static int kvazaar_encode(kvz_encoder *enc, kvz_picture *pic_in, kvz_data_chunk **data_out, uint32_t *len_out, kvz_picture **pic_out, kvz_picture **src_out, kvz_frame_info *info_out) { if (data_out) *data_out = NULL; if (len_out) *len_out = 0; if (pic_out) *pic_out = NULL; if (src_out) *src_out = NULL; encoder_state_t *state = &enc->states[enc->cur_state_num]; if (!state->prepared) { kvz_encoder_next_frame(state); } if (pic_in != NULL) { // FIXME: The frame number printed here is wrong when GOP is enabled. CHECKPOINT_MARK("read source frame: %d", state->global->frame + enc->control->cfg->seek); } if (kvz_encoder_feed_frame(&enc->input_buffer, state, pic_in)) { assert(state->global->frame == enc->frames_started); // Start encoding. kvz_encode_one_frame(state); enc->frames_started += 1; } // If we have finished encoding as many frames as we have started, we are done. if (enc->frames_done == enc->frames_started) { return 1; } if (!state->frame_done) { // We started encoding a frame; move to the next encoder state. enc->cur_state_num = (enc->cur_state_num + 1) % (enc->num_encoder_states); } encoder_state_t *output_state = &enc->states[enc->out_state_num]; if (!output_state->frame_done && (pic_in == NULL || enc->cur_state_num == enc->out_state_num)) { kvz_threadqueue_waitfor(enc->control->threadqueue, output_state->tqj_bitstream_written); // The job pointer must be set to NULL here since it won't be usable after // the next frame is done. output_state->tqj_bitstream_written = NULL; // Get stream length before taking chunks since that clears the stream. if (len_out) *len_out = kvz_bitstream_tell(&output_state->stream) / 8; if (data_out) *data_out = kvz_bitstream_take_chunks(&output_state->stream); if (pic_out) *pic_out = kvz_image_copy_ref(output_state->tile->frame->rec); if (src_out) *src_out = kvz_image_copy_ref(output_state->tile->frame->source); if (info_out) set_frame_info(info_out, output_state); output_state->frame_done = 1; output_state->prepared = 0; enc->frames_done += 1; enc->out_state_num = (enc->out_state_num + 1) % (enc->num_encoder_states); } return 1; }
/** * \brief Program main function. * \param argc Argument count from commandline * \param argv Argument list * \return Program exit state */ int main(int argc, char *argv[]) { config *cfg = NULL; //!< Global configuration FILE *input = NULL; //!< input file (YUV) FILE *output = NULL; //!< output file (HEVC NAL stream) encoder_control encoder; double psnr[3] = { 0.0, 0.0, 0.0 }; uint32_t stat_frames = 0; uint64_t curpos = 0; FILE *recout = NULL; //!< reconstructed YUV output, --debug clock_t start_time = clock(); clock_t encoding_start_cpu_time; CLOCK_T encoding_start_real_time; clock_t encoding_end_cpu_time; CLOCK_T encoding_end_real_time; // Stdin and stdout need to be binary for input and output to work. // Stderr needs to be text mode to convert \n to \r\n in Windows. #ifdef _WIN32 _setmode( _fileno( stdin ), _O_BINARY ); _setmode( _fileno( stdout ), _O_BINARY ); _setmode( _fileno( stderr ), _O_TEXT ); #endif CHECKPOINTS_INIT(); // Handle configuration cfg = config_alloc(); // If problem with configuration, print banner and shutdown if (!cfg || !config_init(cfg) || !config_read(cfg,argc,argv)) { fprintf(stderr, "/***********************************************/\n" " * Kvazaar HEVC Encoder v. " VERSION_STRING " *\n" " * Tampere University of Technology 2014 *\n" "/***********************************************/\n\n"); fprintf(stderr, "Usage:\n" "kvazaar -i <input> --input-res <width>x<height> -o <output>\n" "\n" "Optional parameters:\n" " -n, --frames <integer> : Number of frames to code [all]\n" " --seek <integer> : First frame to code [0]\n" " --input-res <int>x<int> : Input resolution (width x height)\n" " -q, --qp <integer> : Quantization Parameter [32]\n" " -p, --period <integer> : Period of intra pictures [0]\n" " 0: only first picture is intra\n" " 1: all pictures are intra\n" " 2-N: every Nth picture is intra\n" " -r, --ref <integer> : Reference frames, range 1..15 [3]\n" " --no-deblock : Disable deblocking filter\n" " --deblock <beta:tc> : Deblocking filter parameters\n" " beta and tc range is -6..6 [0:0]\n" " --no-sao : Disable sample adaptive offset\n" " --no-rdoq : Disable RDO quantization\n" " --rd <integer> : Rate-Distortion Optimization level [1]\n" " 0: no RDO\n" " 1: estimated RDO\n" " 2: full RDO\n" " --full-intra-search : Try all intra modes.\n" " --no-transform-skip : Disable transform skip\n" " --aud : Use access unit delimiters\n" " --cqmfile <string> : Custom Quantization Matrices from a file\n" " --debug <string> : Output encoders reconstruction.\n" " --cpuid <integer> : Disable runtime cpu optimizations with value 0.\n" "\n" " Video Usability Information:\n" " --sar <width:height> : Specify Sample Aspect Ratio\n" " --overscan <string> : Specify crop overscan setting [\"undef\"]\n" " - undef, show, crop\n" " --videoformat <string> : Specify video format [\"undef\"]\n" " - component, pal, ntsc, secam, mac, undef\n" " --range <string> : Specify color range [\"tv\"]\n" " - tv, pc\n" " --colorprim <string> : Specify color primaries [\"undef\"]\n" " - undef, bt709, bt470m, bt470bg,\n" " smpte170m, smpte240m, film, bt2020\n" " --transfer <string> : Specify transfer characteristics [\"undef\"]\n" " - undef, bt709, bt470m, bt470bg,\n" " smpte170m, smpte240m, linear, log100,\n" " log316, iec61966-2-4, bt1361e,\n" " iec61966-2-1, bt2020-10, bt2020-12\n" " --colormatrix <string> : Specify color matrix setting [\"undef\"]\n" " - undef, bt709, fcc, bt470bg, smpte170m,\n" " smpte240m, GBR, YCgCo, bt2020nc, bt2020c\n" " --chromaloc <integer> : Specify chroma sample location (0 to 5) [0]\n" "\n" " Parallel processing :\n" " --threads <integer> : Maximum number of threads to use.\n" " Disable threads if set to 0.\n" "\n" " Tiles:\n" " --tiles-width-split <string>|u<int> : \n" " Specifies a comma separated list of pixel\n" " positions of tiles columns separation coordinates.\n" " Can also be u followed by and a single int n,\n" " in which case it produces columns of uniform width.\n" " --tiles-height-split <string>|u<int> : \n" " Specifies a comma separated list of pixel\n" " positions of tiles rows separation coordinates.\n" " Can also be u followed by and a single int n,\n" " in which case it produces rows of uniform height.\n" "\n" " Wpp:\n" " --wpp : Enable wavefront parallel processing\n" " --owf <integer> : Enable parallel processing of multiple frames\n" "\n" " Slices:\n" " --slice-addresses <string>|u<int>: \n" " Specifies a comma separated list of LCU\n" " positions in tile scan order of tile separations.\n" " Can also be u followed by and a single int n,\n" " in which case it produces uniform slice length.\n" "\n" " Deprecated parameters: (might be removed at some point)\n" " Use --input-res:\n" " -w, --width : Width of input in pixels\n" " -h, --height : Height of input in pixels\n"); goto exit_failure; } // Add dimensions to the reconstructions file name. if (cfg->debug != NULL) { char dim_str[50]; // log10(2^64) < 20, so this should suffice. I hate C. size_t left_len, right_len; sprintf(dim_str, "_%dx%d.yuv", cfg->width, cfg->height); left_len = strlen(cfg->debug); right_len = strlen(dim_str); cfg->debug = realloc(cfg->debug, left_len + right_len + 1); if (!cfg->debug) { fprintf(stderr, "realloc failed!\n"); goto exit_failure; } strcpy(cfg->debug + left_len, dim_str); } // Do more validation to make sure the parameters we have make sense. if (!config_validate(cfg)) { goto exit_failure; } //Initialize strategies if (!strategyselector_init(cfg->cpuid)) { fprintf(stderr, "Failed to initialize strategies.\n"); goto exit_failure; } // Check if the input file name is a dash, this means stdin if (!strcmp(cfg->input, "-")) { input = stdin; } else { // Otherwise we try to open the input file input = fopen(cfg->input, "rb"); } // Check that input was opened correctly if (input == NULL) { fprintf(stderr, "Could not open input file, shutting down!\n"); goto exit_failure; } // Open output file and check that it was opened correctly output = fopen(cfg->output, "wb"); if (output == NULL) { fprintf(stderr, "Could not open output file, shutting down!\n"); goto exit_failure; } if (cfg->debug != NULL) { recout = fopen(cfg->debug, "wb"); if (recout == NULL) { fprintf(stderr, "Could not open reconstruction file (%s), shutting down!\n", cfg->debug); goto exit_failure; } } //Allocate and init exp golomb table if (!init_exp_golomb(4096*8)) { fprintf(stderr, "Failed to allocate the exp golomb code table, shutting down!\n"); goto exit_failure; } if (!encoder_control_init(&encoder, cfg)) { goto exit_failure; } // Set output file encoder.out.file = output; // input init (TODO: read from commandline / config) encoder.bitdepth = 8; encoder.in.video_format = FORMAT_420; // deblocking filter encoder.deblock_enable = (int8_t)encoder.cfg->deblock_enable; encoder.beta_offset_div2 = (int8_t)encoder.cfg->deblock_beta; encoder.tc_offset_div2 = (int8_t)encoder.cfg->deblock_tc; // SAO encoder.sao_enable = (int8_t)encoder.cfg->sao_enable; // RDO encoder.rdoq_enable = (int8_t)encoder.cfg->rdoq_enable; encoder.rdo = (int8_t)encoder.cfg->rdo; encoder.full_intra_search = (int8_t)encoder.cfg->full_intra_search; // TR SKIP encoder.trskip_enable = (int8_t)encoder.cfg->trskip_enable; encoder.tr_depth_intra = (int8_t)encoder.cfg->tr_depth_intra; // VUI encoder.vui.sar_width = (int16_t)encoder.cfg->vui.sar_width; encoder.vui.sar_height = (int16_t)encoder.cfg->vui.sar_height; encoder.vui.overscan = encoder.cfg->vui.overscan; encoder.vui.videoformat = encoder.cfg->vui.videoformat; encoder.vui.fullrange = encoder.cfg->vui.fullrange; encoder.vui.colorprim = encoder.cfg->vui.colorprim; encoder.vui.transfer = encoder.cfg->vui.transfer; encoder.vui.colormatrix = encoder.cfg->vui.colormatrix; encoder.vui.chroma_loc = (int8_t)encoder.cfg->vui.chroma_loc; // AUD encoder.aud_enable = (int8_t)encoder.cfg->aud_enable; encoder.in.file = input; fprintf(stderr, "Input: %s, output: %s\n", cfg->input, cfg->output); fprintf(stderr, " Video size: %dx%d (input=%dx%d)\n", encoder.in.width, encoder.in.height, encoder.in.real_width, encoder.in.real_height); //Now, do the real stuff { encoder_state *encoder_states = malloc((encoder.owf + 1) * sizeof(encoder_state)); if (encoder_states == NULL) { fprintf(stderr, "Failed to allocate memory."); goto exit_failure; } int i; int current_encoder_state = 0; for (i = 0; i <= encoder.owf; ++i) { encoder_states[i].encoder_control = &encoder; if (i > 0) { encoder_states[i].previous_encoder_state = &encoder_states[i-1]; } else { //i == 0, use last encoder as the previous one encoder_states[i].previous_encoder_state = &encoder_states[encoder.owf]; } if (!encoder_state_init(&encoder_states[i], NULL)) { goto exit_failure; } encoder_states[i].global->QP = (int8_t)encoder.cfg->qp; } for (i = 0; i <= encoder.owf; ++i) { encoder_state_match_children_of_previous_frame(&encoder_states[i]); } //Initial frame encoder_states[current_encoder_state].global->frame = -1; // Only the code that handles conformance window coding needs to know // the real dimensions. As a quick fix for broken non-multiple of 8 videos, // change the input values here to be the real values. For a real fix // encoder.in probably needs to be merged into cfg. // The real fix would be: never go dig in cfg //cfg->width = encoder.in.width; //cfg->height = encoder.in.height; GET_TIME(&encoding_start_real_time); encoding_start_cpu_time = clock(); // Start coding cycle while data on input and not on the last frame while(!cfg->frames || encoder_states[current_encoder_state].global->frame < cfg->frames - 1) { // Skip '--seek' frames before input. // This block can be moved outside this while loop when there is a // mechanism to skip the while loop on error. if (encoder_states[current_encoder_state].global->frame == 0 && cfg->seek > 0) { int frame_bytes = cfg->width * cfg->height * 3 / 2; int error = 0; if (!strcmp(cfg->input, "-")) { // Input is stdin. int i; for (i = 0; !error && i < cfg->seek; ++i) { error = !read_one_frame(input, &encoder_states[current_encoder_state]); } } else { // input is a file. We hope. Proper detection is OS dependent. error = fseek(input, cfg->seek * frame_bytes, SEEK_CUR); } if (error && !feof(input)) { fprintf(stderr, "Failed to seek %d frames.\n", cfg->seek); break; } GET_TIME(&encoding_start_real_time); encoding_start_cpu_time = clock(); } //Compute stats encoder_compute_stats(&encoder_states[current_encoder_state], recout, &stat_frames, psnr); //Clear encoder encoder_next_frame(&encoder_states[current_encoder_state]); //Abort if enough frames if (cfg->frames && encoder_states[current_encoder_state].global->frame >= cfg->frames) { //Ignore this frame, which is not valid... encoder_states[current_encoder_state].stats_done = 1; break; } CHECKPOINT_MARK("read source frame: %d", encoder_states[current_encoder_state].global->frame + cfg->seek); // Read one frame from the input if (!read_one_frame(input, &encoder_states[current_encoder_state])) { if (!feof(input)) fprintf(stderr, "Failed to read a frame %d\n", encoder_states[current_encoder_state].global->frame); //Ignore this frame, which is not valid... encoder_states[current_encoder_state].stats_done = 1; break; } // The actual coding happens here, after this function we have a coded frame encode_one_frame(&encoder_states[current_encoder_state]); //Switch to the next encoder current_encoder_state = (current_encoder_state + 1) % (encoder.owf + 1); } //Compute stats for the remaining encoders { int first_enc = current_encoder_state; do { current_encoder_state = (current_encoder_state + 1) % (encoder.owf + 1); encoder_compute_stats(&encoder_states[current_encoder_state], recout, &stat_frames, psnr); } while (current_encoder_state != first_enc); } GET_TIME(&encoding_end_real_time); encoding_end_cpu_time = clock(); threadqueue_flush(encoder.threadqueue); // Coding finished fgetpos(output,(fpos_t*)&curpos); // Print statistics of the coding fprintf(stderr, " Processed %d frames, %10llu bits AVG PSNR: %2.4f %2.4f %2.4f\n", stat_frames, (long long unsigned int) curpos<<3, psnr[0] / stat_frames, psnr[1] / stat_frames, psnr[2] / stat_frames); fprintf(stderr, " Total CPU time: %.3f s.\n", ((float)(clock() - start_time)) / CLOCKS_PER_SEC); { double encoding_time = ((double)(encoding_end_cpu_time - encoding_start_cpu_time)) / CLOCKS_PER_SEC; double wall_time = CLOCK_T_AS_DOUBLE(encoding_end_real_time) - CLOCK_T_AS_DOUBLE(encoding_start_real_time); fprintf(stderr, " Encoding time: %.3lf s.\n", encoding_time); fprintf(stderr, " Encoding wall time: %.3lf s.\n", wall_time); fprintf(stderr, " Encoding CPU usage: %.2lf%%\n", encoding_time/wall_time*100.f); fprintf(stderr, " FPS: %.2lf\n", ((double)stat_frames)/wall_time); } fclose(input); fclose(output); if(recout != NULL) fclose(recout); for (i = 0; i <= encoder.owf; ++i) { encoder_state_finalize(&encoder_states[i]); } free(encoder_states); } // Deallocating config_destroy(cfg); encoder_control_finalize(&encoder); free_exp_golomb(); strategyselector_free(); CHECKPOINTS_FINALIZE(); return EXIT_SUCCESS; exit_failure: if (cfg) config_destroy(cfg); if (input) fclose(input); if (output) fclose(output); if (recout) fclose(recout); strategyselector_free(); CHECKPOINTS_FINALIZE(); return EXIT_FAILURE; }