/* ** An attack against RSA CRT was described by Boneh, DeMillo, and Lipton in: ** "On the Importance of Eliminating Errors in Cryptographic Computations", ** http://theory.stanford.edu/~dabo/papers/faults.ps.gz ** ** As a defense against the attack, carry out the private key operation, ** followed up with a public key operation to invert the result. ** Verify that result against the input. */ static SECStatus rsa_PrivateKeyOpCRTCheckedPubKey(RSAPrivateKey *key, mp_int *m, mp_int *c) { mp_int n, e, v; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; MP_DIGITS(&n) = 0; MP_DIGITS(&e) = 0; MP_DIGITS(&v) = 0; CHECK_MPI_OK( mp_init(&n) ); CHECK_MPI_OK( mp_init(&e) ); CHECK_MPI_OK( mp_init(&v) ); CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, m, c) ); SECITEM_TO_MPINT(key->modulus, &n); SECITEM_TO_MPINT(key->publicExponent, &e); /* Perform a public key operation v = m ** e mod n */ CHECK_MPI_OK( mp_exptmod(m, &e, &n, &v) ); if (mp_cmp(&v, c) != 0) { rv = SECFailure; } cleanup: mp_clear(&n); mp_clear(&e); mp_clear(&v); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; }
/* Generate a random private key using the algorithm A.4.1 of ANSI X9.62, * modified a la FIPS 186-2 Change Notice 1 to eliminate the bias in the * random number generator. * * Parameters * - order: a buffer that holds the curve's group order * - len: the length in octets of the order buffer * - random: a buffer of 2 * len random bytes * - randomlen: the length in octets of the random buffer * * Return Value * Returns a buffer of len octets that holds the private key. The caller * is responsible for freeing the buffer with PORT_ZFree. */ static unsigned char * ec_GenerateRandomPrivateKey(const unsigned char *order, int len, const unsigned char *random, int randomlen, int kmflag) { SECStatus rv = SECSuccess; mp_err err; unsigned char *privKeyBytes = NULL; mp_int privKeyVal, order_1, one; MP_DIGITS(&privKeyVal) = 0; MP_DIGITS(&order_1) = 0; MP_DIGITS(&one) = 0; CHECK_MPI_OK( mp_init(&privKeyVal, kmflag) ); CHECK_MPI_OK( mp_init(&order_1, kmflag) ); CHECK_MPI_OK( mp_init(&one, kmflag) ); /* * Reduces the 2*len buffer of random bytes modulo the group order. */ if ((privKeyBytes = PORT_Alloc(2*len, kmflag)) == NULL) goto cleanup; if (randomlen != 2 * len) { randomlen = 2 * len; } /* No need to generate - random bytes are now supplied */ /* CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(privKeyBytes, 2*len) );*/ memcpy(privKeyBytes, random, randomlen); CHECK_MPI_OK( mp_read_unsigned_octets(&privKeyVal, privKeyBytes, 2*len) ); CHECK_MPI_OK( mp_read_unsigned_octets(&order_1, order, len) ); CHECK_MPI_OK( mp_set_int(&one, 1) ); CHECK_MPI_OK( mp_sub(&order_1, &one, &order_1) ); CHECK_MPI_OK( mp_mod(&privKeyVal, &order_1, &privKeyVal) ); CHECK_MPI_OK( mp_add(&privKeyVal, &one, &privKeyVal) ); CHECK_MPI_OK( mp_to_fixlen_octets(&privKeyVal, privKeyBytes, len) ); memset(privKeyBytes+len, 0, len); cleanup: mp_clear(&privKeyVal); mp_clear(&order_1); mp_clear(&one); if (err < MP_OKAY) { MP_TO_SEC_ERROR(err); rv = SECFailure; } if (rv != SECSuccess && privKeyBytes) { #ifdef _KERNEL kmem_free(privKeyBytes, 2*len); #else free(privKeyBytes); #endif privKeyBytes = NULL; } return privKeyBytes; }
static SECStatus generate_prime(mp_int *prime, int primeLen) { mp_err err = MP_OKAY; SECStatus rv = SECSuccess; unsigned long counter = 0; int piter; unsigned char *pb = NULL; pb = PORT_Alloc(primeLen); if (!pb) { PORT_SetError(SEC_ERROR_NO_MEMORY); goto cleanup; } for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) { CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) ); pb[0] |= 0xC0; /* set two high-order bits */ pb[primeLen-1] |= 0x01; /* set low-order bit */ CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) ); err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter); if (err != MP_NO) goto cleanup; /* keep going while err == MP_NO */ } cleanup: if (pb) PORT_ZFree(pb, primeLen); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; }
/* Generate a random private key using the algorithm A.4.1 of ANSI X9.62, * modified a la FIPS 186-2 Change Notice 1 to eliminate the bias in the * random number generator. * * Parameters * - order: a buffer that holds the curve's group order * - len: the length in octets of the order buffer * * Return Value * Returns a buffer of len octets that holds the private key. The caller * is responsible for freeing the buffer with PORT_ZFree. */ static unsigned char * ec_GenerateRandomPrivateKey(const unsigned char *order, int len, int kmflag) { SECStatus rv = SECSuccess; mp_err err; unsigned char *privKeyBytes = NULL; mp_int privKeyVal, order_1, one; MP_DIGITS(&privKeyVal) = 0; MP_DIGITS(&order_1) = 0; MP_DIGITS(&one) = 0; CHECK_MPI_OK( mp_init(&privKeyVal) ); CHECK_MPI_OK( mp_init(&order_1) ); CHECK_MPI_OK( mp_init(&one) ); /* Generates 2*len random bytes using the global random bit generator * (which implements Algorithm 1 of FIPS 186-2 Change Notice 1) then * reduces modulo the group order. */ if ((privKeyBytes = PORT_Alloc(2*len, kmflag)) == NULL) goto cleanup; CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(privKeyBytes, 2*len) ); CHECK_MPI_OK( mp_read_unsigned_octets(&privKeyVal, privKeyBytes, 2*len) ); CHECK_MPI_OK( mp_read_unsigned_octets(&order_1, order, len) ); CHECK_MPI_OK( mp_set_int(&one, 1) ); CHECK_MPI_OK( mp_sub(&order_1, &one, &order_1) ); CHECK_MPI_OK( mp_mod(&privKeyVal, &order_1, &privKeyVal) ); CHECK_MPI_OK( mp_add(&privKeyVal, &one, &privKeyVal) ); CHECK_MPI_OK( mp_to_fixlen_octets(&privKeyVal, privKeyBytes, len) ); memset(privKeyBytes+len, 0, len); cleanup: mp_clear(&privKeyVal); mp_clear(&order_1); mp_clear(&one); if (err < MP_OKAY) { MP_TO_SEC_ERROR(err); rv = SECFailure; } if (rv != SECSuccess && privKeyBytes) { #ifdef _KERNEL kmem_free(privKeyBytes, 2*len); #else free(privKeyBytes); #endif privKeyBytes = NULL; } return privKeyBytes; }
/* ** RSA Private key operation (no CRT). */ static SECStatus rsa_PrivateKeyOpNoCRT(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n, unsigned int modLen) { mp_int d; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; MP_DIGITS(&d) = 0; CHECK_MPI_OK( mp_init(&d) ); SECITEM_TO_MPINT(key->privateExponent, &d); /* 1. m = c**d mod n */ CHECK_MPI_OK( mp_exptmod(c, &d, n, m) ); cleanup: mp_clear(&d); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; }
static SECStatus init_blinding_params(struct RSABlindingParamsStr *rsabp, RSAPrivateKey *key, mp_int *n, unsigned int modLen) { SECStatus rv = SECSuccess; mp_err err = MP_OKAY; MP_DIGITS(&rsabp->f) = 0; MP_DIGITS(&rsabp->g) = 0; /* initialize blinding parameters */ CHECK_MPI_OK( mp_init(&rsabp->f) ); CHECK_MPI_OK( mp_init(&rsabp->g) ); /* List elements are keyed using the modulus */ SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus); CHECK_SEC_OK( generate_blinding_params(rsabp, key, n, modLen) ); return SECSuccess; cleanup: mp_clear(&rsabp->f); mp_clear(&rsabp->g); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; }
PRBool KEA_Verify(SECItem *Y, SECItem *prime, SECItem *subPrime) { mp_int p, q, y, r; mp_err err; int cmp = 1; /* default is false */ if (!Y || !prime || !subPrime) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } MP_DIGITS(&p) = 0; MP_DIGITS(&q) = 0; MP_DIGITS(&y) = 0; MP_DIGITS(&r) = 0; CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&q) ); CHECK_MPI_OK( mp_init(&y) ); CHECK_MPI_OK( mp_init(&r) ); SECITEM_TO_MPINT(*prime, &p); SECITEM_TO_MPINT(*subPrime, &q); SECITEM_TO_MPINT(*Y, &y); /* compute r = y**q mod p */ CHECK_MPI_OK( mp_exptmod(&y, &q, &p, &r) ); /* compare to 1 */ cmp = mp_cmp_d(&r, 1); cleanup: mp_clear(&p); mp_clear(&q); mp_clear(&y); mp_clear(&r); if (err) { MP_TO_SEC_ERROR(err); return PR_FALSE; } return (cmp == 0) ? PR_TRUE : PR_FALSE; }
/* * FIPS 186-2 requires result from random output to be reduced mod q when * generating random numbers for DSA. * * Input: w, 2*qLen bytes * q, qLen bytes * Output: xj, qLen bytes */ static SECStatus fips186Change_ReduceModQForDSA(const PRUint8 *w, const PRUint8 *q, unsigned int qLen, PRUint8 * xj) { mp_int W, Q, Xj; mp_err err; SECStatus rv = SECSuccess; /* Initialize MPI integers. */ MP_DIGITS(&W) = 0; MP_DIGITS(&Q) = 0; MP_DIGITS(&Xj) = 0; CHECK_MPI_OK( mp_init(&W) ); CHECK_MPI_OK( mp_init(&Q) ); CHECK_MPI_OK( mp_init(&Xj) ); /* * Convert input arguments into MPI integers. */ CHECK_MPI_OK( mp_read_unsigned_octets(&W, w, 2*qLen) ); CHECK_MPI_OK( mp_read_unsigned_octets(&Q, q, qLen) ); /* * Algorithm 1 of FIPS 186-2 Change Notice 1, Step 3.3 * * xj = (w0 || w1) mod q */ CHECK_MPI_OK( mp_mod(&W, &Q, &Xj) ); CHECK_MPI_OK( mp_to_fixlen_octets(&Xj, xj, qLen) ); cleanup: mp_clear(&W); mp_clear(&Q); mp_clear(&Xj); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; }
static SECStatus generate_blinding_params(struct RSABlindingParamsStr *rsabp, RSAPrivateKey *key, mp_int *n, unsigned int modLen) { SECStatus rv = SECSuccess; mp_int e, k; mp_err err = MP_OKAY; unsigned char *kb = NULL; MP_DIGITS(&e) = 0; MP_DIGITS(&k) = 0; CHECK_MPI_OK( mp_init(&e) ); CHECK_MPI_OK( mp_init(&k) ); SECITEM_TO_MPINT(key->publicExponent, &e); /* generate random k < n */ kb = PORT_Alloc(modLen); if (!kb) { PORT_SetError(SEC_ERROR_NO_MEMORY); goto cleanup; } CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) ); CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) ); /* k < n */ CHECK_MPI_OK( mp_mod(&k, n, &k) ); /* f = k**e mod n */ CHECK_MPI_OK( mp_exptmod(&k, &e, n, &rsabp->f) ); /* g = k**-1 mod n */ CHECK_MPI_OK( mp_invmod(&k, n, &rsabp->g) ); /* Initialize the counter for this (f, g) */ rsabp->counter = RSA_BLINDING_PARAMS_MAX_REUSE; cleanup: if (kb) PORT_ZFree(kb, modLen); mp_clear(&k); mp_clear(&e); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; }
static SECStatus generate_blinding_params(RSAPrivateKey *key, mp_int* f, mp_int* g, mp_int *n, unsigned int modLen) { SECStatus rv = SECSuccess; mp_int e, k; mp_err err = MP_OKAY; unsigned char *kb = NULL; MP_DIGITS(&e) = 0; MP_DIGITS(&k) = 0; CHECK_MPI_OK( mp_init(&e) ); CHECK_MPI_OK( mp_init(&k) ); SECITEM_TO_MPINT(key->publicExponent, &e); /* generate random k < n */ kb = PORT_Alloc(modLen); if (!kb) { PORT_SetError(SEC_ERROR_NO_MEMORY); goto cleanup; } CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) ); CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) ); /* k < n */ CHECK_MPI_OK( mp_mod(&k, n, &k) ); /* f = k**e mod n */ CHECK_MPI_OK( mp_exptmod(&k, &e, n, f) ); /* g = k**-1 mod n */ CHECK_MPI_OK( mp_invmod(&k, n, g) ); cleanup: if (kb) PORT_ZFree(kb, modLen); mp_clear(&k); mp_clear(&e); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; }
SECStatus DH_GenParam(int primeLen, DHParams **params) { PLArenaPool *arena; DHParams *dhparams; unsigned char *pb = NULL; unsigned char *ab = NULL; unsigned long counter = 0; mp_int p, q, a, h, psub1, test; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; if (!params || primeLen < 0) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); if (!arena) { PORT_SetError(SEC_ERROR_NO_MEMORY); return SECFailure; } dhparams = (DHParams *)PORT_ArenaZAlloc(arena, sizeof(DHParams)); if (!dhparams) { PORT_SetError(SEC_ERROR_NO_MEMORY); PORT_FreeArena(arena, PR_TRUE); return SECFailure; } dhparams->arena = arena; MP_DIGITS(&p) = 0; MP_DIGITS(&q) = 0; MP_DIGITS(&a) = 0; MP_DIGITS(&h) = 0; MP_DIGITS(&psub1) = 0; MP_DIGITS(&test) = 0; CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&q) ); CHECK_MPI_OK( mp_init(&a) ); CHECK_MPI_OK( mp_init(&h) ); CHECK_MPI_OK( mp_init(&psub1) ); CHECK_MPI_OK( mp_init(&test) ); /* generate prime with MPI, uses Miller-Rabin to generate strong prime. */ pb = PORT_Alloc(primeLen); CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) ); pb[0] |= 0x80; /* set high-order bit */ pb[primeLen-1] |= 0x01; /* set low-order bit */ CHECK_MPI_OK( mp_read_unsigned_octets(&p, pb, primeLen) ); CHECK_MPI_OK( mpp_make_prime(&p, primeLen * 8, PR_TRUE, &counter) ); /* construct Sophie-Germain prime q = (p-1)/2. */ CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) ); CHECK_MPI_OK( mp_div_2(&psub1, &q) ); /* construct a generator from the prime. */ ab = PORT_Alloc(primeLen); /* generate a candidate number a in p's field */ CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(ab, primeLen) ); CHECK_MPI_OK( mp_read_unsigned_octets(&a, ab, primeLen) ); /* force a < p (note that quot(a/p) <= 1) */ if ( mp_cmp(&a, &p) > 0 ) CHECK_MPI_OK( mp_sub(&a, &p, &a) ); do { /* check that a is in the range [2..p-1] */ if ( mp_cmp_d(&a, 2) < 0 || mp_cmp(&a, &psub1) >= 0) { /* a is outside of the allowed range. Set a=3 and keep going. */ mp_set(&a, 3); } /* if a**q mod p != 1 then a is a generator */ CHECK_MPI_OK( mp_exptmod(&a, &q, &p, &test) ); if ( mp_cmp_d(&test, 1) != 0 ) break; /* increment the candidate and try again. */ CHECK_MPI_OK( mp_add_d(&a, 1, &a) ); } while (PR_TRUE); MPINT_TO_SECITEM(&p, &dhparams->prime, arena); MPINT_TO_SECITEM(&a, &dhparams->base, arena); *params = dhparams; cleanup: mp_clear(&p); mp_clear(&q); mp_clear(&a); mp_clear(&h); mp_clear(&psub1); mp_clear(&test); if (pb) PORT_ZFree(pb, primeLen); if (ab) PORT_ZFree(ab, primeLen); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } if (rv) PORT_FreeArena(arena, PR_TRUE); return rv; }
/* signature is caller-supplied buffer of at least 20 bytes. ** On input, signature->len == size of buffer to hold signature. ** digest->len == size of digest. */ SECStatus DSA_VerifyDigest(DSAPublicKey *key, const SECItem *signature, const SECItem *digest) { /* FIPS-compliance dictates that digest is a SHA hash. */ mp_int p, q, g; /* PQG parameters */ mp_int r_, s_; /* tuple (r', s') is received signature) */ mp_int u1, u2, v, w; /* intermediate values used in verification */ mp_int y; /* public key */ mp_err err; int dsa_subprime_len, dsa_signature_len, offset; SECItem localDigest; unsigned char localDigestData[DSA_MAX_SUBPRIME_LEN]; SECStatus verified = SECFailure; /* Check args. */ if (!key || !signature || !digest ) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } dsa_subprime_len = PQG_GetLength(&key->params.subPrime); dsa_signature_len = dsa_subprime_len*2; if ((signature->len != dsa_signature_len) || (digest->len > HASH_LENGTH_MAX) || (digest->len < SHA1_LENGTH)) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* DSA accepts digests not equal to dsa_subprime_len, if the * digests are greater, than they are truncated to the size of * dsa_subprime_len, using the left most bits. If they are less * then they are padded on the left.*/ PORT_Memset(localDigestData, 0, dsa_subprime_len); offset = (digest->len < dsa_subprime_len) ? (dsa_subprime_len - digest->len) : 0; PORT_Memcpy(localDigestData+offset, digest->data, dsa_subprime_len - offset); localDigest.data = localDigestData; localDigest.len = dsa_subprime_len; /* Initialize MPI integers. */ MP_DIGITS(&p) = 0; MP_DIGITS(&q) = 0; MP_DIGITS(&g) = 0; MP_DIGITS(&y) = 0; MP_DIGITS(&r_) = 0; MP_DIGITS(&s_) = 0; MP_DIGITS(&u1) = 0; MP_DIGITS(&u2) = 0; MP_DIGITS(&v) = 0; MP_DIGITS(&w) = 0; CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&q) ); CHECK_MPI_OK( mp_init(&g) ); CHECK_MPI_OK( mp_init(&y) ); CHECK_MPI_OK( mp_init(&r_) ); CHECK_MPI_OK( mp_init(&s_) ); CHECK_MPI_OK( mp_init(&u1) ); CHECK_MPI_OK( mp_init(&u2) ); CHECK_MPI_OK( mp_init(&v) ); CHECK_MPI_OK( mp_init(&w) ); /* ** Convert stored PQG and public key into MPI integers. */ SECITEM_TO_MPINT(key->params.prime, &p); SECITEM_TO_MPINT(key->params.subPrime, &q); SECITEM_TO_MPINT(key->params.base, &g); SECITEM_TO_MPINT(key->publicValue, &y); /* ** Convert received signature (r', s') into MPI integers. */ OCTETS_TO_MPINT(signature->data, &r_, dsa_subprime_len); OCTETS_TO_MPINT(signature->data + dsa_subprime_len, &s_, dsa_subprime_len); /* ** Verify that 0 < r' < q and 0 < s' < q */ if (mp_cmp_z(&r_) <= 0 || mp_cmp_z(&s_) <= 0 || mp_cmp(&r_, &q) >= 0 || mp_cmp(&s_, &q) >= 0) { /* err is zero here. */ PORT_SetError(SEC_ERROR_BAD_SIGNATURE); goto cleanup; /* will return verified == SECFailure */ } /* ** FIPS 186-1, Section 6, Step 1 ** ** w = (s')**-1 mod q */ CHECK_MPI_OK( mp_invmod(&s_, &q, &w) ); /* w = (s')**-1 mod q */ /* ** FIPS 186-1, Section 6, Step 2 ** ** u1 = ((Hash(M')) * w) mod q */ SECITEM_TO_MPINT(localDigest, &u1); /* u1 = HASH(M') */ CHECK_MPI_OK( mp_mulmod(&u1, &w, &q, &u1) ); /* u1 = u1 * w mod q */ /* ** FIPS 186-1, Section 6, Step 3 ** ** u2 = ((r') * w) mod q */ CHECK_MPI_OK( mp_mulmod(&r_, &w, &q, &u2) ); /* ** FIPS 186-1, Section 6, Step 4 ** ** v = ((g**u1 * y**u2) mod p) mod q */ CHECK_MPI_OK( mp_exptmod(&g, &u1, &p, &g) ); /* g = g**u1 mod p */ CHECK_MPI_OK( mp_exptmod(&y, &u2, &p, &y) ); /* y = y**u2 mod p */ CHECK_MPI_OK( mp_mulmod(&g, &y, &p, &v) ); /* v = g * y mod p */ CHECK_MPI_OK( mp_mod(&v, &q, &v) ); /* v = v mod q */ /* ** Verification: v == r' */ if (mp_cmp(&v, &r_)) { PORT_SetError(SEC_ERROR_BAD_SIGNATURE); verified = SECFailure; /* Signature failed to verify. */ } else { verified = SECSuccess; /* Signature verified. */ } cleanup: mp_clear(&p); mp_clear(&q); mp_clear(&g); mp_clear(&y); mp_clear(&r_); mp_clear(&s_); mp_clear(&u1); mp_clear(&u2); mp_clear(&v); mp_clear(&w); if (err) { translate_mpi_error(err); } return verified; }
SECStatus KEA_Derive(SECItem *prime, SECItem *public1, SECItem *public2, SECItem *private1, SECItem *private2, SECItem *derivedSecret) { mp_int p, Y, R, r, x, t, u, w; mp_err err; unsigned char *secret = NULL; unsigned int len = 0, offset; if (!prime || !public1 || !public2 || !private1 || !private2 || !derivedSecret) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } memset(derivedSecret, 0, sizeof *derivedSecret); MP_DIGITS(&p) = 0; MP_DIGITS(&Y) = 0; MP_DIGITS(&R) = 0; MP_DIGITS(&r) = 0; MP_DIGITS(&x) = 0; MP_DIGITS(&t) = 0; MP_DIGITS(&u) = 0; MP_DIGITS(&w) = 0; CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&Y) ); CHECK_MPI_OK( mp_init(&R) ); CHECK_MPI_OK( mp_init(&r) ); CHECK_MPI_OK( mp_init(&x) ); CHECK_MPI_OK( mp_init(&t) ); CHECK_MPI_OK( mp_init(&u) ); CHECK_MPI_OK( mp_init(&w) ); SECITEM_TO_MPINT(*prime, &p); SECITEM_TO_MPINT(*public1, &Y); SECITEM_TO_MPINT(*public2, &R); SECITEM_TO_MPINT(*private1, &r); SECITEM_TO_MPINT(*private2, &x); /* t = DH(Y, r, p) = Y ** r mod p */ CHECK_MPI_OK( mp_exptmod(&Y, &r, &p, &t) ); /* u = DH(R, x, p) = R ** x mod p */ CHECK_MPI_OK( mp_exptmod(&R, &x, &p, &u) ); /* w = (t + u) mod p */ CHECK_MPI_OK( mp_addmod(&t, &u, &p, &w) ); /* allocate a buffer for the full derived secret */ len = mp_unsigned_octet_size(&w); secret = PORT_Alloc(len); if (secret == NULL) { err = MP_MEM; goto cleanup; } /* grab the secret */ err = mp_to_unsigned_octets(&w, secret, len); if (err > 0) err = MP_OKAY; /* allocate output buffer */ if (SECITEM_AllocItem(NULL, derivedSecret, KEA_DERIVED_SECRET_LEN) == NULL) { err = MP_MEM; goto cleanup; } memset(derivedSecret->data, 0, derivedSecret->len); /* copy in the 128 lsb of the secret */ if (len >= KEA_DERIVED_SECRET_LEN) { memcpy(derivedSecret->data, secret + (len - KEA_DERIVED_SECRET_LEN), KEA_DERIVED_SECRET_LEN); } else { offset = KEA_DERIVED_SECRET_LEN - len; memcpy(derivedSecret->data + offset, secret, len); } cleanup: mp_clear(&p); mp_clear(&Y); mp_clear(&R); mp_clear(&r); mp_clear(&x); mp_clear(&t); mp_clear(&u); mp_clear(&w); if (secret) PORT_ZFree(secret, len); if (err) { MP_TO_SEC_ERROR(err); if (derivedSecret->data) PORT_ZFree(derivedSecret->data, derivedSecret->len); return SECFailure; } return SECSuccess; }
SECStatus DH_Derive(SECItem *publicValue, SECItem *prime, SECItem *privateValue, SECItem *derivedSecret, unsigned int outBytes) { mp_int p, Xa, Yb, ZZ, psub1; mp_err err = MP_OKAY; unsigned int len = 0; unsigned int nb; unsigned char *secret = NULL; if (!publicValue || !prime || !privateValue || !derivedSecret) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } memset(derivedSecret, 0, sizeof *derivedSecret); MP_DIGITS(&p) = 0; MP_DIGITS(&Xa) = 0; MP_DIGITS(&Yb) = 0; MP_DIGITS(&ZZ) = 0; MP_DIGITS(&psub1) = 0; CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&Xa) ); CHECK_MPI_OK( mp_init(&Yb) ); CHECK_MPI_OK( mp_init(&ZZ) ); CHECK_MPI_OK( mp_init(&psub1) ); SECITEM_TO_MPINT(*publicValue, &Yb); SECITEM_TO_MPINT(*privateValue, &Xa); SECITEM_TO_MPINT(*prime, &p); CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) ); /* We assume that the modulus, p, is a safe prime. That is, p = 2q+1 where * q is also a prime. Thus the orders of the subgroups are factors of 2q: * namely 1, 2, q and 2q. * * We check that the peer's public value isn't zero (which isn't in the * group), one (subgroup of order one) or p-1 (subgroup of order 2). We * also check that the public value is less than p, to avoid being fooled * by values like p+1 or 2*p-1. * * Thus we must be operating in the subgroup of size q or 2q. */ if (mp_cmp_d(&Yb, 1) <= 0 || mp_cmp(&Yb, &psub1) >= 0) { err = MP_BADARG; goto cleanup; } /* ZZ = (Yb)**Xa mod p */ CHECK_MPI_OK( mp_exptmod(&Yb, &Xa, &p, &ZZ) ); /* number of bytes in the derived secret */ len = mp_unsigned_octet_size(&ZZ); if (len <= 0) { err = MP_BADARG; goto cleanup; } /* * We check to make sure that ZZ is not equal to 1 or -1 mod p. * This helps guard against small subgroup attacks, since an attacker * using a subgroup of size N will produce 1 or -1 with probability 1/N. * When the protocol is executed within a properly large subgroup, the * probability of this result will be negligibly small. For example, * with a strong prime of the form 2p+1, the probability will be 1/p. * * We return MP_BADARG because this is probably the result of a bad * public value or a bad prime having been provided. */ if (mp_cmp_d(&ZZ, 1) == 0 || mp_cmp(&ZZ, &psub1) == 0) { err = MP_BADARG; goto cleanup; } /* allocate a buffer which can hold the entire derived secret. */ secret = PORT_Alloc(len); if (secret == NULL) { err = MP_MEM; goto cleanup; } /* grab the derived secret */ err = mp_to_unsigned_octets(&ZZ, secret, len); if (err >= 0) err = MP_OKAY; /* ** if outBytes is 0 take all of the bytes from the derived secret. ** if outBytes is not 0 take exactly outBytes from the derived secret, zero ** pad at the beginning if necessary, and truncate beginning bytes ** if necessary. */ if (outBytes > 0) nb = outBytes; else nb = len; if (SECITEM_AllocItem(NULL, derivedSecret, nb) == NULL) { err = MP_MEM; goto cleanup; } if (len < nb) { unsigned int offset = nb - len; memset(derivedSecret->data, 0, offset); memcpy(derivedSecret->data + offset, secret, len); } else { memcpy(derivedSecret->data, secret + len - nb, nb); } cleanup: mp_clear(&p); mp_clear(&Xa); mp_clear(&Yb); mp_clear(&ZZ); mp_clear(&psub1); if (secret) { /* free the buffer allocated for the full secret. */ PORT_ZFree(secret, len); } if (err) { MP_TO_SEC_ERROR(err); if (derivedSecret->data) PORT_ZFree(derivedSecret->data, derivedSecret->len); return SECFailure; } return SECSuccess; }
/* ** Perform a raw private-key operation ** Length of input and output buffers are equal to key's modulus len. */ static SECStatus rsa_PrivateKeyOp(RSAPrivateKey *key, unsigned char *output, const unsigned char *input, PRBool check) { unsigned int modLen; unsigned int offset; SECStatus rv = SECSuccess; mp_err err; mp_int n, c, m; mp_int f, g; if (!key || !output || !input) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* check input out of range (needs to be in range [0..n-1]) */ modLen = rsa_modulusLen(&key->modulus); offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } MP_DIGITS(&n) = 0; MP_DIGITS(&c) = 0; MP_DIGITS(&m) = 0; MP_DIGITS(&f) = 0; MP_DIGITS(&g) = 0; CHECK_MPI_OK( mp_init(&n) ); CHECK_MPI_OK( mp_init(&c) ); CHECK_MPI_OK( mp_init(&m) ); CHECK_MPI_OK( mp_init(&f) ); CHECK_MPI_OK( mp_init(&g) ); SECITEM_TO_MPINT(key->modulus, &n); OCTETS_TO_MPINT(input, &c, modLen); /* If blinding, compute pre-image of ciphertext by multiplying by ** blinding factor */ if (nssRSAUseBlinding) { CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) ); /* c' = c*f mod n */ CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) ); } /* Do the private key operation m = c**d mod n */ if ( key->prime1.len == 0 || key->prime2.len == 0 || key->exponent1.len == 0 || key->exponent2.len == 0 || key->coefficient.len == 0) { CHECK_SEC_OK( rsa_PrivateKeyOpNoCRT(key, &m, &c, &n, modLen) ); } else if (check) { CHECK_SEC_OK( rsa_PrivateKeyOpCRTCheckedPubKey(key, &m, &c) ); } else { CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, &m, &c) ); } /* If blinding, compute post-image of plaintext by multiplying by ** blinding factor */ if (nssRSAUseBlinding) { /* m = m'*g mod n */ CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) ); } err = mp_to_fixlen_octets(&m, output, modLen); if (err >= 0) err = MP_OKAY; cleanup: mp_clear(&n); mp_clear(&c); mp_clear(&m); mp_clear(&f); mp_clear(&g); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; }
/* Computes the ECDSA signature (a concatenation of two values r and s) * on the digest using the given key and the random value kb (used in * computing s). */ SECStatus ECDSA_SignDigestWithSeed(ECPrivateKey *key, SECItem *signature, const SECItem *digest, const unsigned char *kb, const int kblen) { SECStatus rv = SECFailure; #ifndef NSS_DISABLE_ECC mp_int x1; mp_int d, k; /* private key, random integer */ mp_int r, s; /* tuple (r, s) is the signature */ mp_int n; mp_err err = MP_OKAY; ECParams *ecParams = NULL; SECItem kGpoint = { siBuffer, NULL, 0}; int flen = 0; /* length in bytes of the field size */ unsigned olen; /* length in bytes of the base point order */ unsigned obits; /* length in bits of the base point order */ #if EC_DEBUG char mpstr[256]; #endif /* Initialize MPI integers. */ /* must happen before the first potential call to cleanup */ MP_DIGITS(&x1) = 0; MP_DIGITS(&d) = 0; MP_DIGITS(&k) = 0; MP_DIGITS(&r) = 0; MP_DIGITS(&s) = 0; MP_DIGITS(&n) = 0; /* Check args */ if (!key || !signature || !digest || !kb || (kblen < 0)) { PORT_SetError(SEC_ERROR_INVALID_ARGS); goto cleanup; } ecParams = &(key->ecParams); flen = (ecParams->fieldID.size + 7) >> 3; olen = ecParams->order.len; if (signature->data == NULL) { /* a call to get the signature length only */ goto finish; } if (signature->len < 2*olen) { PORT_SetError(SEC_ERROR_OUTPUT_LEN); goto cleanup; } CHECK_MPI_OK( mp_init(&x1) ); CHECK_MPI_OK( mp_init(&d) ); CHECK_MPI_OK( mp_init(&k) ); CHECK_MPI_OK( mp_init(&r) ); CHECK_MPI_OK( mp_init(&s) ); CHECK_MPI_OK( mp_init(&n) ); SECITEM_TO_MPINT( ecParams->order, &n ); SECITEM_TO_MPINT( key->privateValue, &d ); CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, kblen) ); /* Make sure k is in the interval [1, n-1] */ if ((mp_cmp_z(&k) <= 0) || (mp_cmp(&k, &n) >= 0)) { #if EC_DEBUG printf("k is outside [1, n-1]\n"); mp_tohex(&k, mpstr); printf("k : %s \n", mpstr); mp_tohex(&n, mpstr); printf("n : %s \n", mpstr); #endif PORT_SetError(SEC_ERROR_NEED_RANDOM); goto cleanup; } /* ** We do not want timing information to leak the length of k, ** so we compute k*G using an equivalent scalar of fixed ** bit-length. ** Fix based on patch for ECDSA timing attack in the paper ** by Billy Bob Brumley and Nicola Tuveri at ** http://eprint.iacr.org/2011/232 ** ** How do we convert k to a value of a fixed bit-length? ** k starts off as an integer satisfying 0 <= k < n. Hence, ** n <= k+n < 2n, which means k+n has either the same number ** of bits as n or one more bit than n. If k+n has the same ** number of bits as n, the second addition ensures that the ** final value has exactly one more bit than n. Thus, we ** always end up with a value that exactly one more bit than n. */ CHECK_MPI_OK( mp_add(&k, &n, &k) ); if (mpl_significant_bits(&k) <= mpl_significant_bits(&n)) { CHECK_MPI_OK( mp_add(&k, &n, &k) ); } /* ** ANSI X9.62, Section 5.3.2, Step 2 ** ** Compute kG */ kGpoint.len = 2*flen + 1; kGpoint.data = PORT_Alloc(2*flen + 1); if ((kGpoint.data == NULL) || (ec_points_mul(ecParams, &k, NULL, NULL, &kGpoint) != SECSuccess)) goto cleanup; /* ** ANSI X9.62, Section 5.3.3, Step 1 ** ** Extract the x co-ordinate of kG into x1 */ CHECK_MPI_OK( mp_read_unsigned_octets(&x1, kGpoint.data + 1, (mp_size) flen) ); /* ** ANSI X9.62, Section 5.3.3, Step 2 ** ** r = x1 mod n NOTE: n is the order of the curve */ CHECK_MPI_OK( mp_mod(&x1, &n, &r) ); /* ** ANSI X9.62, Section 5.3.3, Step 3 ** ** verify r != 0 */ if (mp_cmp_z(&r) == 0) { PORT_SetError(SEC_ERROR_NEED_RANDOM); goto cleanup; } /* ** ANSI X9.62, Section 5.3.3, Step 4 ** ** s = (k**-1 * (HASH(M) + d*r)) mod n */ SECITEM_TO_MPINT(*digest, &s); /* s = HASH(M) */ /* In the definition of EC signing, digests are truncated * to the length of n in bits. * (see SEC 1 "Elliptic Curve Digit Signature Algorithm" section 4.1.*/ CHECK_MPI_OK( (obits = mpl_significant_bits(&n)) ); if (digest->len*8 > obits) { mpl_rsh(&s,&s,digest->len*8 - obits); } #if EC_DEBUG mp_todecimal(&n, mpstr); printf("n : %s (dec)\n", mpstr); mp_todecimal(&d, mpstr); printf("d : %s (dec)\n", mpstr); mp_tohex(&x1, mpstr); printf("x1: %s\n", mpstr); mp_todecimal(&s, mpstr); printf("digest: %s (decimal)\n", mpstr); mp_todecimal(&r, mpstr); printf("r : %s (dec)\n", mpstr); mp_tohex(&r, mpstr); printf("r : %s\n", mpstr); #endif CHECK_MPI_OK( mp_invmod(&k, &n, &k) ); /* k = k**-1 mod n */ CHECK_MPI_OK( mp_mulmod(&d, &r, &n, &d) ); /* d = d * r mod n */ CHECK_MPI_OK( mp_addmod(&s, &d, &n, &s) ); /* s = s + d mod n */ CHECK_MPI_OK( mp_mulmod(&s, &k, &n, &s) ); /* s = s * k mod n */ #if EC_DEBUG mp_todecimal(&s, mpstr); printf("s : %s (dec)\n", mpstr); mp_tohex(&s, mpstr); printf("s : %s\n", mpstr); #endif /* ** ANSI X9.62, Section 5.3.3, Step 5 ** ** verify s != 0 */ if (mp_cmp_z(&s) == 0) { PORT_SetError(SEC_ERROR_NEED_RANDOM); goto cleanup; } /* ** ** Signature is tuple (r, s) */ CHECK_MPI_OK( mp_to_fixlen_octets(&r, signature->data, olen) ); CHECK_MPI_OK( mp_to_fixlen_octets(&s, signature->data + olen, olen) ); finish: signature->len = 2*olen; rv = SECSuccess; err = MP_OKAY; cleanup: mp_clear(&x1); mp_clear(&d); mp_clear(&k); mp_clear(&r); mp_clear(&s); mp_clear(&n); if (kGpoint.data) { PORT_ZFree(kGpoint.data, 2*flen + 1); } if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } #if EC_DEBUG printf("ECDSA signing with seed %s\n", (rv == SECSuccess) ? "succeeded" : "failed"); #endif #else PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); #endif /* NSS_DISABLE_ECC */ return rv; }
/* Validates an EC public key as described in Section 5.2.2 of * X9.62. The ECDH primitive when used without the cofactor does * not address small subgroup attacks, which may occur when the * public key is not valid. These attacks can be prevented by * validating the public key before using ECDH. */ SECStatus EC_ValidatePublicKey(ECParams *ecParams, SECItem *publicValue) { #ifndef NSS_DISABLE_ECC mp_int Px, Py; ECGroup *group = NULL; SECStatus rv = SECFailure; mp_err err = MP_OKAY; int len; if (!ecParams || !publicValue) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* NOTE: We only support uncompressed points for now */ len = (ecParams->fieldID.size + 7) >> 3; if (publicValue->data[0] != EC_POINT_FORM_UNCOMPRESSED) { PORT_SetError(SEC_ERROR_UNSUPPORTED_EC_POINT_FORM); return SECFailure; } else if (publicValue->len != (2 * len + 1)) { PORT_SetError(SEC_ERROR_BAD_KEY); return SECFailure; } MP_DIGITS(&Px) = 0; MP_DIGITS(&Py) = 0; CHECK_MPI_OK( mp_init(&Px) ); CHECK_MPI_OK( mp_init(&Py) ); /* Initialize Px and Py */ CHECK_MPI_OK( mp_read_unsigned_octets(&Px, publicValue->data + 1, (mp_size) len) ); CHECK_MPI_OK( mp_read_unsigned_octets(&Py, publicValue->data + 1 + len, (mp_size) len) ); /* construct from named params */ group = ECGroup_fromName(ecParams->name); if (group == NULL) { /* * ECGroup_fromName fails if ecParams->name is not a valid * ECCurveName value, or if we run out of memory, or perhaps * for other reasons. Unfortunately if ecParams->name is a * valid ECCurveName value, we don't know what the right error * code should be because ECGroup_fromName doesn't return an * error code to the caller. Set err to MP_UNDEF because * that's what ECGroup_fromName uses internally. */ if ((ecParams->name <= ECCurve_noName) || (ecParams->name >= ECCurve_pastLastCurve)) { err = MP_BADARG; } else { err = MP_UNDEF; } goto cleanup; } /* validate public point */ if ((err = ECPoint_validate(group, &Px, &Py)) < MP_YES) { if (err == MP_NO) { PORT_SetError(SEC_ERROR_BAD_KEY); rv = SECFailure; err = MP_OKAY; /* don't change the error code */ } goto cleanup; } rv = SECSuccess; cleanup: ECGroup_free(group); mp_clear(&Px); mp_clear(&Py); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; #else PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); return SECFailure; #endif /* NSS_DISABLE_ECC */ }
/* ** RSA Private key operation using CRT. */ static SECStatus rsa_PrivateKeyOpCRTNoCheck(RSAPrivateKey *key, mp_int *m, mp_int *c) { mp_int p, q, d_p, d_q, qInv; mp_int m1, m2, h, ctmp; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; MP_DIGITS(&p) = 0; MP_DIGITS(&q) = 0; MP_DIGITS(&d_p) = 0; MP_DIGITS(&d_q) = 0; MP_DIGITS(&qInv) = 0; MP_DIGITS(&m1) = 0; MP_DIGITS(&m2) = 0; MP_DIGITS(&h) = 0; MP_DIGITS(&ctmp) = 0; CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&q) ); CHECK_MPI_OK( mp_init(&d_p) ); CHECK_MPI_OK( mp_init(&d_q) ); CHECK_MPI_OK( mp_init(&qInv) ); CHECK_MPI_OK( mp_init(&m1) ); CHECK_MPI_OK( mp_init(&m2) ); CHECK_MPI_OK( mp_init(&h) ); CHECK_MPI_OK( mp_init(&ctmp) ); /* copy private key parameters into mp integers */ SECITEM_TO_MPINT(key->prime1, &p); /* p */ SECITEM_TO_MPINT(key->prime2, &q); /* q */ SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */ SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_q = d mod (q-1) */ SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */ /* 1. m1 = c**d_p mod p */ CHECK_MPI_OK( mp_mod(c, &p, &ctmp) ); CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) ); /* 2. m2 = c**d_q mod q */ CHECK_MPI_OK( mp_mod(c, &q, &ctmp) ); CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) ); /* 3. h = (m1 - m2) * qInv mod p */ CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) ); CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h) ); /* 4. m = m2 + h * q */ CHECK_MPI_OK( mp_mul(&h, &q, m) ); CHECK_MPI_OK( mp_add(m, &m2, m) ); cleanup: mp_clear(&p); mp_clear(&q); mp_clear(&d_p); mp_clear(&d_q); mp_clear(&qInv); mp_clear(&m1); mp_clear(&m2); mp_clear(&h); mp_clear(&ctmp); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; }
static SECStatus get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen, mp_int *f, mp_int *g) { RSABlindingParams *rsabp = NULL; blindingParams *bpUnlinked = NULL; blindingParams *bp, *prevbp = NULL; PRCList *el; SECStatus rv = SECSuccess; mp_err err = MP_OKAY; int cmp = -1; PRBool holdingLock = PR_FALSE; do { if (blindingParamsList.lock == NULL) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /* Acquire the list lock */ PZ_Lock(blindingParamsList.lock); holdingLock = PR_TRUE; /* Walk the list looking for the private key */ for (el = PR_NEXT_LINK(&blindingParamsList.head); el != &blindingParamsList.head; el = PR_NEXT_LINK(el)) { rsabp = (RSABlindingParams *)el; cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus); if (cmp >= 0) { /* The key is found or not in the list. */ break; } } if (cmp) { /* At this point, the key is not in the list. el should point to ** the list element before which this key should be inserted. */ rsabp = PORT_ZNew(RSABlindingParams); if (!rsabp) { PORT_SetError(SEC_ERROR_NO_MEMORY); goto cleanup; } rv = init_blinding_params(rsabp, key, n, modLen); if (rv != SECSuccess) { PORT_ZFree(rsabp, sizeof(RSABlindingParams)); goto cleanup; } /* Insert the new element into the list ** If inserting in the middle of the list, el points to the link ** to insert before. Otherwise, the link needs to be appended to ** the end of the list, which is the same as inserting before the ** head (since el would have looped back to the head). */ PR_INSERT_BEFORE(&rsabp->link, el); } /* We've found (or created) the RSAblindingParams struct for this key. * Now, search its list of ready blinding params for a usable one. */ while (0 != (bp = rsabp->bp)) { if (--(bp->counter) > 0) { /* Found a match and there are still remaining uses left */ /* Return the parameters */ CHECK_MPI_OK( mp_copy(&bp->f, f) ); CHECK_MPI_OK( mp_copy(&bp->g, g) ); PZ_Unlock(blindingParamsList.lock); return SECSuccess; } /* exhausted this one, give its values to caller, and * then retire it. */ mp_exch(&bp->f, f); mp_exch(&bp->g, g); mp_clear( &bp->f ); mp_clear( &bp->g ); bp->counter = 0; /* Move to free list */ rsabp->bp = bp->next; bp->next = rsabp->free; rsabp->free = bp; /* In case there're threads waiting for new blinding * value - notify 1 thread the value is ready */ if (blindingParamsList.waitCount > 0) { PR_NotifyCondVar( blindingParamsList.cVar ); blindingParamsList.waitCount--; } PZ_Unlock(blindingParamsList.lock); return SECSuccess; } /* We did not find a usable set of blinding params. Can we make one? */ /* Find a free bp struct. */ prevbp = NULL; if ((bp = rsabp->free) != NULL) { /* unlink this bp */ rsabp->free = bp->next; bp->next = NULL; bpUnlinked = bp; /* In case we fail */ PZ_Unlock(blindingParamsList.lock); holdingLock = PR_FALSE; /* generate blinding parameter values for the current thread */ CHECK_SEC_OK( generate_blinding_params(key, f, g, n, modLen ) ); /* put the blinding parameter values into cache */ CHECK_MPI_OK( mp_init( &bp->f) ); CHECK_MPI_OK( mp_init( &bp->g) ); CHECK_MPI_OK( mp_copy( f, &bp->f) ); CHECK_MPI_OK( mp_copy( g, &bp->g) ); /* Put this at head of queue of usable params. */ PZ_Lock(blindingParamsList.lock); holdingLock = PR_TRUE; /* initialize RSABlindingParamsStr */ bp->counter = RSA_BLINDING_PARAMS_MAX_REUSE; bp->next = rsabp->bp; rsabp->bp = bp; bpUnlinked = NULL; /* In case there're threads waiting for new blinding value * just notify them the value is ready */ if (blindingParamsList.waitCount > 0) { PR_NotifyAllCondVar( blindingParamsList.cVar ); blindingParamsList.waitCount = 0; } PZ_Unlock(blindingParamsList.lock); return SECSuccess; } /* Here, there are no usable blinding parameters available, * and no free bp blocks, presumably because they're all * actively having parameters generated for them. * So, we need to wait here and not eat up CPU until some * change happens. */ blindingParamsList.waitCount++; PR_WaitCondVar( blindingParamsList.cVar, PR_INTERVAL_NO_TIMEOUT ); PZ_Unlock(blindingParamsList.lock); holdingLock = PR_FALSE; } while (1); cleanup: /* It is possible to reach this after the lock is already released. */ if (bpUnlinked) { if (!holdingLock) { PZ_Lock(blindingParamsList.lock); holdingLock = PR_TRUE; } bp = bpUnlinked; mp_clear( &bp->f ); mp_clear( &bp->g ); bp->counter = 0; /* Must put the unlinked bp back on the free list */ bp->next = rsabp->free; rsabp->free = bp; } if (holdingLock) { PZ_Unlock(blindingParamsList.lock); holdingLock = PR_FALSE; } if (err) { MP_TO_SEC_ERROR(err); } return SECFailure; }
/* ** Perform a raw public-key operation ** Length of input and output buffers are equal to key's modulus len. */ SECStatus RSA_PublicKeyOp(RSAPublicKey *key, unsigned char *output, const unsigned char *input) { unsigned int modLen, expLen, offset; mp_int n, e, m, c; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; if (!key || !output || !input) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } MP_DIGITS(&n) = 0; MP_DIGITS(&e) = 0; MP_DIGITS(&m) = 0; MP_DIGITS(&c) = 0; CHECK_MPI_OK( mp_init(&n) ); CHECK_MPI_OK( mp_init(&e) ); CHECK_MPI_OK( mp_init(&m) ); CHECK_MPI_OK( mp_init(&c) ); modLen = rsa_modulusLen(&key->modulus); expLen = rsa_modulusLen(&key->publicExponent); /* 1. Obtain public key (n, e) */ if (BAD_RSA_KEY_SIZE(modLen, expLen)) { PORT_SetError(SEC_ERROR_INVALID_KEY); rv = SECFailure; goto cleanup; } SECITEM_TO_MPINT(key->modulus, &n); SECITEM_TO_MPINT(key->publicExponent, &e); if (e.used > n.used) { /* exponent should not be greater than modulus */ PORT_SetError(SEC_ERROR_INVALID_KEY); rv = SECFailure; goto cleanup; } /* 2. check input out of range (needs to be in range [0..n-1]) */ offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { PORT_SetError(SEC_ERROR_INPUT_LEN); rv = SECFailure; goto cleanup; } /* 2 bis. Represent message as integer in range [0..n-1] */ CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) ); /* 3. Compute c = m**e mod n */ #ifdef USE_MPI_EXPT_D /* XXX see which is faster */ if (MP_USED(&e) == 1) { CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) ); } else #endif CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) ); /* 4. result c is ciphertext */ err = mp_to_fixlen_octets(&c, output, modLen); if (err >= 0) err = MP_OKAY; cleanup: mp_clear(&n); mp_clear(&e); mp_clear(&m); mp_clear(&c); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; }
/* * take a private key with only a few elements and fill out the missing pieces. * * All the entries will be overwritten with data allocated out of the arena * If no arena is supplied, one will be created. * * The following fields must be supplied in order for this function * to succeed: * one of either publicExponent or privateExponent * two more of the following 5 parameters. * modulus (n) * prime1 (p) * prime2 (q) * publicExponent (e) * privateExponent (d) * * NOTE: if only the publicExponent, privateExponent, and one prime is given, * then there may be more than one RSA key that matches that combination. * * All parameters will be replaced in the key structure with new parameters * Allocated out of the arena. There is no attempt to free the old structures. * Prime1 will always be greater than prime2 (even if the caller supplies the * smaller prime as prime1 or the larger prime as prime2). The parameters are * not overwritten on failure. * * How it works: * We can generate all the parameters from: * one of the exponents, plus the two primes. (rsa_build_key_from_primes) * * If we are given one of the exponents and both primes, we are done. * If we are given one of the exponents, the modulus and one prime, we * caclulate the second prime by dividing the modulus by the given * prime, giving us and exponent and 2 primes. * If we are given 2 exponents and either the modulus or one of the primes * we calculate k*phi = d*e-1, where k is an integer less than d which * divides d*e-1. We find factor k so we can isolate phi. * phi = (p-1)(q-1) * If one of the primes are given, we can use phi to find the other prime * as follows: q = (phi/(p-1)) + 1. We now have 2 primes and an * exponent. (NOTE: if more then one prime meets this condition, the * operation will fail. See comments elsewhere in this file about this). * If the modulus is given, then we can calculate the sum of the primes * as follows: s := (p+q), phi = (p-1)(q-1) = pq -p - q +1, pq = n -> * phi = n - s + 1, s = n - phi +1. Now that we have s = p+q and n=pq, * we can solve our 2 equations and 2 unknowns as follows: q=s-p -> * n=p*(s-p)= sp -p^2 -> p^2-sp+n = 0. Using the quadratic to solve for * p, p=1/2*(s+ sqrt(s*s-4*n)) [q=1/2*(s-sqrt(s*s-4*n)]. We again have * 2 primes and an exponent. * */ SECStatus RSA_PopulatePrivateKey(RSAPrivateKey *key) { PLArenaPool *arena = NULL; PRBool needPublicExponent = PR_TRUE; PRBool needPrivateExponent = PR_TRUE; PRBool hasModulus = PR_FALSE; unsigned int keySizeInBits = 0; int prime_count = 0; /* standard RSA nominclature */ mp_int p, q, e, d, n; /* remainder */ mp_int r; mp_err err = 0; SECStatus rv = SECFailure; MP_DIGITS(&p) = 0; MP_DIGITS(&q) = 0; MP_DIGITS(&e) = 0; MP_DIGITS(&d) = 0; MP_DIGITS(&n) = 0; MP_DIGITS(&r) = 0; CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&q) ); CHECK_MPI_OK( mp_init(&e) ); CHECK_MPI_OK( mp_init(&d) ); CHECK_MPI_OK( mp_init(&n) ); CHECK_MPI_OK( mp_init(&r) ); /* if the key didn't already have an arena, create one. */ if (key->arena == NULL) { arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); if (!arena) { goto cleanup; } key->arena = arena; } /* load up the known exponents */ if (key->publicExponent.data) { SECITEM_TO_MPINT(key->publicExponent, &e); needPublicExponent = PR_FALSE; } if (key->privateExponent.data) { SECITEM_TO_MPINT(key->privateExponent, &d); needPrivateExponent = PR_FALSE; } if (needPrivateExponent && needPublicExponent) { /* Not enough information, we need at least one exponent */ err = MP_BADARG; goto cleanup; } /* load up the known primes. If only one prime is given, it will be * assigned 'p'. Once we have both primes, well make sure p is the larger. * The value prime_count tells us howe many we have acquired. */ if (key->prime1.data) { int primeLen = key->prime1.len; if (key->prime1.data[0] == 0) { primeLen--; } keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE; SECITEM_TO_MPINT(key->prime1, &p); prime_count++; } if (key->prime2.data) { int primeLen = key->prime2.len; if (key->prime2.data[0] == 0) { primeLen--; } keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE; SECITEM_TO_MPINT(key->prime2, prime_count ? &q : &p); prime_count++; } /* load up the modulus */ if (key->modulus.data) { int modLen = key->modulus.len; if (key->modulus.data[0] == 0) { modLen--; } keySizeInBits = modLen * PR_BITS_PER_BYTE; SECITEM_TO_MPINT(key->modulus, &n); hasModulus = PR_TRUE; } /* if we have the modulus and one prime, calculate the second. */ if ((prime_count == 1) && (hasModulus)) { mp_div(&n,&p,&q,&r); if (mp_cmp_z(&r) != 0) { /* p is not a factor or n, fail */ err = MP_BADARG; goto cleanup; } prime_count++; } /* If we didn't have enough primes try to calculate the primes from * the exponents */ if (prime_count < 2) { /* if we don't have at least 2 primes at this point, then we need both * exponents and one prime or a modulus*/ if (!needPublicExponent && !needPrivateExponent && ((prime_count > 0) || hasModulus)) { CHECK_MPI_OK(rsa_get_primes_from_exponents(&e,&d,&p,&q, &n,hasModulus,keySizeInBits)); } else { /* not enough given parameters to get both primes */ err = MP_BADARG; goto cleanup; } } /* force p to the the larger prime */ if (mp_cmp(&p, &q) < 0) mp_exch(&p, &q); /* we now have our 2 primes and at least one exponent, we can fill * in the key */ rv = rsa_build_from_primes(&p, &q, &e, needPublicExponent, &d, needPrivateExponent, key, keySizeInBits); cleanup: mp_clear(&p); mp_clear(&q); mp_clear(&e); mp_clear(&d); mp_clear(&n); mp_clear(&r); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } if (rv && arena) { PORT_FreeArena(arena, PR_TRUE); key->arena = NULL; } return rv; }
/* * Try to find the two primes based on 2 exponents plus either a prime * or a modulus. * * In: e, d and either p or n (depending on the setting of hasModulus). * Out: p,q. * * Step 1, Since d = e**-1 mod phi, we know that d*e == 1 mod phi, or * d*e = 1+k*phi, or d*e-1 = k*phi. since d is less than phi and e is * usually less than d, then k must be an integer between e-1 and 1 * (probably on the order of e). * Step 1a, If we were passed just a prime, we can divide k*phi by that * prime-1 and get k*(q-1). This will reduce the size of our division * through the rest of the loop. * Step 2, Loop through the values k=e-1 to 1 looking for k. k should be on * the order or e, and e is typically small. This may take a while for * a large random e. We are looking for a k that divides kphi * evenly. Once we find a k that divides kphi evenly, we assume it * is the true k. It's possible this k is not the 'true' k but has * swapped factors of p-1 and/or q-1. Because of this, we * tentatively continue Steps 3-6 inside this loop, and may return looking * for another k on failure. * Step 3, Calculate are tentative phi=kphi/k. Note: real phi is (p-1)*(q-1). * Step 4a, if we have a prime, kphi is already k*(q-1), so phi is or tenative * q-1. q = phi+1. If k is correct, q should be the right length and * prime. * Step 4b, It's possible q-1 and k could have swapped factors. We now have a * possible solution that meets our criteria. It may not be the only * solution, however, so we keep looking. If we find more than one, * we will fail since we cannot determine which is the correct * solution, and returning the wrong modulus will compromise both * moduli. If no other solution is found, we return the unique solution. * Step 5a, If we have the modulus (n=pq), then use the following formula to * calculate s=(p+q): , phi = (p-1)(q-1) = pq -p-q +1 = n-s+1. so * s=n-phi+1. * Step 5b, Use n=pq and s=p+q to solve for p and q as follows: * since q=s-p, then n=p*(s-p)= sp - p^2, rearranging p^2-s*p+n = 0. * from the quadratic equation we have p=1/2*(s+sqrt(s*s-4*n)) and * q=1/2*(s-sqrt(s*s-4*n)) if s*s-4*n is a perfect square, we are DONE. * If it is not, continue in our look looking for another k. NOTE: the * code actually distributes the 1/2 and results in the equations: * sqrt = sqrt(s/2*s/2-n), p=s/2+sqrt, q=s/2-sqrt. The algebra saves us * and extra divide by 2 and a multiply by 4. * * This will return p & q. q may be larger than p in the case that p was given * and it was the smaller prime. */ static mp_err rsa_get_primes_from_exponents(mp_int *e, mp_int *d, mp_int *p, mp_int *q, mp_int *n, PRBool hasModulus, unsigned int keySizeInBits) { mp_int kphi; /* k*phi */ mp_int k; /* current guess at 'k' */ mp_int phi; /* (p-1)(q-1) */ mp_int s; /* p+q/2 (s/2 in the algebra) */ mp_int r; /* remainder */ mp_int tmp; /* p-1 if p is given, n+1 is modulus is given */ mp_int sqrt; /* sqrt(s/2*s/2-n) */ mp_err err = MP_OKAY; unsigned int order_k; MP_DIGITS(&kphi) = 0; MP_DIGITS(&phi) = 0; MP_DIGITS(&s) = 0; MP_DIGITS(&k) = 0; MP_DIGITS(&r) = 0; MP_DIGITS(&tmp) = 0; MP_DIGITS(&sqrt) = 0; CHECK_MPI_OK( mp_init(&kphi) ); CHECK_MPI_OK( mp_init(&phi) ); CHECK_MPI_OK( mp_init(&s) ); CHECK_MPI_OK( mp_init(&k) ); CHECK_MPI_OK( mp_init(&r) ); CHECK_MPI_OK( mp_init(&tmp) ); CHECK_MPI_OK( mp_init(&sqrt) ); /* our algorithm looks for a factor k whose maximum size is dependent * on the size of our smallest exponent, which had better be the public * exponent (if it's the private, the key is vulnerable to a brute force * attack). * * since our factor search is linear, we need to limit the maximum * size of the public key. this should not be a problem normally, since * public keys are usually small. * * if we want to handle larger public key sizes, we should have * a version which tries to 'completely' factor k*phi (where completely * means 'factor into primes, or composites with which are products of * large primes). Once we have all the factors, we can sort them out and * try different combinations to form our phi. The risk is if (p-1)/2, * (q-1)/2, and k are all large primes. In any case if the public key * is small (order of 20 some bits), then a linear search for k is * manageable. */ if (mpl_significant_bits(e) > 23) { err=MP_RANGE; goto cleanup; } /* calculate k*phi = e*d - 1 */ CHECK_MPI_OK( mp_mul(e, d, &kphi) ); CHECK_MPI_OK( mp_sub_d(&kphi, 1, &kphi) ); /* kphi is (e*d)-1, which is the same as k*(p-1)(q-1) * d < (p-1)(q-1), therefor k must be less than e-1 * We can narrow down k even more, though. Since p and q are odd and both * have their high bit set, then we know that phi must be on order of * keySizeBits. */ order_k = (unsigned)mpl_significant_bits(&kphi) - keySizeInBits; /* for (k=kinit; order(k) >= order_k; k--) { */ /* k=kinit: k can't be bigger than kphi/2^(keySizeInBits -1) */ CHECK_MPI_OK( mp_2expt(&k,keySizeInBits-1) ); CHECK_MPI_OK( mp_div(&kphi, &k, &k, NULL)); if (mp_cmp(&k,e) >= 0) { /* also can't be bigger then e-1 */ CHECK_MPI_OK( mp_sub_d(e, 1, &k) ); } /* calculate our temp value */ /* This saves recalculating this value when the k guess is wrong, which * is reasonably frequent. */ /* for the modulus case, tmp = n+1 (used to calculate p+q = tmp - phi) */ /* for the prime case, tmp = p-1 (used to calculate q-1= phi/tmp) */ if (hasModulus) { CHECK_MPI_OK( mp_add_d(n, 1, &tmp) ); } else { CHECK_MPI_OK( mp_sub_d(p, 1, &tmp) ); CHECK_MPI_OK(mp_div(&kphi,&tmp,&kphi,&r)); if (mp_cmp_z(&r) != 0) { /* p-1 doesn't divide kphi, some parameter wasn't correct */ err=MP_RANGE; goto cleanup; } mp_zero(q); /* kphi is now k*(q-1) */ } /* rest of the for loop */ for (; (err == MP_OKAY) && (mpl_significant_bits(&k) >= order_k); err = mp_sub_d(&k, 1, &k)) { /* looking for k as a factor of kphi */ CHECK_MPI_OK(mp_div(&kphi,&k,&phi,&r)); if (mp_cmp_z(&r) != 0) { /* not a factor, try the next one */ continue; } /* we have a possible phi, see if it works */ if (!hasModulus) { if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits/2) { /* phi is not the right size */ continue; } /* phi should be divisible by 2, since * q is odd and phi=(q-1). */ if (mpp_divis_d(&phi,2) == MP_NO) { /* phi is not divisible by 4 */ continue; } /* we now have a candidate for the second prime */ CHECK_MPI_OK(mp_add_d(&phi, 1, &tmp)); /* check to make sure it is prime */ err = rsa_is_prime(&tmp); if (err != MP_OKAY) { if (err == MP_NO) { /* No, then we still have the wrong phi */ err = MP_OKAY; continue; } goto cleanup; } /* * It is possible that we have the wrong phi if * k_guess*(q_guess-1) = k*(q-1) (k and q-1 have swapped factors). * since our q_quess is prime, however. We have found a valid * rsa key because: * q is the correct order of magnitude. * phi = (p-1)(q-1) where p and q are both primes. * e*d mod phi = 1. * There is no way to know from the info given if this is the * original key. We never want to return the wrong key because if * two moduli with the same factor is known, then euclid's gcd * algorithm can be used to find that factor. Even though the * caller didn't pass the original modulus, it doesn't mean the * modulus wasn't known or isn't available somewhere. So to be safe * if we can't be sure we have the right q, we don't return any. * * So to make sure we continue looking for other valid q's. If none * are found, then we can safely return this one, otherwise we just * fail */ if (mp_cmp_z(q) != 0) { /* this is the second valid q, don't return either, * just fail */ err = MP_RANGE; break; } /* we only have one q so far, save it and if no others are found, * it's safe to return it */ CHECK_MPI_OK(mp_copy(&tmp, q)); continue; } /* test our tentative phi */ /* phi should be the correct order */ if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits) { /* phi is not the right size */ continue; } /* phi should be divisible by 4, since * p and q are odd and phi=(p-1)(q-1). */ if (mpp_divis_d(&phi,4) == MP_NO) { /* phi is not divisible by 4 */ continue; } /* n was given, calculate s/2=(p+q)/2 */ CHECK_MPI_OK( mp_sub(&tmp, &phi, &s) ); CHECK_MPI_OK( mp_div_2(&s, &s) ); /* calculate sqrt(s/2*s/2-n) */ CHECK_MPI_OK(mp_sqr(&s,&sqrt)); CHECK_MPI_OK(mp_sub(&sqrt,n,&r)); /* r as a tmp */ CHECK_MPI_OK(mp_sqrt(&r,&sqrt)); /* make sure it's a perfect square */ /* r is our original value we took the square root of */ /* q is the square of our tentative square root. They should be equal*/ CHECK_MPI_OK(mp_sqr(&sqrt,q)); /* q as a tmp */ if (mp_cmp(&r,q) != 0) { /* sigh according to the doc, mp_sqrt could return sqrt-1 */ CHECK_MPI_OK(mp_add_d(&sqrt,1,&sqrt)); CHECK_MPI_OK(mp_sqr(&sqrt,q)); if (mp_cmp(&r,q) != 0) { /* s*s-n not a perfect square, this phi isn't valid, find * another.*/ continue; } } /* NOTE: In this case we know we have the one and only answer. * "Why?", you ask. Because: * 1) n is a composite of two large primes (or it wasn't a * valid RSA modulus). * 2) If we know any number such that x^2-n is a perfect square * and x is not (n+1)/2, then we can calculate 2 non-trivial * factors of n. * 3) Since we know that n has only 2 non-trivial prime factors, * we know the two factors we have are the only possible factors. */ /* Now we are home free to calculate p and q */ /* p = s/2 + sqrt, q= s/2 - sqrt */ CHECK_MPI_OK(mp_add(&s,&sqrt,p)); CHECK_MPI_OK(mp_sub(&s,&sqrt,q)); break; } if ((unsigned)mpl_significant_bits(&k) < order_k) { if (hasModulus || (mp_cmp_z(q) == 0)) { /* If we get here, something was wrong with the parameters we * were given */ err = MP_RANGE; } } cleanup: mp_clear(&kphi); mp_clear(&phi); mp_clear(&s); mp_clear(&k); mp_clear(&r); mp_clear(&tmp); mp_clear(&sqrt); return err; }
/* ** Generate and return a new RSA public and private key. ** Both keys are encoded in a single RSAPrivateKey structure. ** "cx" is the random number generator context ** "keySizeInBits" is the size of the key to be generated, in bits. ** 512, 1024, etc. ** "publicExponent" when not NULL is a pointer to some data that ** represents the public exponent to use. The data is a byte ** encoded integer, in "big endian" order. */ RSAPrivateKey * RSA_NewKey(int keySizeInBits, SECItem *publicExponent) { unsigned int primeLen; mp_int p, q, e, d; int kiter; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; int prerr = 0; RSAPrivateKey *key = NULL; PLArenaPool *arena = NULL; /* Require key size to be a multiple of 16 bits. */ if (!publicExponent || keySizeInBits % 16 != 0 || BAD_RSA_KEY_SIZE(keySizeInBits/8, publicExponent->len)) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return NULL; } /* 1. Allocate arena & key */ arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); if (!arena) { PORT_SetError(SEC_ERROR_NO_MEMORY); return NULL; } key = PORT_ArenaZNew(arena, RSAPrivateKey); if (!key) { PORT_SetError(SEC_ERROR_NO_MEMORY); PORT_FreeArena(arena, PR_TRUE); return NULL; } key->arena = arena; /* length of primes p and q (in bytes) */ primeLen = keySizeInBits / (2 * PR_BITS_PER_BYTE); MP_DIGITS(&p) = 0; MP_DIGITS(&q) = 0; MP_DIGITS(&e) = 0; MP_DIGITS(&d) = 0; CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&q) ); CHECK_MPI_OK( mp_init(&e) ); CHECK_MPI_OK( mp_init(&d) ); /* 2. Set the version number (PKCS1 v1.5 says it should be zero) */ SECITEM_AllocItem(arena, &key->version, 1); key->version.data[0] = 0; /* 3. Set the public exponent */ SECITEM_TO_MPINT(*publicExponent, &e); kiter = 0; do { prerr = 0; PORT_SetError(0); CHECK_SEC_OK( generate_prime(&p, primeLen) ); CHECK_SEC_OK( generate_prime(&q, primeLen) ); /* Assure q < p */ if (mp_cmp(&p, &q) < 0) mp_exch(&p, &q); /* Attempt to use these primes to generate a key */ rv = rsa_build_from_primes(&p, &q, &e, PR_FALSE, /* needPublicExponent=false */ &d, PR_TRUE, /* needPrivateExponent=true */ key, keySizeInBits); if (rv == SECSuccess) break; /* generated two good primes */ prerr = PORT_GetError(); kiter++; /* loop until have primes */ } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS); if (prerr) goto cleanup; cleanup: mp_clear(&p); mp_clear(&q); mp_clear(&e); mp_clear(&d); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } if (rv && arena) { PORT_FreeArena(arena, PR_TRUE); key = NULL; } return key; }
/* Generates a new EC key pair. The private key is a supplied * value and the public key is the result of performing a scalar * point multiplication of that value with the curve's base point. */ SECStatus ec_NewKey(ECParams *ecParams, ECPrivateKey **privKey, const unsigned char *privKeyBytes, int privKeyLen) { SECStatus rv = SECFailure; #ifndef NSS_DISABLE_ECC PLArenaPool *arena; ECPrivateKey *key; mp_int k; mp_err err = MP_OKAY; int len; #if EC_DEBUG printf("ec_NewKey called\n"); #endif MP_DIGITS(&k) = 0; if (!ecParams || !privKey || !privKeyBytes || (privKeyLen < 0)) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* Initialize an arena for the EC key. */ if (!(arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE))) return SECFailure; key = (ECPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(ECPrivateKey)); if (!key) { PORT_FreeArena(arena, PR_TRUE); return SECFailure; } /* Set the version number (SEC 1 section C.4 says it should be 1) */ SECITEM_AllocItem(arena, &key->version, 1); key->version.data[0] = 1; /* Copy all of the fields from the ECParams argument to the * ECParams structure within the private key. */ key->ecParams.arena = arena; key->ecParams.type = ecParams->type; key->ecParams.fieldID.size = ecParams->fieldID.size; key->ecParams.fieldID.type = ecParams->fieldID.type; if (ecParams->fieldID.type == ec_field_GFp) { CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.fieldID.u.prime, &ecParams->fieldID.u.prime)); } else { CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.fieldID.u.poly, &ecParams->fieldID.u.poly)); } key->ecParams.fieldID.k1 = ecParams->fieldID.k1; key->ecParams.fieldID.k2 = ecParams->fieldID.k2; key->ecParams.fieldID.k3 = ecParams->fieldID.k3; CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.a, &ecParams->curve.a)); CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.b, &ecParams->curve.b)); CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.seed, &ecParams->curve.seed)); CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.base, &ecParams->base)); CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.order, &ecParams->order)); key->ecParams.cofactor = ecParams->cofactor; CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.DEREncoding, &ecParams->DEREncoding)); key->ecParams.name = ecParams->name; CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curveOID, &ecParams->curveOID)); len = (ecParams->fieldID.size + 7) >> 3; SECITEM_AllocItem(arena, &key->publicValue, 2*len + 1); len = ecParams->order.len; SECITEM_AllocItem(arena, &key->privateValue, len); /* Copy private key */ if (privKeyLen >= len) { memcpy(key->privateValue.data, privKeyBytes, len); } else { memset(key->privateValue.data, 0, (len - privKeyLen)); memcpy(key->privateValue.data + (len - privKeyLen), privKeyBytes, privKeyLen); } /* Compute corresponding public key */ CHECK_MPI_OK( mp_init(&k) ); CHECK_MPI_OK( mp_read_unsigned_octets(&k, key->privateValue.data, (mp_size) len) ); rv = ec_points_mul(ecParams, &k, NULL, NULL, &(key->publicValue)); if (rv != SECSuccess) goto cleanup; *privKey = key; cleanup: mp_clear(&k); if (rv) PORT_FreeArena(arena, PR_TRUE); #if EC_DEBUG printf("ec_NewKey returning %s\n", (rv == SECSuccess) ? "success" : "failure"); #endif #else PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); #endif /* NSS_DISABLE_ECC */ return rv; }
/* * Computes scalar point multiplication pointQ = k1 * G + k2 * pointP for * the curve whose parameters are encoded in params with base point G. */ SECStatus ec_points_mul(const ECParams *params, const mp_int *k1, const mp_int *k2, const SECItem *pointP, SECItem *pointQ) { mp_int Px, Py, Qx, Qy; mp_int Gx, Gy, order, irreducible, a, b; #if 0 /* currently don't support non-named curves */ unsigned int irr_arr[5]; #endif ECGroup *group = NULL; SECStatus rv = SECFailure; mp_err err = MP_OKAY; int len; #if EC_DEBUG int i; char mpstr[256]; printf("ec_points_mul: params [len=%d]:", params->DEREncoding.len); for (i = 0; i < params->DEREncoding.len; i++) printf("%02x:", params->DEREncoding.data[i]); printf("\n"); if (k1 != NULL) { mp_tohex(k1, mpstr); printf("ec_points_mul: scalar k1: %s\n", mpstr); mp_todecimal(k1, mpstr); printf("ec_points_mul: scalar k1: %s (dec)\n", mpstr); } if (k2 != NULL) { mp_tohex(k2, mpstr); printf("ec_points_mul: scalar k2: %s\n", mpstr); mp_todecimal(k2, mpstr); printf("ec_points_mul: scalar k2: %s (dec)\n", mpstr); } if (pointP != NULL) { printf("ec_points_mul: pointP [len=%d]:", pointP->len); for (i = 0; i < pointP->len; i++) printf("%02x:", pointP->data[i]); printf("\n"); } #endif /* NOTE: We only support uncompressed points for now */ len = (params->fieldID.size + 7) >> 3; if (pointP != NULL) { if ((pointP->data[0] != EC_POINT_FORM_UNCOMPRESSED) || (pointP->len != (2 * len + 1))) { PORT_SetError(SEC_ERROR_UNSUPPORTED_EC_POINT_FORM); return SECFailure; }; } MP_DIGITS(&Px) = 0; MP_DIGITS(&Py) = 0; MP_DIGITS(&Qx) = 0; MP_DIGITS(&Qy) = 0; MP_DIGITS(&Gx) = 0; MP_DIGITS(&Gy) = 0; MP_DIGITS(&order) = 0; MP_DIGITS(&irreducible) = 0; MP_DIGITS(&a) = 0; MP_DIGITS(&b) = 0; CHECK_MPI_OK( mp_init(&Px) ); CHECK_MPI_OK( mp_init(&Py) ); CHECK_MPI_OK( mp_init(&Qx) ); CHECK_MPI_OK( mp_init(&Qy) ); CHECK_MPI_OK( mp_init(&Gx) ); CHECK_MPI_OK( mp_init(&Gy) ); CHECK_MPI_OK( mp_init(&order) ); CHECK_MPI_OK( mp_init(&irreducible) ); CHECK_MPI_OK( mp_init(&a) ); CHECK_MPI_OK( mp_init(&b) ); if ((k2 != NULL) && (pointP != NULL)) { /* Initialize Px and Py */ CHECK_MPI_OK( mp_read_unsigned_octets(&Px, pointP->data + 1, (mp_size) len) ); CHECK_MPI_OK( mp_read_unsigned_octets(&Py, pointP->data + 1 + len, (mp_size) len) ); } /* construct from named params, if possible */ if (params->name != ECCurve_noName) { group = ECGroup_fromName(params->name); } #if 0 /* currently don't support non-named curves */ if (group == NULL) { /* Set up mp_ints containing the curve coefficients */ CHECK_MPI_OK( mp_read_unsigned_octets(&Gx, params->base.data + 1, (mp_size) len) ); CHECK_MPI_OK( mp_read_unsigned_octets(&Gy, params->base.data + 1 + len, (mp_size) len) ); SECITEM_TO_MPINT( params->order, &order ); SECITEM_TO_MPINT( params->curve.a, &a ); SECITEM_TO_MPINT( params->curve.b, &b ); if (params->fieldID.type == ec_field_GFp) { SECITEM_TO_MPINT( params->fieldID.u.prime, &irreducible ); group = ECGroup_consGFp(&irreducible, &a, &b, &Gx, &Gy, &order, params->cofactor); } else { SECITEM_TO_MPINT( params->fieldID.u.poly, &irreducible ); irr_arr[0] = params->fieldID.size; irr_arr[1] = params->fieldID.k1; irr_arr[2] = params->fieldID.k2; irr_arr[3] = params->fieldID.k3; irr_arr[4] = 0; group = ECGroup_consGF2m(&irreducible, irr_arr, &a, &b, &Gx, &Gy, &order, params->cofactor); } } #endif if (group == NULL) goto cleanup; if ((k2 != NULL) && (pointP != NULL)) { CHECK_MPI_OK( ECPoints_mul(group, k1, k2, &Px, &Py, &Qx, &Qy) ); } else { CHECK_MPI_OK( ECPoints_mul(group, k1, NULL, NULL, NULL, &Qx, &Qy) ); } /* Construct the SECItem representation of point Q */ pointQ->data[0] = EC_POINT_FORM_UNCOMPRESSED; CHECK_MPI_OK( mp_to_fixlen_octets(&Qx, pointQ->data + 1, (mp_size) len) ); CHECK_MPI_OK( mp_to_fixlen_octets(&Qy, pointQ->data + 1 + len, (mp_size) len) ); rv = SECSuccess; #if EC_DEBUG printf("ec_points_mul: pointQ [len=%d]:", pointQ->len); for (i = 0; i < pointQ->len; i++) printf("%02x:", pointQ->data[i]); printf("\n"); #endif cleanup: ECGroup_free(group); mp_clear(&Px); mp_clear(&Py); mp_clear(&Qx); mp_clear(&Qy); mp_clear(&Gx); mp_clear(&Gy); mp_clear(&order); mp_clear(&irreducible); mp_clear(&a); mp_clear(&b); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; }
static SECStatus rsa_build_from_primes(mp_int *p, mp_int *q, mp_int *e, PRBool needPublicExponent, mp_int *d, PRBool needPrivateExponent, RSAPrivateKey *key, unsigned int keySizeInBits) { mp_int n, phi; mp_int psub1, qsub1, tmp; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; MP_DIGITS(&n) = 0; MP_DIGITS(&phi) = 0; MP_DIGITS(&psub1) = 0; MP_DIGITS(&qsub1) = 0; MP_DIGITS(&tmp) = 0; CHECK_MPI_OK( mp_init(&n) ); CHECK_MPI_OK( mp_init(&phi) ); CHECK_MPI_OK( mp_init(&psub1) ); CHECK_MPI_OK( mp_init(&qsub1) ); CHECK_MPI_OK( mp_init(&tmp) ); /* 1. Compute n = p*q */ CHECK_MPI_OK( mp_mul(p, q, &n) ); /* verify that the modulus has the desired number of bits */ if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) { PORT_SetError(SEC_ERROR_NEED_RANDOM); rv = SECFailure; goto cleanup; } /* at least one exponent must be given */ PORT_Assert(!(needPublicExponent && needPrivateExponent)); /* 2. Compute phi = (p-1)*(q-1) */ CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) ); CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) ); if (needPublicExponent || needPrivateExponent) { CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) ); /* 3. Compute d = e**-1 mod(phi) */ /* or e = d**-1 mod(phi) as necessary */ if (needPublicExponent) { err = mp_invmod(d, &phi, e); } else { err = mp_invmod(e, &phi, d); } } else { err = MP_OKAY; } /* Verify that phi(n) and e have no common divisors */ if (err != MP_OKAY) { if (err == MP_UNDEF) { PORT_SetError(SEC_ERROR_NEED_RANDOM); err = MP_OKAY; /* to keep PORT_SetError from being called again */ rv = SECFailure; } goto cleanup; } /* 4. Compute exponent1 = d mod (p-1) */ CHECK_MPI_OK( mp_mod(d, &psub1, &tmp) ); MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena); /* 5. Compute exponent2 = d mod (q-1) */ CHECK_MPI_OK( mp_mod(d, &qsub1, &tmp) ); MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena); /* 6. Compute coefficient = q**-1 mod p */ CHECK_MPI_OK( mp_invmod(q, p, &tmp) ); MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena); /* copy our calculated results, overwrite what is there */ key->modulus.data = NULL; MPINT_TO_SECITEM(&n, &key->modulus, key->arena); key->privateExponent.data = NULL; MPINT_TO_SECITEM(d, &key->privateExponent, key->arena); key->publicExponent.data = NULL; MPINT_TO_SECITEM(e, &key->publicExponent, key->arena); key->prime1.data = NULL; MPINT_TO_SECITEM(p, &key->prime1, key->arena); key->prime2.data = NULL; MPINT_TO_SECITEM(q, &key->prime2, key->arena); cleanup: mp_clear(&n); mp_clear(&phi); mp_clear(&psub1); mp_clear(&qsub1); mp_clear(&tmp); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; }
/* ** Performs an ECDH key derivation by computing the scalar point ** multiplication of privateValue and publicValue (with or without the ** cofactor) and returns the x-coordinate of the resulting elliptic ** curve point in derived secret. If successful, derivedSecret->data ** is set to the address of the newly allocated buffer containing the ** derived secret, and derivedSecret->len is the size of the secret ** produced. It is the caller's responsibility to free the allocated ** buffer containing the derived secret. */ SECStatus ECDH_Derive(SECItem *publicValue, ECParams *ecParams, SECItem *privateValue, PRBool withCofactor, SECItem *derivedSecret) { SECStatus rv = SECFailure; #ifndef NSS_DISABLE_ECC unsigned int len = 0; SECItem pointQ = {siBuffer, NULL, 0}; mp_int k; /* to hold the private value */ mp_int cofactor; mp_err err = MP_OKAY; #if EC_DEBUG int i; #endif if (!publicValue || !ecParams || !privateValue || !derivedSecret) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } MP_DIGITS(&k) = 0; memset(derivedSecret, 0, sizeof *derivedSecret); len = (ecParams->fieldID.size + 7) >> 3; pointQ.len = 2*len + 1; if ((pointQ.data = PORT_Alloc(2*len + 1)) == NULL) goto cleanup; CHECK_MPI_OK( mp_init(&k) ); CHECK_MPI_OK( mp_read_unsigned_octets(&k, privateValue->data, (mp_size) privateValue->len) ); if (withCofactor && (ecParams->cofactor != 1)) { /* multiply k with the cofactor */ MP_DIGITS(&cofactor) = 0; CHECK_MPI_OK( mp_init(&cofactor) ); mp_set(&cofactor, ecParams->cofactor); CHECK_MPI_OK( mp_mul(&k, &cofactor, &k) ); } /* Multiply our private key and peer's public point */ if (ec_points_mul(ecParams, NULL, &k, publicValue, &pointQ) != SECSuccess) goto cleanup; if (ec_point_at_infinity(&pointQ)) { PORT_SetError(SEC_ERROR_BAD_KEY); /* XXX better error code? */ goto cleanup; } /* Allocate memory for the derived secret and copy * the x co-ordinate of pointQ into it. */ SECITEM_AllocItem(NULL, derivedSecret, len); memcpy(derivedSecret->data, pointQ.data + 1, len); rv = SECSuccess; #if EC_DEBUG printf("derived_secret:\n"); for (i = 0; i < derivedSecret->len; i++) printf("%02x:", derivedSecret->data[i]); printf("\n"); #endif cleanup: mp_clear(&k); if (err) { MP_TO_SEC_ERROR(err); } if (pointQ.data) { PORT_ZFree(pointQ.data, 2*len + 1); } #else PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); #endif /* NSS_DISABLE_ECC */ return rv; }
SECStatus DH_NewKey(DHParams *params, DHPrivateKey **privKey) { PLArenaPool *arena; DHPrivateKey *key; mp_int g, xa, p, Ya; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; if (!params || !privKey) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); if (!arena) { PORT_SetError(SEC_ERROR_NO_MEMORY); return SECFailure; } key = (DHPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(DHPrivateKey)); if (!key) { PORT_SetError(SEC_ERROR_NO_MEMORY); PORT_FreeArena(arena, PR_TRUE); return SECFailure; } key->arena = arena; MP_DIGITS(&g) = 0; MP_DIGITS(&xa) = 0; MP_DIGITS(&p) = 0; MP_DIGITS(&Ya) = 0; CHECK_MPI_OK( mp_init(&g) ); CHECK_MPI_OK( mp_init(&xa) ); CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&Ya) ); /* Set private key's p */ CHECK_SEC_OK( SECITEM_CopyItem(arena, &key->prime, ¶ms->prime) ); SECITEM_TO_MPINT(key->prime, &p); /* Set private key's g */ CHECK_SEC_OK( SECITEM_CopyItem(arena, &key->base, ¶ms->base) ); SECITEM_TO_MPINT(key->base, &g); /* Generate private key xa */ SECITEM_AllocItem(arena, &key->privateValue, dh_GetSecretKeyLen(params->prime.len)); CHECK_SEC_OK(RNG_GenerateGlobalRandomBytes(key->privateValue.data, key->privateValue.len)); SECITEM_TO_MPINT( key->privateValue, &xa ); /* xa < p */ CHECK_MPI_OK( mp_mod(&xa, &p, &xa) ); /* Compute public key Ya = g ** xa mod p */ CHECK_MPI_OK( mp_exptmod(&g, &xa, &p, &Ya) ); MPINT_TO_SECITEM(&Ya, &key->publicValue, key->arena); *privKey = key; cleanup: mp_clear(&g); mp_clear(&xa); mp_clear(&p); mp_clear(&Ya); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } if (rv) { *privKey = NULL; PORT_FreeArena(arena, PR_TRUE); } return rv; }
/* ** Checks the signature on the given digest using the key provided. */ SECStatus ECDSA_VerifyDigest(ECPublicKey *key, const SECItem *signature, const SECItem *digest) { SECStatus rv = SECFailure; #ifndef NSS_DISABLE_ECC mp_int r_, s_; /* tuple (r', s') is received signature) */ mp_int c, u1, u2, v; /* intermediate values used in verification */ mp_int x1; mp_int n; mp_err err = MP_OKAY; ECParams *ecParams = NULL; SECItem pointC = { siBuffer, NULL, 0 }; int slen; /* length in bytes of a half signature (r or s) */ int flen; /* length in bytes of the field size */ unsigned olen; /* length in bytes of the base point order */ unsigned obits; /* length in bits of the base point order */ #if EC_DEBUG char mpstr[256]; printf("ECDSA verification called\n"); #endif /* Initialize MPI integers. */ /* must happen before the first potential call to cleanup */ MP_DIGITS(&r_) = 0; MP_DIGITS(&s_) = 0; MP_DIGITS(&c) = 0; MP_DIGITS(&u1) = 0; MP_DIGITS(&u2) = 0; MP_DIGITS(&x1) = 0; MP_DIGITS(&v) = 0; MP_DIGITS(&n) = 0; /* Check args */ if (!key || !signature || !digest) { PORT_SetError(SEC_ERROR_INVALID_ARGS); goto cleanup; } ecParams = &(key->ecParams); flen = (ecParams->fieldID.size + 7) >> 3; olen = ecParams->order.len; if (signature->len == 0 || signature->len%2 != 0 || signature->len > 2*olen) { PORT_SetError(SEC_ERROR_INPUT_LEN); goto cleanup; } slen = signature->len/2; SECITEM_AllocItem(NULL, &pointC, 2*flen + 1); if (pointC.data == NULL) goto cleanup; CHECK_MPI_OK( mp_init(&r_) ); CHECK_MPI_OK( mp_init(&s_) ); CHECK_MPI_OK( mp_init(&c) ); CHECK_MPI_OK( mp_init(&u1) ); CHECK_MPI_OK( mp_init(&u2) ); CHECK_MPI_OK( mp_init(&x1) ); CHECK_MPI_OK( mp_init(&v) ); CHECK_MPI_OK( mp_init(&n) ); /* ** Convert received signature (r', s') into MPI integers. */ CHECK_MPI_OK( mp_read_unsigned_octets(&r_, signature->data, slen) ); CHECK_MPI_OK( mp_read_unsigned_octets(&s_, signature->data + slen, slen) ); /* ** ANSI X9.62, Section 5.4.2, Steps 1 and 2 ** ** Verify that 0 < r' < n and 0 < s' < n */ SECITEM_TO_MPINT(ecParams->order, &n); if (mp_cmp_z(&r_) <= 0 || mp_cmp_z(&s_) <= 0 || mp_cmp(&r_, &n) >= 0 || mp_cmp(&s_, &n) >= 0) { PORT_SetError(SEC_ERROR_BAD_SIGNATURE); goto cleanup; /* will return rv == SECFailure */ } /* ** ANSI X9.62, Section 5.4.2, Step 3 ** ** c = (s')**-1 mod n */ CHECK_MPI_OK( mp_invmod(&s_, &n, &c) ); /* c = (s')**-1 mod n */ /* ** ANSI X9.62, Section 5.4.2, Step 4 ** ** u1 = ((HASH(M')) * c) mod n */ SECITEM_TO_MPINT(*digest, &u1); /* u1 = HASH(M) */ /* In the definition of EC signing, digests are truncated * to the length of n in bits. * (see SEC 1 "Elliptic Curve Digit Signature Algorithm" section 4.1.*/ CHECK_MPI_OK( (obits = mpl_significant_bits(&n)) ); if (digest->len*8 > obits) { /* u1 = HASH(M') */ mpl_rsh(&u1,&u1,digest->len*8 - obits); } #if EC_DEBUG mp_todecimal(&r_, mpstr); printf("r_: %s (dec)\n", mpstr); mp_todecimal(&s_, mpstr); printf("s_: %s (dec)\n", mpstr); mp_todecimal(&c, mpstr); printf("c : %s (dec)\n", mpstr); mp_todecimal(&u1, mpstr); printf("digest: %s (dec)\n", mpstr); #endif CHECK_MPI_OK( mp_mulmod(&u1, &c, &n, &u1) ); /* u1 = u1 * c mod n */ /* ** ANSI X9.62, Section 5.4.2, Step 4 ** ** u2 = ((r') * c) mod n */ CHECK_MPI_OK( mp_mulmod(&r_, &c, &n, &u2) ); /* ** ANSI X9.62, Section 5.4.3, Step 1 ** ** Compute u1*G + u2*Q ** Here, A = u1.G B = u2.Q and C = A + B ** If the result, C, is the point at infinity, reject the signature */ if (ec_points_mul(ecParams, &u1, &u2, &key->publicValue, &pointC) != SECSuccess) { rv = SECFailure; goto cleanup; } if (ec_point_at_infinity(&pointC)) { PORT_SetError(SEC_ERROR_BAD_SIGNATURE); rv = SECFailure; goto cleanup; } CHECK_MPI_OK( mp_read_unsigned_octets(&x1, pointC.data + 1, flen) ); /* ** ANSI X9.62, Section 5.4.4, Step 2 ** ** v = x1 mod n */ CHECK_MPI_OK( mp_mod(&x1, &n, &v) ); #if EC_DEBUG mp_todecimal(&r_, mpstr); printf("r_: %s (dec)\n", mpstr); mp_todecimal(&v, mpstr); printf("v : %s (dec)\n", mpstr); #endif /* ** ANSI X9.62, Section 5.4.4, Step 3 ** ** Verification: v == r' */ if (mp_cmp(&v, &r_)) { PORT_SetError(SEC_ERROR_BAD_SIGNATURE); rv = SECFailure; /* Signature failed to verify. */ } else { rv = SECSuccess; /* Signature verified. */ } #if EC_DEBUG mp_todecimal(&u1, mpstr); printf("u1: %s (dec)\n", mpstr); mp_todecimal(&u2, mpstr); printf("u2: %s (dec)\n", mpstr); mp_tohex(&x1, mpstr); printf("x1: %s\n", mpstr); mp_todecimal(&v, mpstr); printf("v : %s (dec)\n", mpstr); #endif cleanup: mp_clear(&r_); mp_clear(&s_); mp_clear(&c); mp_clear(&u1); mp_clear(&u2); mp_clear(&x1); mp_clear(&v); mp_clear(&n); if (pointC.data) SECITEM_FreeItem(&pointC, PR_FALSE); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } #if EC_DEBUG printf("ECDSA verification %s\n", (rv == SECSuccess) ? "succeeded" : "failed"); #endif #else PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); #endif /* NSS_DISABLE_ECC */ return rv; }
SECStatus RSA_PrivateKeyCheck(const RSAPrivateKey *key) { mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; MP_DIGITS(&p) = 0; MP_DIGITS(&q) = 0; MP_DIGITS(&n) = 0; MP_DIGITS(&psub1)= 0; MP_DIGITS(&qsub1)= 0; MP_DIGITS(&e) = 0; MP_DIGITS(&d) = 0; MP_DIGITS(&d_p) = 0; MP_DIGITS(&d_q) = 0; MP_DIGITS(&qInv) = 0; MP_DIGITS(&res) = 0; CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&q) ); CHECK_MPI_OK( mp_init(&n) ); CHECK_MPI_OK( mp_init(&psub1)); CHECK_MPI_OK( mp_init(&qsub1)); CHECK_MPI_OK( mp_init(&e) ); CHECK_MPI_OK( mp_init(&d) ); CHECK_MPI_OK( mp_init(&d_p) ); CHECK_MPI_OK( mp_init(&d_q) ); CHECK_MPI_OK( mp_init(&qInv) ); CHECK_MPI_OK( mp_init(&res) ); if (!key->modulus.data || !key->prime1.data || !key->prime2.data || !key->publicExponent.data || !key->privateExponent.data || !key->exponent1.data || !key->exponent2.data || !key->coefficient.data) { /*call RSA_PopulatePrivateKey first, if the application wishes to * recover these parameters */ err = MP_BADARG; goto cleanup; } SECITEM_TO_MPINT(key->modulus, &n); SECITEM_TO_MPINT(key->prime1, &p); SECITEM_TO_MPINT(key->prime2, &q); SECITEM_TO_MPINT(key->publicExponent, &e); SECITEM_TO_MPINT(key->privateExponent, &d); SECITEM_TO_MPINT(key->exponent1, &d_p); SECITEM_TO_MPINT(key->exponent2, &d_q); SECITEM_TO_MPINT(key->coefficient, &qInv); /* p > q */ if (mp_cmp(&p, &q) <= 0) { rv = SECFailure; goto cleanup; } #define VERIFY_MPI_EQUAL(m1, m2) \ if (mp_cmp(m1, m2) != 0) { \ rv = SECFailure; \ goto cleanup; \ } #define VERIFY_MPI_EQUAL_1(m) \ if (mp_cmp_d(m, 1) != 0) { \ rv = SECFailure; \ goto cleanup; \ } /* * The following errors cannot be recovered from. */ /* n == p * q */ CHECK_MPI_OK( mp_mul(&p, &q, &res) ); VERIFY_MPI_EQUAL(&res, &n); /* gcd(e, p-1) == 1 */ CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) ); CHECK_MPI_OK( mp_gcd(&e, &psub1, &res) ); VERIFY_MPI_EQUAL_1(&res); /* gcd(e, q-1) == 1 */ CHECK_MPI_OK( mp_sub_d(&q, 1, &qsub1) ); CHECK_MPI_OK( mp_gcd(&e, &qsub1, &res) ); VERIFY_MPI_EQUAL_1(&res); /* d*e == 1 mod p-1 */ CHECK_MPI_OK( mp_mulmod(&d, &e, &psub1, &res) ); VERIFY_MPI_EQUAL_1(&res); /* d*e == 1 mod q-1 */ CHECK_MPI_OK( mp_mulmod(&d, &e, &qsub1, &res) ); VERIFY_MPI_EQUAL_1(&res); /* * The following errors can be recovered from. However, the purpose of this * function is to check consistency, so they are not. */ /* d_p == d mod p-1 */ CHECK_MPI_OK( mp_mod(&d, &psub1, &res) ); VERIFY_MPI_EQUAL(&res, &d_p); /* d_q == d mod q-1 */ CHECK_MPI_OK( mp_mod(&d, &qsub1, &res) ); VERIFY_MPI_EQUAL(&res, &d_q); /* q * q**-1 == 1 mod p */ CHECK_MPI_OK( mp_mulmod(&q, &qInv, &p, &res) ); VERIFY_MPI_EQUAL_1(&res); cleanup: mp_clear(&n); mp_clear(&p); mp_clear(&q); mp_clear(&psub1); mp_clear(&qsub1); mp_clear(&e); mp_clear(&d); mp_clear(&d_p); mp_clear(&d_q); mp_clear(&qInv); mp_clear(&res); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; }