static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], complex_t *alpha_0, complex_t *alpha_1, real_t *rxx) { uint8_t k; real_t tmp, mul; acorr_coef ac; for (k = 1; k < sbr->f_master[0]; k++) { auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); if (ac.det == 0) { RE(alpha_0[k]) = 0; RE(alpha_1[k]) = 0; } else { mul = DIV_R(REAL_CONST(1.0), ac.det); tmp = MUL_R(RE(ac.r01), RE(ac.r22)) - MUL_R(RE(ac.r12), RE(ac.r02)); RE(alpha_0[k]) = -MUL_R(tmp, mul); tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11)); RE(alpha_1[k]) = MUL_R(tmp, mul); } if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4))) { RE(alpha_0[k]) = REAL_CONST(0); RE(alpha_1[k]) = REAL_CONST(0); } /* reflection coefficient */ if (RE(ac.r11) == 0) { rxx[k] = COEF_CONST(0.0); } else { rxx[k] = DIV_C(RE(ac.r01), RE(ac.r11)); rxx[k] = -rxx[k]; if (rxx[k] > COEF_CONST( 1.0)) rxx[k] = COEF_CONST(1.0); if (rxx[k] < COEF_CONST(-1.0)) rxx[k] = COEF_CONST(-1.0); } } }
static void QuantizeBand(const coef_t *xp, int32_t *ix, int32_t offset, int32_t end) { register int32_t j; static coef_t realconst1 = COEF_CONST(0.5); for (j = offset; j < end; j++) { ix[j] = (int32_t)COEF2INT(xp[j]+realconst1); #ifdef DUMP_XI printf("ix[%d] = %d\n",j,ix[j]); #endif } }
/* FIXED POINT: bwArray = COEF */ static void calc_chirp_factors(sbr_info *sbr, uint8_t ch) { uint8_t i; for (i = 0; i < sbr->N_Q; i++) { sbr->bwArray[ch][i] = mapNewBw(sbr->bs_invf_mode[ch][i], sbr->bs_invf_mode_prev[ch][i]); if (sbr->bwArray[ch][i] < sbr->bwArray_prev[ch][i]) sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.75)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.25)); else sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.90625)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.09375)); if (sbr->bwArray[ch][i] < COEF_CONST(0.015625)) sbr->bwArray[ch][i] = COEF_CONST(0.0); if (sbr->bwArray[ch][i] > COEF_CONST(0.99609375)) sbr->bwArray[ch][i] = COEF_CONST(0.99609375); sbr->bwArray_prev[ch][i] = sbr->bwArray[ch][i]; sbr->bs_invf_mode_prev[ch][i] = sbr->bs_invf_mode[ch][i]; } }
/* Decoder transmitted coefficients for one TNS filter */ static void tns_decode_coef (uint8_t order, uint8_t coef_res_bits, uint8_t coef_compress, uint8_t *coef, real_t *a) { uint8_t i, m; real_t tmp2[TNS_MAX_ORDER+1], b[TNS_MAX_ORDER+1]; /* Conversion to signed integer */ for (i = 0; i < order; i++) { if (coef_compress == 0) { if (coef_res_bits == 3) { tmp2[i] = tns_coef_0_3[coef[i]]; } else { tmp2[i] = tns_coef_0_4[coef[i]]; } } else { if (coef_res_bits == 3) { tmp2[i] = tns_coef_1_3[coef[i]]; } else { tmp2[i] = tns_coef_1_4[coef[i]]; } } } /* Conversion to LPC coefficients */ a[0] = COEF_CONST(1.0); for (m = 1; m <= order; m++) { for (i = 1; i < m; i++) /* loop only while i<m */ b[i] = a[i] + MUL_C(tmp2[m-1], a[m-i]); for (i = 1; i < m; i++) /* loop only while i<m */ a[i] = b[i]; a[m] = tmp2[m-1]; /* changed */ } }
/* FIXED POINT: bwArray = COEF */ static real_t mapNewBw(uint8_t invf_mode, uint8_t invf_mode_prev) { switch (invf_mode) { case 1: /* LOW */ if (invf_mode_prev == 0) /* NONE */ return COEF_CONST(0.6); else return COEF_CONST(0.75); case 2: /* MID */ return COEF_CONST(0.9); case 3: /* HIGH */ return COEF_CONST(0.98); default: /* NONE */ if (invf_mode_prev == 1) /* LOW */ return COEF_CONST(0.6); else return COEF_CONST(0.0); } }
- Within a group, a scalefactor band consists of the spectral data of all grouped SHORT_WINDOWs for the associated scalefactor window band. To clarify via example, the length of a group is in the range of one to eight SHORT_WINDOWs. - If there are eight groups each with length one (num_window_groups = 8, window_group_length[0..7] = 1), the result is a sequence of eight spectra, each in ascending spectral order. - If there is only one group with length eight (num_window_groups = 1, window_group_length[0] = 8), the result is that spectral data of all eight SHORT_WINDOWs is interleaved by scalefactor window bands. - Within a scalefactor window band, the coefficients are in ascending spectral order. */ static const real_t pow2_table[] ICONST_ATTR = { COEF_CONST(1.0), COEF_CONST(1.1892071150027210667174999705605), /* 2^0.25 */ COEF_CONST(1.4142135623730950488016887242097), /* 2^0.50 */ COEF_CONST(1.6817928305074290860622509524664) /* 2^0.75 */ }; static uint8_t quant_to_spec(NeAACDecHandle hDecoder, ic_stream *ics, int16_t *quant_data, real_t *spec_data, uint16_t frame_len) { const real_t *tab = iq_table; (void)frame_len; uint8_t g, sfb, win; uint16_t width, bin, k, gindex, wa, wb; uint8_t error = 0; /* Init error flag */ real_t scf;
drc->band_top[0] = 1024/4 - 1; drc->dyn_rng_sgn[0] = 1; drc->dyn_rng_ctl[0] = 0; return drc; } void drc_end(drc_info *drc) { if (drc) faad_free(drc); } #ifdef FIXED_POINT static real_t drc_pow2_table[] = { COEF_CONST(0.5146511183), COEF_CONST(0.5297315472), COEF_CONST(0.5452538663), COEF_CONST(0.5612310242), COEF_CONST(0.5776763484), COEF_CONST(0.5946035575), COEF_CONST(0.6120267717), COEF_CONST(0.6299605249), COEF_CONST(0.6484197773), COEF_CONST(0.6674199271), COEF_CONST(0.6869768237), COEF_CONST(0.7071067812), COEF_CONST(0.7278265914), COEF_CONST(0.7491535384), COEF_CONST(0.7711054127), COEF_CONST(0.7937005260),
#include "common.h" #include "structs.h" #include "syntax.h" #include "tns.h" /*}}}*/ #ifdef _MSC_VER #pragma warning(disable:4305) #pragma warning(disable:4244) #endif /*{{{*/ static const real_t tns_coef_0_3[] = { COEF_CONST(0.0), COEF_CONST(0.4338837391), COEF_CONST(0.7818314825), COEF_CONST(0.9749279122), COEF_CONST(-0.9848077530), COEF_CONST(-0.8660254038), COEF_CONST(-0.6427876097), COEF_CONST(-0.3420201433), COEF_CONST(-0.4338837391), COEF_CONST(-0.7818314825), COEF_CONST(-0.9749279122), COEF_CONST(-0.9749279122), COEF_CONST(-0.9848077530), COEF_CONST(-0.8660254038), COEF_CONST(-0.6427876097), COEF_CONST(-0.3420201433) }; /*}}}*/ /*{{{*/ static const real_t tns_coef_0_4[] = { COEF_CONST(0.0), COEF_CONST(0.2079116908), COEF_CONST(0.4067366431), COEF_CONST(0.5877852523), COEF_CONST(0.7431448255), COEF_CONST(0.8660254038), COEF_CONST(0.9510565163), COEF_CONST(0.9945218954), COEF_CONST(-0.9957341763), COEF_CONST(-0.9618256432), COEF_CONST(-0.8951632914), COEF_CONST(-0.7980172273), COEF_CONST(-0.6736956436), COEF_CONST(-0.5264321629), COEF_CONST(-0.3612416662), COEF_CONST(-0.1837495178) }; /*}}}*/ /*{{{*/
#include "common.h" #include "structs.h" #ifdef LTP_DEC #include <stdlib.h> #include "syntax.h" #include "lt_predict.h" #include "filtbank.h" #include "tns.h" static real_t codebook[8] = { COEF_CONST(0.570829), COEF_CONST(0.696616), COEF_CONST(0.813004), COEF_CONST(0.911304), COEF_CONST(0.984900), COEF_CONST(1.067894), COEF_CONST(1.194601), COEF_CONST(1.369533) }; void lt_prediction(ic_stream *ics, ltp_info *ltp, real_t *spec, real_t *lt_pred_stat, fb_info *fb, uint8_t win_shape, uint8_t win_shape_prev, uint8_t sr_index, uint8_t object_type, uint16_t frame_len) { uint8_t sfb;
/* For ONLY_LONG_SEQUENCE windows (num_window_groups = 1, window_group_length[0] = 1) the spectral data is in ascending spectral order. For the EIGHT_SHORT_SEQUENCE window, the spectral order depends on the grouping in the following manner: - Groups are ordered sequentially - Within a group, a scalefactor band consists of the spectral data of all grouped SHORT_WINDOWs for the associated scalefactor window band. To clarify via example, the length of a group is in the range of one to eight SHORT_WINDOWs. - If there are eight groups each with length one (num_window_groups = 8, window_group_length[0..7] = 1), the result is a sequence of eight spectra, each in ascending spectral order. - If there is only one group with length eight (num_window_groups = 1, window_group_length[0] = 8), the result is that spectral data of all eight SHORT_WINDOWs is interleaved by scalefactor window bands. - Within a scalefactor window band, the coefficients are in ascending spectral order. */ static uint8_t quant_to_spec(NeAACDecHandle hDecoder, ic_stream *ics, int16_t *quant_data, real_t *spec_data, uint16_t frame_len) { ALIGN static const real_t pow2_table[] = { COEF_CONST(1.0), COEF_CONST(1.1892071150027210667174999705605), /* 2^0.25 */ COEF_CONST(1.4142135623730950488016887242097), /* 2^0.5 */ COEF_CONST(1.6817928305074290860622509524664) /* 2^0.75 */ }; const real_t *tab = iq_table; uint8_t g, sfb, win; uint16_t width, bin, k, gindex, wa, wb; uint8_t error = 0; /* Init error flag */ #ifndef FIXED_POINT real_t scf; #endif k = 0; gindex = 0; for (g = 0; g < ics->num_window_groups; g++) { uint16_t j = 0; uint16_t gincrease = 0; uint16_t win_inc = ics->swb_offset[ics->num_swb]; for (sfb = 0; sfb < ics->num_swb; sfb++) { int32_t exp, frac; width = ics->swb_offset[sfb+1] - ics->swb_offset[sfb]; /* this could be scalefactor for IS or PNS, those can be negative or bigger then 255 */ /* just ignore them */ if (ics->scale_factors[g][sfb] < 0 || ics->scale_factors[g][sfb] > 255) { exp = 0; frac = 0; } else { /* ics->scale_factors[g][sfb] must be between 0 and 255 */ exp = (ics->scale_factors[g][sfb] /* - 100 */) >> 2; /* frac must always be > 0 */ frac = (ics->scale_factors[g][sfb] /* - 100 */) & 3; } #ifdef FIXED_POINT exp -= 25; /* IMDCT pre-scaling */ if (hDecoder->object_type == LD) { exp -= 6 /*9*/; } else { if (ics->window_sequence == EIGHT_SHORT_SEQUENCE) exp -= 4 /*7*/; else exp -= 7 /*10*/; } #endif wa = gindex + j; #ifndef FIXED_POINT scf = pow2sf_tab[exp/*+25*/] * pow2_table[frac]; #endif for (win = 0; win < ics->window_group_length[g]; win++) { for (bin = 0; bin < width; bin += 4) { #ifndef FIXED_POINT wb = wa + bin; spec_data[wb+0] = iquant(quant_data[k+0], tab, &error) * scf; spec_data[wb+1] = iquant(quant_data[k+1], tab, &error) * scf; spec_data[wb+2] = iquant(quant_data[k+2], tab, &error) * scf; spec_data[wb+3] = iquant(quant_data[k+3], tab, &error) * scf; #else real_t iq0 = iquant(quant_data[k+0], tab, &error); real_t iq1 = iquant(quant_data[k+1], tab, &error); real_t iq2 = iquant(quant_data[k+2], tab, &error); real_t iq3 = iquant(quant_data[k+3], tab, &error); wb = wa + bin; if (exp < 0) { spec_data[wb+0] = iq0 >>= -exp; spec_data[wb+1] = iq1 >>= -exp; spec_data[wb+2] = iq2 >>= -exp; spec_data[wb+3] = iq3 >>= -exp; } else { spec_data[wb+0] = iq0 <<= exp; spec_data[wb+1] = iq1 <<= exp; spec_data[wb+2] = iq2 <<= exp; spec_data[wb+3] = iq3 <<= exp; } if (frac != 0) { spec_data[wb+0] = MUL_C(spec_data[wb+0],pow2_table[frac]); spec_data[wb+1] = MUL_C(spec_data[wb+1],pow2_table[frac]); spec_data[wb+2] = MUL_C(spec_data[wb+2],pow2_table[frac]); spec_data[wb+3] = MUL_C(spec_data[wb+3],pow2_table[frac]); } //#define SCFS_PRINT #ifdef SCFS_PRINT printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+0]); printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+1]); printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+2]); printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+3]); //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+0]); //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+1]); //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+2]); //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+3]); #endif #endif gincrease += 4; k += 4; } wa += win_inc; } j += width; }
** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through [email protected]. ** ** $Id: is.c,v 1.1 2005/11/27 01:00:36 tonymillion Exp $ **/ #include "common.h" #include "structs.h" #include "syntax.h" #include "is.h" #ifdef FIXED_POINT static real_t pow05_table[] = { COEF_CONST(1.68179283050743), /* 0.5^(-3/4) */ COEF_CONST(1.41421356237310), /* 0.5^(-2/4) */ COEF_CONST(1.18920711500272), /* 0.5^(-1/4) */ COEF_CONST(1.0), /* 0.5^( 0/4) */ COEF_CONST(0.84089641525371), /* 0.5^(+1/4) */ COEF_CONST(0.70710678118655), /* 0.5^(+2/4) */ COEF_CONST(0.59460355750136) /* 0.5^(+3/4) */ }; #endif void is_decode(ic_stream *ics, ic_stream *icsr, real_t *l_spec, real_t *r_spec, uint16_t frame_len) { uint8_t g, sfb, b; uint16_t i; #ifndef FIXED_POINT
4096.0, 8192.0, 16384.0, 32768.0, 65536.0, 131072.0, 262144.0, 524288.0, 1048576.0, 2097152.0, 4194304.0, 8388608.0, 16777216.0, 33554432.0, 67108864.0, 134217728.0, 268435456.0, 536870912.0, 1073741824.0, 2147483648.0, 4294967296.0, 8589934592.0, 17179869184.0, 34359738368.0, 68719476736.0, 137438953472.0, 274877906944.0 }; #endif ALIGN static real_t pow2_table[] = { #if 0 COEF_CONST(0.59460355750136053335874998528024), /* 2^-0.75 */ COEF_CONST(0.70710678118654752440084436210485), /* 2^-0.5 */ COEF_CONST(0.84089641525371454303112547623321), /* 2^-0.25 */ #endif COEF_CONST(1.0), COEF_CONST(1.1892071150027210667174999705605), /* 2^0.25 */ COEF_CONST(1.4142135623730950488016887242097), /* 2^0.5 */ COEF_CONST(1.6817928305074290860622509524664) /* 2^0.75 */ }; void apply_scalefactors(faacDecHandle hDecoder, ic_stream *ics, real_t *x_invquant, uint16_t frame_len) { uint8_t g, sfb; uint16_t top; int32_t exp, frac;
#include "cfft.h" #include "mdct.h" /* const_tab[]: 0: sqrt(2 / N) 1: cos(2 * PI / N) 2: sin(2 * PI / N) 3: cos(2 * PI * (1/8) / N) 4: sin(2 * PI * (1/8) / N) */ #ifdef FIXED_POINT real_t const_tab[][5] = { { /* 2048 */ COEF_CONST(1), FRAC_CONST(0.99999529380957619), FRAC_CONST(0.0030679567629659761), FRAC_CONST(0.99999992646571789), FRAC_CONST(0.00038349518757139556) }, { /* 1920 */ COEF_CONST(/* sqrt(1024/960) */ 1.0327955589886444), FRAC_CONST(0.99999464540169647), FRAC_CONST(0.0032724865065266251), FRAC_CONST(0.99999991633432805), FRAC_CONST(0.00040906153202803459) }, { /* 1024 */ COEF_CONST(1), FRAC_CONST(0.99998117528260111), FRAC_CONST(0.0061358846491544753), FRAC_CONST(0.99999970586288223),
void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out) { uint16_t k; complex_t x; #ifdef ALLOW_SMALL_FRAMELENGTH #ifdef FIXED_POINT real_t scale, b_scale = 0; #endif #endif ALIGN complex_t Z1[512]; complex_t *sincos = mdct->sincos; uint16_t N = mdct->N; uint16_t N2 = N >> 1; uint16_t N4 = N >> 2; uint16_t N8 = N >> 3; #ifdef PROFILE int64_t count1, count2 = faad_get_ts(); #endif #ifdef ALLOW_SMALL_FRAMELENGTH #ifdef FIXED_POINT /* detect non-power of 2 */ if (N & (N-1)) { /* adjust scale for non-power of 2 MDCT */ /* 2048/1920 */ b_scale = 1; scale = COEF_CONST(1.0666666666666667); } #endif #endif /* pre-IFFT complex multiplication */ for (k = 0; k < N4; k++) { ComplexMult(&IM(Z1[k]), &RE(Z1[k]), X_in[2*k], X_in[N2 - 1 - 2*k], RE(sincos[k]), IM(sincos[k])); } #ifdef PROFILE count1 = faad_get_ts(); #endif /* complex IFFT, any non-scaling FFT can be used here */ cfftb(mdct->cfft, Z1); #ifdef PROFILE count1 = faad_get_ts() - count1; #endif /* post-IFFT complex multiplication */ for (k = 0; k < N4; k++) { RE(x) = RE(Z1[k]); IM(x) = IM(Z1[k]); ComplexMult(&IM(Z1[k]), &RE(Z1[k]), IM(x), RE(x), RE(sincos[k]), IM(sincos[k])); #ifdef ALLOW_SMALL_FRAMELENGTH #ifdef FIXED_POINT /* non-power of 2 MDCT scaling */ if (b_scale) { RE(Z1[k]) = MUL_C(RE(Z1[k]), scale); IM(Z1[k]) = MUL_C(IM(Z1[k]), scale); } #endif #endif } /* reordering */ for (k = 0; k < N8; k+=2) { X_out[ 2*k] = IM(Z1[N8 + k]); X_out[ 2 + 2*k] = IM(Z1[N8 + 1 + k]); X_out[ 1 + 2*k] = -RE(Z1[N8 - 1 - k]); X_out[ 3 + 2*k] = -RE(Z1[N8 - 2 - k]); X_out[N4 + 2*k] = RE(Z1[ k]); X_out[N4 + + 2 + 2*k] = RE(Z1[ 1 + k]); X_out[N4 + 1 + 2*k] = -IM(Z1[N4 - 1 - k]); X_out[N4 + 3 + 2*k] = -IM(Z1[N4 - 2 - k]); X_out[N2 + 2*k] = RE(Z1[N8 + k]); X_out[N2 + + 2 + 2*k] = RE(Z1[N8 + 1 + k]); X_out[N2 + 1 + 2*k] = -IM(Z1[N8 - 1 - k]); X_out[N2 + 3 + 2*k] = -IM(Z1[N8 - 2 - k]); X_out[N2 + N4 + 2*k] = -IM(Z1[ k]); X_out[N2 + N4 + 2 + 2*k] = -IM(Z1[ 1 + k]); X_out[N2 + N4 + 1 + 2*k] = RE(Z1[N4 - 1 - k]); X_out[N2 + N4 + 3 + 2*k] = RE(Z1[N4 - 2 - k]); } #ifdef PROFILE count2 = faad_get_ts() - count2; mdct->fft_cycles += count1; mdct->cycles += (count2 - count1); #endif }
static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg) { uint8_t k; rxx[0] = COEF_CONST(0.0); deg[1] = COEF_CONST(0.0); for (k = 2; k < sbr->k0; k++) { deg[k] = COEF_CONST(0.0); if ((k % 2 == 0) && (rxx[k] < COEF_CONST(0.0))) { if (rxx[k-1] < COEF_CONST(0.0)) { deg[k] = COEF_CONST(1.0); if (rxx[k-2] > COEF_CONST(0.0)) { deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); } } else if (rxx[k-2] > COEF_CONST(0.0)) { deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); } } if ((k % 2 == 1) && (rxx[k] > COEF_CONST(0.0))) { if (rxx[k-1] > COEF_CONST(0.0)) { deg[k] = COEF_CONST(1.0); if (rxx[k-2] < COEF_CONST(0.0)) { deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); } } else if (rxx[k-2] < COEF_CONST(0.0)) { deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); } } } }
void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out) { uint16_t k; complex_t x; ALIGN complex_t Z1[512]; complex_t *sincos = mdct->sincos; uint16_t N = mdct->N; uint16_t N2 = N >> 1; uint16_t N4 = N >> 2; uint16_t N8 = N >> 3; #ifndef FIXED_POINT real_t scale = REAL_CONST(N); #else real_t scale = REAL_CONST(4.0/N); #endif #ifdef ALLOW_SMALL_FRAMELENGTH #ifdef FIXED_POINT /* detect non-power of 2 */ if (N & (N-1)) { /* adjust scale for non-power of 2 MDCT */ /* *= sqrt(2048/1920) */ scale = MUL_C(scale, COEF_CONST(1.0327955589886444)); } #endif #endif /* pre-FFT complex multiplication */ for (k = 0; k < N8; k++) { uint16_t n = k << 1; RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 + n]; IM(x) = X_in[ N4 + n] - X_in[ N4 - 1 - n]; ComplexMult(&RE(Z1[k]), &IM(Z1[k]), RE(x), IM(x), RE(sincos[k]), IM(sincos[k])); RE(Z1[k]) = MUL_R(RE(Z1[k]), scale); IM(Z1[k]) = MUL_R(IM(Z1[k]), scale); RE(x) = X_in[N2 - 1 - n] - X_in[ n]; IM(x) = X_in[N2 + n] + X_in[N - 1 - n]; ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]), RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8])); RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale); IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale); } /* complex FFT, any non-scaling FFT can be used here */ cfftf(mdct->cfft, Z1); /* post-FFT complex multiplication */ for (k = 0; k < N4; k++) { uint16_t n = k << 1; ComplexMult(&RE(x), &IM(x), RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k])); X_out[ n] = -RE(x); X_out[N2 - 1 - n] = IM(x); X_out[N2 + n] = -IM(x); X_out[N - 1 - n] = RE(x); } }
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch) { static real_t h_smooth[] = { COEF_CONST(0.03183050093751), COEF_CONST(0.11516383427084), COEF_CONST(0.21816949906249), COEF_CONST(0.30150283239582), COEF_CONST(0.33333333333333) }; static int8_t phi_re[] = { 1, 0, -1, 0 }; static int8_t phi_im[] = { 0, 1, 0, -1 }; uint8_t m, l, i, n; uint16_t fIndexNoise = 0; uint8_t fIndexSine = 0; uint8_t assembly_reset = 0; real_t *temp; real_t G_filt, Q_filt; uint8_t h_SL; if (sbr->Reset == 1) { assembly_reset = 1; fIndexNoise = 0; } else { fIndexNoise = sbr->index_noise_prev[ch]; } fIndexSine = sbr->psi_is_prev[ch]; for (l = 0; l < sbr->L_E[ch]; l++) { uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0; #ifdef SBR_LOW_POWER h_SL = 0; #else h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4; h_SL = (no_noise ? 0 : h_SL); #endif if (assembly_reset) { for (n = 0; n < 4; n++) { memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t)); memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t)); } assembly_reset = 0; } for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++) { #ifdef SBR_LOW_POWER uint8_t i_min1, i_plus1; uint8_t sinusoids = 0; #endif memcpy(sbr->G_temp_prev[ch][4], adj->G_lim_boost[l], sbr->M*sizeof(real_t)); memcpy(sbr->Q_temp_prev[ch][4], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t)); for (m = 0; m < sbr->M; m++) { uint8_t j; qmf_t psi; G_filt = 0; Q_filt = 0; j = 0; if (h_SL != 0) { for (n = 0; n <= 4; n++) { G_filt += MUL_C(sbr->G_temp_prev[ch][n][m], h_smooth[j]); Q_filt += MUL_C(sbr->Q_temp_prev[ch][n][m], h_smooth[j]); j++; } } else { G_filt = sbr->G_temp_prev[ch][4][m]; Q_filt = sbr->Q_temp_prev[ch][4][m]; } Q_filt = (adj->S_M_boost[l][m] != 0 || no_noise) ? 0 : Q_filt; /* add noise to the output */ fIndexNoise = (fIndexNoise + 1) & 511; /* the smoothed gain values are applied to Xsbr */ /* V is defined, not calculated */ QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx])) + MUL_F(Q_filt, RE(V[fIndexNoise])); if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42) QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320; #ifndef SBR_LOW_POWER QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx])) + MUL_F(Q_filt, IM(V[fIndexNoise])); #endif //if (adj->S_index_mapped[m][l]) { int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1); QMF_RE(psi) = MUL_R(adj->S_M_boost[l][m], phi_re[fIndexSine]); QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi); #ifndef SBR_LOW_POWER QMF_IM(psi) = rev * MUL_R(adj->S_M_boost[l][m], phi_im[fIndexSine]); QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi); #else i_min1 = (fIndexSine - 1) & 3; i_plus1 = (fIndexSine + 1) & 3; if (m == 0) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) -= (-1*rev * MUL_C(MUL_R(adj->S_M_boost[l][0], phi_re[i_plus1]), COEF_CONST(0.00815))); if(m < sbr->M - 1) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= (rev * MUL_C(MUL_R(adj->S_M_boost[l][1], phi_re[i_plus1]), COEF_CONST(0.00815))); } } if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16)) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= (rev * MUL_C(MUL_R(adj->S_M_boost[l][m - 1], phi_re[i_min1]), COEF_CONST(0.00815))); QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= (rev * MUL_C(MUL_R(adj->S_M_boost[l][m + 1], phi_re[i_plus1]), COEF_CONST(0.00815))); } if ((m == sbr->M - 1) && (sinusoids < 16)) { if (m > 0) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= (rev * MUL_C(MUL_R(adj->S_M_boost[l][m - 1], phi_re[i_min1]), COEF_CONST(0.00815))); } if (m + sbr->kx < 64) { QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) -= (-1*rev * MUL_C(MUL_R(adj->S_M_boost[l][m], phi_re[i_min1]), COEF_CONST(0.00815))); } } if (adj->S_M_boost[l][m] != 0) sinusoids++; #endif } } fIndexSine = (fIndexSine + 1) & 3; temp = sbr->G_temp_prev[ch][0]; for (n = 0; n < 4; n++) sbr->G_temp_prev[ch][n] = sbr->G_temp_prev[ch][n+1]; sbr->G_temp_prev[ch][4] = temp; temp = sbr->Q_temp_prev[ch][0]; for (n = 0; n < 4; n++) sbr->Q_temp_prev[ch][n] = sbr->Q_temp_prev[ch][n+1]; sbr->Q_temp_prev[ch][4] = temp; } } sbr->index_noise_prev[ch] = fIndexNoise; sbr->psi_is_prev[ch] = fIndexSine; }