIZATION_WRITETHROUGH,
    };
    status = KineticClient_Get(Fixture.session, &getEntry, NULL);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
    TEST_ASSERT_EQUAL_ByteArray(putEntry.key.array, getEntry.key.array);
    TEST_ASSERT_EQUAL_ByteArray(putEntry.tag.array, getEntry.tag.array);
    TEST_ASSERT_EQUAL(putEntry.algorithm, getEntry.algorithm);
    TEST_ASSERT_EQUAL_ByteBuffer(putEntry.value, getEntry.value);

    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);

    // Set the erase PIN to something non-empty
    strcpy(NewPinData, SESSION_PIN);
    OldPin = ByteArray_Create(OldPinData, 0);
    NewPin = ByteArray_Create(NewPinData, strlen(NewPinData));
    status = KineticAdminClient_SetLockPin(Fixture.adminSession,
        OldPin, NewPin);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
    NewPinSet = true;
}

void tearDown(void)
{
    KineticStatus status;

    // Unlock if for some reason we are still locked in order to
    // prevent the device from staying in a locked/unusable state
    if (Locked) {
        status = KineticAdminClient_UnlockDevice(Fixture.adminSession, NewPin);
        TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
        Locked = false;
    }

    // Set the lock PIN back to empty
    if (NewPinSet) {
        status = KineticAdminClient_SetLockPin(Fixture.adminSession, NewPin, OldPin);
        TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
        NewPinSet = false;
    }

    SystemTestShutDown();
}

void test_KineticAdmin_should_lock_and_unlock_a_device(void)
{
    KineticStatus status;

    status = KineticAdminClient_LockDevice(Fixture.adminSession, NewPin);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
    Locked = true;

    /* Currently, the device appears to just hang up on us rather than
     * returning DEVICE_LOCKED (unlike the simulator). Some sort of
     * command here to confirm that the device lock succeeded would
     * be a better test. We need to check if the drive has another
     * interface that exposes this. */
    if (SystemTestIsUnderSimulator()) {
        // Validate the object cannot being accessed while locked
        KineticEntry getEntry = {
            .key = KeyBuffer,
            .tag = TagBuffer,
            .value = ValueBuffer,
            .force = true,
        };
        status = KineticClient_Get(Fixture.session, &getEntry, NULL);
        TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_DEVICE_LOCKED, status);
    }
    
    status = KineticAdminClient_UnlockDevice(Fixture.adminSession, NewPin);
    TEST_ASSERT_EQUAL_KineticStatus(KINETIC_STATUS_SUCCESS, status);
    Locked = false;
}
static void do_put_and_getkeyrange(KineticSession * const session) {
    for (int i = 0; i < 5; i++) {
        char key[] = "keyX";
        key[3] = '0' + i;
        ByteBuffer put_key_buf = ByteBuffer_MallocAndAppend(key, strlen(key));
        
        uint8_t value[] = "valueX";
        value[5] = '0' + i;
        ByteBuffer put_value_buf = ByteBuffer_MallocAndAppend(value, sizeof(value));
        
        /* Populate tag with SHA1 of value */
        ByteBuffer put_tag_buf = ByteBuffer_Malloc(20);
        uint8_t sha1[20];
        SHA1(put_value_buf.array.data, put_value_buf.bytesUsed, &sha1[0]);
        ByteBuffer_Append(&put_tag_buf, sha1, sizeof(sha1));
        
        KineticEntry put_entry = {
            .key = put_key_buf,
            .value = put_value_buf,
            .tag = put_tag_buf,
            .algorithm = KINETIC_ALGORITHM_SHA1,
            /* Set sync to WRITETHROUGH, which will wait to complete
             * until the drive has persistend the write. (WRITEBACK
             * returns as soon as the drive has buffered the write.) */
            .synchronization = KINETIC_SYNCHRONIZATION_WRITETHROUGH,
        };

        /* Put "keyX" => "valueX", where 'X' is 0..4.
         * This will block, because the callback field (arg 3) is NULL. */
        KineticStatus status = KineticClient_Put(session, &put_entry, NULL);
        printf("Put status: %s\n", Kinetic_GetStatusDescription(status));

        ByteBuffer_Free(put_key_buf);
        ByteBuffer_Free(put_value_buf);
        ByteBuffer_Free(put_tag_buf);
    }

    const size_t max_key_count = 5;
    const size_t max_key_length = 64;
    uint8_t first_key[max_key_length];
    uint8_t last_key[max_key_length];

    KineticKeyRange range = {
        .startKey = ByteBuffer_CreateAndAppendCString(first_key, sizeof(first_key), "key"),
        .endKey = ByteBuffer_CreateAndAppendCString(last_key, sizeof(last_key), "key\xFF"),
        .startKeyInclusive = true,
        .endKeyInclusive = true,
        .maxReturned = max_key_count,
    };
    
    uint8_t key_mem[max_key_count][max_key_length];
    memset(key_mem, 0, sizeof(key_mem));

    ByteBuffer key_buffers[max_key_count];
    for (size_t i = 0; i < max_key_count; i++) {
        key_buffers[i] = ByteBuffer_Create(&key_buffers[i], max_key_length, 0);
    }
    ByteBufferArray keys = {
        .buffers = key_buffers,
        .count = max_key_count,
    };

    /* Request the key range as specified in &range, populating the keys in &keys. */
    KineticStatus status = KineticClient_GetKeyRange(session, &range, &keys, NULL);
    printf("GetKeyRange status: %s\n", Kinetic_GetStatusDescription(status));
    
    if (status == KINETIC_STATUS_SUCCESS) {
        for (size_t i = 0; i < max_key_count; i++) {
            printf("%zd: %s\n", i, key_buffers[i].array.data);
        }
    }

    /* No cleanup necessary */
}

int main(int argc, char** argv)
{
    (void)argc;
    (void)argv;

    // Initialize kinetic-c and configure sessions
    KineticSession* session;
    KineticClientConfig clientConfig = {
        .logFile = "stdout",
        .logLevel = 1,
    };
    KineticClient * client = KineticClient_Init(&clientConfig);
    if (client == NULL) { return 1; }
    const char HmacKeyString[] = "asdfasdf";
    KineticSessionConfig sessionConfig = {
        .host = "localhost",
        .port = KINETIC_PORT,
        .clusterVersion = 0,
        .identity = 1,
        .hmacKey = ByteArray_CreateWithCString(HmacKeyString),
    };
    KineticStatus status = KineticClient_CreateSession(&sessionConfig, client, &session);
    if (status != KINETIC_STATUS_SUCCESS) {
        fprintf(stderr, "Failed connecting to the Kinetic device w/status: %s\n",
            Kinetic_GetStatusDescription(status));
        exit(1);
    }

    do_put_and_getkeyrange(session);
    
    // Shutdown client connection and cleanup
    KineticClient_DestroySession(session);
    KineticClient_Shutdown(client);
    return 0;
}
Example #7
0
void ConfigureEntry(struct UtilConfig * cfg, const char* key, const char* tag,
    const char* version, KineticAlgorithm algorithm, bool force, const char* value)
{
    assert(cfg != NULL);

    // Setup to write some test data
    cfg->entry = (KineticEntry) {
        .key = ByteBuffer_CreateAndAppendCString(cfg->keyData, sizeof(cfg->keyData), key),
        .tag = ByteBuffer_CreateAndAppendCString(cfg->tagData, sizeof(cfg->tagData), tag),
        .newVersion = ByteBuffer_CreateAndAppendCString(cfg->newVersionData, sizeof(cfg->newVersionData), version),
        .dbVersion = ByteBuffer_Create(cfg->versionData, sizeof(cfg->versionData), 0),
        .algorithm = algorithm,
        .value = ByteBuffer_CreateAndAppendCString(cfg->valueData, sizeof(cfg->valueData), value),
        .force = force,
    };
}

int ParseOptions(
    const int argc,
    char** const argv,
    struct UtilConfig * cfg)
{
    // Create an ArgP processor to parse arguments
    struct {
        OptionID opID;
        int logLevel;
        char host[HOST_NAME_MAX];
        int port;
        int tlsPort;
        int64_t clusterVersion;
        int64_t identity;
        char hmacKey[KINETIC_MAX_KEY_LEN];
        char logType[64];
        char deviceLogName[64];
        char key[64];
        char version[64];
        char tag[64];
        KineticAlgorithm algorithm;
        bool force;
        char value[1024];
    } opts = {
        .logLevel = 0,
        .host = "localhost",
        .port = KINETIC_PORT,
        .tlsPort = KINETIC_TLS_PORT,
        .clusterVersion = 0,
        .identity = 1,
        .hmacKey = "asdfasdf",
        .logType = "utilizations",
        .key = "foo",
        .tag = "SomeTagValue",
        .algorithm = KINETIC_ALGORITHM_SHA1,
        .force = true,
        .value = "Hello!",
    };

    // Create configuration for long format options
    struct option long_options[] = {

        // Help
        {"help",                        no_argument,       0, OPT_HELP},

        // Commands
        {"noop",                        no_argument,       0, OPT_NOOP},
        {"put",                         no_argument,       0, OPT_PUT},
        {"get",                         no_argument,       0, OPT_GET},
        {"delete",                      no_argument,       0, OPT_DELETE},
        {"getnext",                     no_argument,       0, OPT_GETNEXT},
        {"getprevious",                 no_argument,       0, OPT_GETPREVIOUS},
        {"getlog",                      no_argument,       0, OPT_GETLOG},
        {"getdevicespecificlog",        no_argument,       0, OPT_GETDEVICESPECIFICLOG},
        {"seterasepin",                 no_argument,       0, OPT_SETERASEPIN},
        {"instanterase",                no_argument,       0, OPT_INSTANTERASE},
        {"secureerase",                 no_argument,       0, OPT_SECUREERASE},
        {"setlockpin",                  no_argument,       0, OPT_SETLOCKPIN},
        {"lockdevice",                  no_argument,       0, OPT_LOCKDEVICE},
        {"unlockdevice",                no_argument,       0, OPT_UNLOCKDEVICE},
        {"setclusterversion",           no_argument,       0, OPT_SETCLUSTERVERSION},
        {"setacl",                      no_argument,       0, OPT_SETACL},
        {"updatefirmware",              no_argument,       0, OPT_UPDATEFIRMWARE},

        // Options
        {"loglevel",                    required_argument, 0, OPT_LOGLEVEL},
        {"host",                        required_argument, 0, OPT_HOST},
        {"port",                        required_argument, 0, OPT_PORT},
        {"tlsport",                     required_argument, 0, OPT_TLSPORT},
        {"identity",                    required_argument, 0, OPT_IDENTITY},
        {"hmackey",                     required_argument, 0, OPT_HMACKEY},
        {"clusterversion",              required_argument, 0, OPT_CLUSTERVERSION},
        {"file",                        required_argument, 0, OPT_FILE},
        {"newclusterversion",           required_argument, 0, OPT_NEWCLUSTERVERSION},
        {"pin",                         required_argument, 0, OPT_PIN},
        {"newpin",                      required_argument, 0, OPT_NEWPIN},
        {"logtype",                     required_argument, 0, OPT_LOGTYPE},
        {"devicelogname",               required_argument, 0, OPT_DEVICELOGNAME},
        {"key",                         required_argument, 0, OPT_KEY},
        {"value",                       required_argument, 0, OPT_VALUE},
        {0,                             0,                 0, 0},
    };

    // Parse the options from the command line
    extern char *optarg;
    extern int optind;
    int option, optionIndex = 0;
    while ((option = getopt_long(argc, argv, "?lhptics:", long_options, &optionIndex)) != -1) {
        switch (option) {
            case 0:
                // If this option, just set the flag
                if (long_options[optionIndex].flag != 0) {break;}
                // assert(false);
                // break;
            case OPT_LOGLEVEL:
                opts.logLevel = atoi(optarg);
                break;
            case OPT_HOST:
                strncpy(opts.host, optarg, sizeof(opts.host));
                break;
            case OPT_PORT:
                opts.port = atoi(optarg);
                break;
            case OPT_TLSPORT:
                opts.tlsPort = atoi(optarg);
                break;
            case OPT_IDENTITY:
                opts.identity = atoi(optarg);
                break;
            case OPT_HMACKEY:
                strncpy(opts.hmacKey, optarg, sizeof(opts.hmacKey)-1);
                break;
            case OPT_KEY:
                strncpy(opts.key, optarg, sizeof(opts.key)-1);
                break;
            case OPT_VALUE:
                strncpy(opts.value, optarg, sizeof(opts.value)-1);
                break;
            case OPT_CLUSTERVERSION:
                opts.clusterVersion = (int64_t)atol(optarg);
                break;
            case OPT_NEWCLUSTERVERSION:
                cfg->newClusterVersion = (int64_t)atol(optarg);
                break;
            case OPT_FILE:
                strncpy(cfg->file, optarg, sizeof(cfg->file)-1);
                break;
            case OPT_PIN:
                strncpy(cfg->pin, optarg, sizeof(cfg->pin)-1);
                break;
            case OPT_NEWPIN:
                strncpy(cfg->newPin, optarg, sizeof(cfg->newPin)-1);
                break;
            case OPT_LOGTYPE:
                strncpy(opts.logType, optarg, sizeof(opts.logType)-1);
                break;
            case OPT_DEVICELOGNAME:
                strncpy(cfg->deviceLogName, optarg, sizeof(cfg->deviceLogName)-1);
                break;

            case OPT_NOOP:
            case OPT_PUT:
            case OPT_GET:
            case OPT_DELETE:
            case OPT_GETNEXT:
            case OPT_GETPREVIOUS:
            case OPT_GETLOG:
            case OPT_GETDEVICESPECIFICLOG:
            case OPT_SETERASEPIN:
            case OPT_INSTANTERASE:
            case OPT_SECUREERASE:
            case OPT_SETLOCKPIN:
            case OPT_LOCKDEVICE:
            case OPT_UNLOCKDEVICE:
            case OPT_SETCLUSTERVERSION:
            case OPT_SETACL:
            case OPT_UPDATEFIRMWARE:
                if ((int)opts.opID == 0) {
                    opts.opID = option;
                    break;
                }
                fprintf(stderr, "Multiple operations specified!\n");
                PrintUsage(argv[0]);
                exit(-1);
            case OPT_HELP:
                PrintUsage(argv[0]);
                exit(0);
            default:
                PrintUsage(argv[0]);
                exit(-1);
        }
    }

    // Configure client
    cfg->logLevel = opts.logLevel;

    // Configure session
    cfg->config = (KineticSessionConfig) {
        .port = opts.port,
        .clusterVersion = opts.clusterVersion,
        .identity = opts.identity,
        .hmacKey = ByteArray_Create(cfg->hmacKeyData, strlen(opts.hmacKey)),
    };
    memcpy(cfg->hmacKeyData, opts.hmacKey, strlen(opts.hmacKey));
    strncpy(cfg->config.host, opts.host, sizeof(cfg->config.host)-1);

    // Configure admin session
    cfg->adminConfig = cfg->config;
    cfg->adminConfig.port = opts.tlsPort;
    cfg->adminConfig.useSsl = true;

    // Populate and configure the entry to be used for operations
    ConfigureEntry(cfg,
        opts.key, opts.tag, opts.version, opts.algorithm, opts.force, opts.value);

    cfg->opID = opts.opID;

    // Parse log type from string
    if (strcmp("utilizations", opts.logType) == 0) {
        cfg->logType = KINETIC_DEVICE_INFO_TYPE_UTILIZATIONS;
    }
    else if (strcmp("temperatures", opts.logType) == 0) {
        cfg->logType = KINETIC_DEVICE_INFO_TYPE_TEMPERATURES;
    }
    else if (strcmp("capacities", opts.logType) == 0) {
        cfg->logType = KINETIC_DEVICE_INFO_TYPE_CAPACITIES;
    }
    else if (strcmp("configuration", opts.logType) == 0) {
        cfg->logType = KINETIC_DEVICE_INFO_TYPE_CONFIGURATION;
    }
    else if (strcmp("statistics", opts.logType) == 0) {
        cfg->logType = KINETIC_DEVICE_INFO_TYPE_STATISTICS;
    }
    else if (strcmp("messages", opts.logType) == 0) {
        cfg->logType = KINETIC_DEVICE_INFO_TYPE_MESSAGES;
    }
    else if (strcmp("limits", opts.logType) == 0) {
        cfg->logType = KINETIC_DEVICE_INFO_TYPE_LIMITS;
    }
    else {
        fprintf(stderr, "Invalid log info type: %s\n", opts.logType);
        exit(1);
    }

    return optind;
}
int main(int argc, char** argv)
{
    (void)argc;
    (void)argv;

    // Initialize kinetic-c and configure sessions
    KineticSession* session;
    KineticClientConfig clientConfig = {
        .logFile = "stdout",
        .logLevel = 1,
    };
    KineticClient * client = KineticClient_Init(&clientConfig);
    if (client == NULL) { return 1; }
    const char HmacKeyString[] = "asdfasdf";
    KineticSessionConfig sessionConfig = {
        .host = "localhost",
        .port = KINETIC_PORT,
        .clusterVersion = 0,
        .identity = 1,
        .hmacKey = ByteArray_CreateWithCString(HmacKeyString),
    };
    KineticStatus status = KineticClient_CreateSession(&sessionConfig, client, &session);
    if (status != KINETIC_STATUS_SUCCESS) {
        fprintf(stderr, "Failed connecting to the Kinetic device w/status: %s\n",
            Kinetic_GetStatusDescription(status));
        return -1;
    }

    // Read in file contents to store
    const char* dataFile = "test/support/data/test.data";
    struct stat st;
    stat(dataFile, &st);
    char* buf = malloc(st.st_size);
    int fd = open(dataFile, O_RDONLY);
    long dataLen = read(fd, buf, st.st_size);
    close(fd);
    if (dataLen <= 0) {
        fprintf(stderr, "Failed reading data file to store: %s\n", dataFile);
        exit(-1);
    }

    write_args* writeArgs = calloc(NUM_FILES, sizeof(write_args));
    if (writeArgs == NULL) {
        fprintf(stderr, "Failed allocating overlapped thread arguments!\n");
    }

    // Kick off a thread for each file to store
    for (int i = 0; i < NUM_FILES; i++) {

        // Establish connection
        status = KineticClient_CreateSession(&sessionConfig, client, &writeArgs[i].session);
        if (status != KINETIC_STATUS_SUCCESS) {
            fprintf(stderr, "Failed connecting to the Kinetic device w/status: %s\n",
                Kinetic_GetStatusDescription(status));
            return -1;
        }
        strcpy(writeArgs[i].ip, sessionConfig.host);

        // Create a ByteBuffer for consuming chunks of data out of for overlapped PUTs
        writeArgs[i].data = ByteBuffer_Create(buf, dataLen, 0);

        // Configure common entry attributes
        struct timeval now;
        gettimeofday(&now, NULL);
        snprintf(writeArgs[i].keyPrefix, sizeof(writeArgs[i].keyPrefix), "%010llu_%02d_",
            (unsigned long long)now.tv_sec, i);
        ByteBuffer valBuf = ByteBuffer_Create(writeArgs[i].value, sizeof(writeArgs[i].value), 0);
        writeArgs[i].entry = (KineticEntry) {
            .key = ByteBuffer_CreateAndAppendCString(
                writeArgs[i].key, sizeof(writeArgs[i].key), writeArgs[i].keyPrefix),
            .tag = ByteBuffer_CreateAndAppendCString(
                writeArgs[i].tag, sizeof(writeArgs[i].tag), "some_value_tag..."),
            .algorithm = KINETIC_ALGORITHM_SHA1,
            .value = valBuf,
        };

        // Store the entry
        int threadCreateStatus = pthread_create(&writeArgs[i].threadID, NULL, store_data, &writeArgs[i]);
        REPORT_ERRNO(threadCreateStatus, "pthread_create");
        if (threadCreateStatus != 0) {
            fprintf(stderr, "pthread create failed!\n");
            exit(-2);
        }
    }

    // Wait for all PUT operations to complete and cleanup
    for (int i = 0; i < NUM_FILES; i++) {
        int joinStatus = pthread_join(writeArgs[i].threadID, NULL);
        if (joinStatus != 0) {
            fprintf(stderr, "pthread join failed!\n");
        }
        KineticClient_DestroySession(writeArgs[i].session);
    }

    // Shutdown client connection and cleanup
    KineticClient_Shutdown(client);
    free(writeArgs);
    free(buf);

    return 0;
}
Example #9
0
int main(int argc, char** argv)
{
    (void)argc;
    (void)argv;

    // Initialize kinetic-c and configure sessions
    KineticSession* session;
    KineticClientConfig clientConfig = {
        .logFile = "stdout",
        .logLevel = 1,
    };
    KineticClient * client = KineticClient_Init(&clientConfig);
    if (client == NULL) { return 1; }
    const char HmacKeyString[] = "asdfasdf";
    KineticSessionConfig sessionConfig = {
        .host = "localhost",
        .port = KINETIC_PORT,
        .clusterVersion = 0,
        .identity = 1,
        .hmacKey = ByteArray_CreateWithCString(HmacKeyString),
    };
    KineticStatus status = KineticClient_CreateSession(&sessionConfig, client, &session);
    if (status != KINETIC_STATUS_SUCCESS) {
        fprintf(stderr, "Failed connecting to the Kinetic device w/status: %s\n",
            Kinetic_GetStatusDescription(status));
        exit(1);
    }

    // Create some entries so that we can query the keys
    printf("Storing some entries on the device...\n");
    const size_t numKeys = 3;
    if (!create_entries(session, numKeys)) {
        return 2;
    }

    // Query a range of keys
    const size_t keyLen = 64;
    uint8_t startKeyData[keyLen], endKeyData[keyLen];
    KineticKeyRange range = {
        .startKey = ByteBuffer_CreateAndAppendCString(startKeyData, sizeof(startKeyData), "key_prefix_00"),
        .endKey = ByteBuffer_CreateAndAppendCString(endKeyData, sizeof(endKeyData), "key_prefix_01"),
        .startKeyInclusive = true,
        .endKeyInclusive = true,
        .maxReturned = 3,
    };
    uint8_t keysData[numKeys][keyLen];
    ByteBuffer keyBuff[] = {
        ByteBuffer_Create(&keysData[0], keyLen, 0),
        ByteBuffer_Create(&keysData[1], keyLen, 0),
        ByteBuffer_Create(&keysData[2], keyLen, 0),
    };
    ByteBufferArray keys = {.buffers = &keyBuff[0], .count = numKeys};

    status = KineticClient_GetKeyRange(session, &range, &keys, NULL);
    if (status != KINETIC_STATUS_SUCCESS) {
        fprintf(stderr, "FAILURE: Failed retrieving key range from device!\n");
        return 3;
    }

    if (keys.used != 2) {
        fprintf(stderr, "FAILURE: Unexpected number of keys in returned range!\n");
        return 4;
    };
    if (keyBuff[0].bytesUsed != strlen("key_prefix_00")) {
        fprintf(stderr, "FAILURE: Key 0 length check failed!\n");
        return 4;
    }
    if (keyBuff[1].bytesUsed != strlen("key_prefix_01")) {
        fprintf(stderr, "FAILURE: Key 1 length check failed!\n");
        return 4;
    }
    if (keyBuff[2].bytesUsed != 0) {
        fprintf(stderr, "FAILURE: Key 2 was not empty as expected!\n");
        return 4;
    }

    // Shutdown client connection and cleanup
    KineticClient_DestroySession(session);
    KineticClient_Shutdown(client);
    printf("Key range retrieved successfully!\n");

    return 0;
}

static bool create_entries(KineticSession * const session, const int count)
{
    static const ssize_t sz = 20;
    char key_buf[sz];
    char value_buf[sz];

    for (int i = 0; i < count; i++) {

        ByteBuffer KeyBuffer = ByteBuffer_CreateAndAppendFormattedCString(key_buf, sz, "key_prefix_%02d", i);
        ByteBuffer ValueBuffer = ByteBuffer_CreateAndAppendFormattedCString(value_buf, sz, "val_%02d", i);
        
        /* Populate tag with SHA1 of value */
        ByteBuffer put_tag_buf = ByteBuffer_Malloc(20);
        uint8_t sha1[20];
        SHA1(ValueBuffer.array.data, ValueBuffer.bytesUsed, &sha1[0]);
        ByteBuffer_Append(&put_tag_buf, sha1, sizeof(sha1));
        
        KineticEntry entry = {
            .key = KeyBuffer,
            .value = ValueBuffer,
            .tag = put_tag_buf,
            .algorithm = KINETIC_ALGORITHM_SHA1,
            .force = true,
            .synchronization = KINETIC_SYNCHRONIZATION_WRITETHROUGH,
        };

        KineticStatus status = KineticClient_Put(session, &entry, NULL);
        if (KINETIC_STATUS_SUCCESS != status) { return false; }
    }

    return true;
}