Example #1
0
/* ARGSUSED */
void
tcp_time_wait_collector(void *arg)
{
	tcp_t *tcp;
	int64_t now;
	mblk_t *mp;
	conn_t *connp;
	kmutex_t *lock;
	boolean_t removed;
	extern void (*cl_inet_disconnect)(netstackid_t, uint8_t, sa_family_t,
	    uint8_t *, in_port_t, uint8_t *, in_port_t, void *);

	squeue_t *sqp = (squeue_t *)arg;
	tcp_squeue_priv_t *tcp_time_wait =
	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));

	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
	tcp_time_wait->tcp_time_wait_tid = 0;
#ifdef DEBUG
	tcp_time_wait->tcp_time_wait_running = B_TRUE;
#endif

	if (tcp_time_wait->tcp_free_list != NULL &&
	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
		TCP_G_STAT(tcp_freelist_cleanup);
		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
			tcp->tcp_time_wait_next = NULL;
			tcp_time_wait->tcp_free_list_cnt--;
			ASSERT(tcp->tcp_tcps == NULL);
			CONN_DEC_REF(tcp->tcp_connp);
		}
		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
	}

	/*
	 * In order to reap time waits reliably, we should use a
	 * source of time that is not adjustable by the user -- hence
	 * the call to ddi_get_lbolt64().
	 */
	now = ddi_get_lbolt64();
	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
		/*
		 * lbolt64 should not wrap around in practice...  So we can
		 * do a direct comparison.
		 */
		if (now < tcp->tcp_time_wait_expire)
			break;

		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
		ASSERT(removed);

		connp = tcp->tcp_connp;
		ASSERT(connp->conn_fanout != NULL);
		lock = &connp->conn_fanout->connf_lock;
		/*
		 * This is essentially a TW reclaim fast path optimization for
		 * performance where the timewait collector checks under the
		 * fanout lock (so that no one else can get access to the
		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
		 * the classifier hash list. If ref count is indeed 2, we can
		 * just remove the conn under the fanout lock and avoid
		 * cleaning up the conn under the squeue, provided that
		 * clustering callbacks are not enabled. If clustering is
		 * enabled, we need to make the clustering callback before
		 * setting the CONDEMNED flag and after dropping all locks and
		 * so we forego this optimization and fall back to the slow
		 * path. Also please see the comments in tcp_closei_local
		 * regarding the refcnt logic.
		 *
		 * Since we are holding the tcp_time_wait_lock, its better
		 * not to block on the fanout_lock because other connections
		 * can't add themselves to time_wait list. So we do a
		 * tryenter instead of mutex_enter.
		 */
		if (mutex_tryenter(lock)) {
			mutex_enter(&connp->conn_lock);
			if ((connp->conn_ref == 2) &&
			    (cl_inet_disconnect == NULL)) {
				ipcl_hash_remove_locked(connp,
				    connp->conn_fanout);
				/*
				 * Set the CONDEMNED flag now itself so that
				 * the refcnt cannot increase due to any
				 * walker.
				 */
				connp->conn_state_flags |= CONN_CONDEMNED;
				mutex_exit(lock);
				mutex_exit(&connp->conn_lock);
				if (tcp_time_wait->tcp_free_list_cnt <
				    tcp_free_list_max_cnt) {
					/* Add to head of tcp_free_list */
					mutex_exit(
					    &tcp_time_wait->tcp_time_wait_lock);
					tcp_cleanup(tcp);
					ASSERT(connp->conn_latch == NULL);
					ASSERT(connp->conn_policy == NULL);
					ASSERT(tcp->tcp_tcps == NULL);
					ASSERT(connp->conn_netstack == NULL);

					mutex_enter(
					    &tcp_time_wait->tcp_time_wait_lock);
					tcp->tcp_time_wait_next =
					    tcp_time_wait->tcp_free_list;
					tcp_time_wait->tcp_free_list = tcp;
					tcp_time_wait->tcp_free_list_cnt++;
					continue;
				} else {
					/* Do not add to tcp_free_list */
					mutex_exit(
					    &tcp_time_wait->tcp_time_wait_lock);
					tcp_bind_hash_remove(tcp);
					ixa_cleanup(tcp->tcp_connp->conn_ixa);
					tcp_ipsec_cleanup(tcp);
					CONN_DEC_REF(tcp->tcp_connp);
				}
			} else {
				CONN_INC_REF_LOCKED(connp);
				mutex_exit(lock);
				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
				mutex_exit(&connp->conn_lock);
				/*
				 * We can reuse the closemp here since conn has
				 * detached (otherwise we wouldn't even be in
				 * time_wait list). tcp_closemp_used can safely
				 * be changed without taking a lock as no other
				 * thread can concurrently access it at this
				 * point in the connection lifecycle.
				 */

				if (tcp->tcp_closemp.b_prev == NULL)
					tcp->tcp_closemp_used = B_TRUE;
				else
					cmn_err(CE_PANIC,
					    "tcp_timewait_collector: "
					    "concurrent use of tcp_closemp: "
					    "connp %p tcp %p\n", (void *)connp,
					    (void *)tcp);

				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
				mp = &tcp->tcp_closemp;
				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
				    tcp_timewait_close, connp, NULL,
				    SQ_FILL, SQTAG_TCP_TIMEWAIT);
			}
		} else {
			mutex_enter(&connp->conn_lock);
			CONN_INC_REF_LOCKED(connp);
			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
			mutex_exit(&connp->conn_lock);
			/*
			 * We can reuse the closemp here since conn has
			 * detached (otherwise we wouldn't even be in
			 * time_wait list). tcp_closemp_used can safely
			 * be changed without taking a lock as no other
			 * thread can concurrently access it at this
			 * point in the connection lifecycle.
			 */

			if (tcp->tcp_closemp.b_prev == NULL)
				tcp->tcp_closemp_used = B_TRUE;
			else
				cmn_err(CE_PANIC, "tcp_timewait_collector: "
				    "concurrent use of tcp_closemp: "
				    "connp %p tcp %p\n", (void *)connp,
				    (void *)tcp);

			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
			mp = &tcp->tcp_closemp;
			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
			    tcp_timewait_close, connp, NULL,
			    SQ_FILL, SQTAG_TCP_TIMEWAIT);
		}
		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
	}

	if (tcp_time_wait->tcp_free_list != NULL)
		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;

	/*
	 * If the time wait list is not empty and there is no timer running,
	 * restart it.
	 */
	if ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL &&
	    tcp_time_wait->tcp_time_wait_tid == 0) {
		hrtime_t firetime;

		firetime = TICK_TO_NSEC(tcp->tcp_time_wait_expire - now);
		/* This ensures that we won't wake up too often. */
		firetime = MAX(TCP_TIME_WAIT_DELAY, firetime);
		tcp_time_wait->tcp_time_wait_tid =
		    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector,
		    sqp, firetime, CALLOUT_TCP_RESOLUTION,
		    CALLOUT_FLAG_ROUNDUP);
	}
#ifdef DEBUG
	tcp_time_wait->tcp_time_wait_running = B_FALSE;
#endif
	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
}
/*
 * Callback function for the cases kssl_input() had to submit an asynchronous
 * job and need to come back when done to carry on the input processing.
 * This routine follows the conventions of timeout and interrupt handlers.
 * (no blocking, ...)
 */
static void
tcp_kssl_input_callback(void *arg, mblk_t *mp, kssl_cmd_t kssl_cmd)
{
	tcp_t	*tcp = (tcp_t *)arg;
	conn_t	*connp;
	mblk_t	*sqmp;

	ASSERT(tcp != NULL);

	connp = tcp->tcp_connp;

	ASSERT(connp != NULL);

	switch (kssl_cmd) {
	case KSSL_CMD_SEND:
		/* I'm coming from an outside perimeter */
		if (mp != NULL) {
			/*
			 * See comment in tcp_kssl_input() call to tcp_output()
			 */
			mutex_enter(&tcp->tcp_non_sq_lock);
			tcp->tcp_squeue_bytes += msgdsize(mp);
			mutex_exit(&tcp->tcp_non_sq_lock);
		}
		CONN_INC_REF(connp);
		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp,
		    NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT);

	/* FALLTHROUGH */
	case KSSL_CMD_NONE:
		break;

	case KSSL_CMD_DELIVER_PROXY:
	case KSSL_CMD_DELIVER_SSL:
		/*
		 * Keep accumulating if not yet accepted.
		 */
		if (tcp->tcp_listener != NULL) {
			tcp_rcv_enqueue(tcp, mp, msgdsize(mp), NULL);
		} else {
			putnext(connp->conn_rq, mp);
		}
		break;

	case KSSL_CMD_NOT_SUPPORTED:
		/* Stop the SSL processing */
		kssl_release_ctx(tcp->tcp_kssl_ctx);
		tcp->tcp_kssl_ctx = NULL;
	}
	/*
	 * Process any input that may have accumulated while we're waiting for
	 * the call-back.
	 * We need to re-enter the squeue for this connp, and a new mp is
	 * necessary.
	 */
	if ((sqmp = allocb(1, BPRI_MED)) != NULL) {
		CONN_INC_REF(connp);
		SQUEUE_ENTER_ONE(connp->conn_sqp, sqmp, tcp_kssl_input_asynch,
		    connp, NULL, SQ_FILL, SQTAG_TCP_KSSL_INPUT);
	} else {
		DTRACE_PROBE(kssl_err__allocb_failed);
	}
	CONN_DEC_REF(connp);
}
/*
 * tcp_input_data() calls this routine for all packet destined to a
 * connection to the SSL port, when the SSL kernel proxy is configured
 * to intercept and process those packets.
 * A packet may carry multiple SSL records, so the function
 * calls kssl_input() in a loop, until all records are
 * handled.
 * As long as this connection is in handshake, that is until the first
 * time kssl_input() returns a record to be delivered ustreams,
 * we maintain the tcp_kssl_inhandshake, and keep an extra reference on
 * the tcp/connp across the call to kssl_input(). The reason is, that
 * function may return KSSL_CMD_QUEUED after scheduling an asynchronous
 * request and cause tcp_kssl_callback() to be called on a different CPU,
 * which could decrement the conn/tcp reference before we get to increment it.
 */
void
tcp_kssl_input(tcp_t *tcp, mblk_t *mp, cred_t *cr)
{
	struct conn_s	*connp = tcp->tcp_connp;
	tcp_t		*listener;
	mblk_t		*ind_mp;
	kssl_cmd_t	kssl_cmd;
	mblk_t		*outmp;
	struct		T_conn_ind *tci;
	boolean_t	more = B_FALSE;
	boolean_t	conn_held = B_FALSE;
	boolean_t	is_v4;
	void		*addr;

	if (is_system_labeled() && mp != NULL) {
		ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL);
		/*
		 * Provide for protocols above TCP such as RPC. NOPID leaves
		 * db_cpid unchanged.
		 * The cred could have already been set.
		 */
		if (cr != NULL)
			mblk_setcred(mp, cr, NOPID);
	}

	/* First time here, allocate the SSL context */
	if (tcp->tcp_kssl_ctx == NULL) {
		ASSERT(tcp->tcp_kssl_pending);

		is_v4 = (connp->conn_ipversion == IPV4_VERSION);
		if (is_v4) {
			addr = &connp->conn_faddr_v4;
		} else {
			addr = &connp->conn_faddr_v6;
		}

		if (kssl_init_context(tcp->tcp_kssl_ent,
		    addr, is_v4, tcp->tcp_mss,
		    &(tcp->tcp_kssl_ctx)) != KSSL_STS_OK) {
			tcp->tcp_kssl_pending = B_FALSE;
			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
			    KSSL_NO_PROXY);
			tcp->tcp_kssl_ent = NULL;
			goto no_can_do;
		}
		tcp->tcp_kssl_inhandshake = B_TRUE;

		/* we won't be needing this one after now */
		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
		tcp->tcp_kssl_ent = NULL;

	}

	if (tcp->tcp_kssl_inhandshake) {
		CONN_INC_REF(connp);
		conn_held = B_TRUE;
	}

	do {
		kssl_cmd = kssl_input(tcp->tcp_kssl_ctx, mp, &outmp,
		    &more, tcp_kssl_input_callback, (void *)tcp);

		switch (kssl_cmd) {
		case KSSL_CMD_SEND:
			DTRACE_PROBE(kssl_cmd_send);
			/*
			 * We need to increment tcp_squeue_bytes to account
			 * for the extra bytes internally injected to the
			 * outgoing flow. tcp_output() will decrement it
			 * as they are sent out.
			 */
			mutex_enter(&tcp->tcp_non_sq_lock);
			tcp->tcp_squeue_bytes += msgdsize(outmp);
			mutex_exit(&tcp->tcp_non_sq_lock);
			tcp_output(connp, outmp, NULL, NULL);

		/* FALLTHROUGH */
		case KSSL_CMD_NONE:
			DTRACE_PROBE(kssl_cmd_none);
			if (tcp->tcp_kssl_pending) {
				mblk_t *ctxmp;

				/*
				 * SSL handshake successfully started -
				 * pass up the T_CONN_IND
				 */

				mp = NULL;

				listener = tcp->tcp_listener;
				tcp->tcp_kssl_pending = B_FALSE;

				ind_mp = tcp->tcp_conn.tcp_eager_conn_ind;
				ASSERT(ind_mp != NULL);

				ctxmp = allocb(sizeof (kssl_ctx_t), BPRI_MED);

				/*
				 * Give this session a chance to fall back to
				 * userland SSL
				 */
				if (ctxmp == NULL)
					goto no_can_do;

				/*
				 * attach the kssl_ctx to the conn_ind and
				 * transform it to a T_SSL_PROXY_CONN_IND.
				 * Hold it so that it stays valid till it
				 * reaches the stream head.
				 */
				kssl_hold_ctx(tcp->tcp_kssl_ctx);
				*((kssl_ctx_t *)ctxmp->b_rptr) =
				    tcp->tcp_kssl_ctx;
				ctxmp->b_wptr = ctxmp->b_rptr +
				    sizeof (kssl_ctx_t);

				ind_mp->b_cont = ctxmp;

				tci = (struct T_conn_ind *)ind_mp->b_rptr;
				tci->PRIM_type = T_SSL_PROXY_CONN_IND;

				/*
				 * The code below is copied from tcp_input_data
				 * delivering the T_CONN_IND on a TCPS_SYN_RCVD,
				 * and all conn ref cnt comments apply.
				 */
				tcp->tcp_conn.tcp_eager_conn_ind = NULL;
				tcp->tcp_tconnind_started = B_TRUE;

				CONN_INC_REF(connp);

				CONN_INC_REF(listener->tcp_connp);
				if (listener->tcp_connp->conn_sqp ==
				    connp->conn_sqp) {
					tcp_send_conn_ind(listener->tcp_connp,
					    ind_mp,
					    listener->tcp_connp->conn_sqp);
					CONN_DEC_REF(listener->tcp_connp);
				} else {
					SQUEUE_ENTER_ONE(
					    listener->tcp_connp->conn_sqp,
					    ind_mp, tcp_send_conn_ind,
					    listener->tcp_connp, NULL, SQ_FILL,
					    SQTAG_TCP_CONN_IND);
				}
			}
			break;

		case KSSL_CMD_QUEUED:
			DTRACE_PROBE(kssl_cmd_queued);
			/*
			 * We hold the conn_t here because an asynchronous
			 * request have been queued and
			 * tcp_kssl_input_callback() will be called later.
			 * It will release the conn_t
			 */
			CONN_INC_REF(connp);
			break;

		case KSSL_CMD_DELIVER_PROXY:
		case KSSL_CMD_DELIVER_SSL:
			DTRACE_PROBE(kssl_cmd_proxy__ssl);
			/*
			 * Keep accumulating if not yet accepted.
			 */
			if (tcp->tcp_listener != NULL) {
				DTRACE_PROBE1(kssl_mblk__input_rcv_enqueue,
				    mblk_t *, outmp);
				tcp_rcv_enqueue(tcp, outmp, msgdsize(outmp),
				    NULL);
			} else {
				DTRACE_PROBE1(kssl_mblk__input_putnext,
				    mblk_t *, outmp);
				putnext(connp->conn_rq, outmp);
			}
			/*
			 * We're at a phase where records are sent upstreams,
			 * past the handshake
			 */
			tcp->tcp_kssl_inhandshake = B_FALSE;
			break;

		case KSSL_CMD_NOT_SUPPORTED:
			DTRACE_PROBE(kssl_cmd_not_supported);
			/*
			 * Stop the SSL processing by the proxy, and
			 * switch to the userland SSL
			 */
			if (tcp->tcp_kssl_pending) {

				tcp->tcp_kssl_pending = B_FALSE;

no_can_do:
				DTRACE_PROBE1(kssl_no_can_do, tcp_t *, tcp);
				listener = tcp->tcp_listener;
				ind_mp = tcp->tcp_conn.tcp_eager_conn_ind;
				ASSERT(ind_mp != NULL);

				if (tcp->tcp_kssl_ctx != NULL) {
					kssl_release_ctx(tcp->tcp_kssl_ctx);
					tcp->tcp_kssl_ctx = NULL;
				}

				/*
				 * Make this a T_SSL_PROXY_CONN_IND, for the
				 * stream head to deliver it to the SSL
				 * fall-back listener
				 */
				tci = (struct T_conn_ind *)ind_mp->b_rptr;
				tci->PRIM_type = T_SSL_PROXY_CONN_IND;

				/*
				 * The code below is copied from tcp_input_data
				 * delivering the T_CONN_IND on a TCPS_SYN_RCVD,
				 * and all conn ref cnt comments apply.
				 */
				tcp->tcp_conn.tcp_eager_conn_ind = NULL;
				tcp->tcp_tconnind_started = B_TRUE;

				CONN_INC_REF(connp);

				CONN_INC_REF(listener->tcp_connp);
				if (listener->tcp_connp->conn_sqp ==
				    connp->conn_sqp) {
					tcp_send_conn_ind(listener->tcp_connp,
					    ind_mp,
					    listener->tcp_connp->conn_sqp);
					CONN_DEC_REF(listener->tcp_connp);
				} else {
					SQUEUE_ENTER_ONE(
					    listener->tcp_connp->conn_sqp,
					    ind_mp, tcp_send_conn_ind,
					    listener->tcp_connp, NULL,
					    SQ_FILL, SQTAG_TCP_CONN_IND);
				}
			}
			if (mp != NULL)
				tcp_rcv_enqueue(tcp, mp, msgdsize(mp), NULL);
			break;
		}
		mp = NULL;
	} while (more);

	if (conn_held) {
		CONN_DEC_REF(connp);
	}
}
Example #4
0
/*
 * This routine gets called by the eager tcp upon changing state from
 * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
 * and the active connect tcp such that the regular tcp processings
 * may be bypassed under allowable circumstances.  Because the fusion
 * requires both endpoints to be in the same squeue, it does not work
 * for simultaneous active connects because there is no easy way to
 * switch from one squeue to another once the connection is created.
 * This is different from the eager tcp case where we assign it the
 * same squeue as the one given to the active connect tcp during open.
 */
void
tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
{
	conn_t *peer_connp, *connp = tcp->tcp_connp;
	tcp_t *peer_tcp;

	ASSERT(!tcp->tcp_fused);
	ASSERT(tcp->tcp_loopback);
	ASSERT(tcp->tcp_loopback_peer == NULL);
	/*
	 * We need to inherit q_hiwat of the listener tcp, but we can't
	 * really use tcp_listener since we get here after sending up
	 * T_CONN_IND and tcp_wput_accept() may be called independently,
	 * at which point tcp_listener is cleared; this is why we use
	 * tcp_saved_listener.  The listener itself is guaranteed to be
	 * around until tcp_accept_finish() is called on this eager --
	 * this won't happen until we're done since we're inside the
	 * eager's perimeter now.
	 */
	ASSERT(tcp->tcp_saved_listener != NULL);

	/*
	 * Lookup peer endpoint; search for the remote endpoint having
	 * the reversed address-port quadruplet in ESTABLISHED state,
	 * which is guaranteed to be unique in the system.  Zone check
	 * is applied accordingly for loopback address, but not for
	 * local address since we want fusion to happen across Zones.
	 */
	if (tcp->tcp_ipversion == IPV4_VERSION) {
		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
		    (ipha_t *)iphdr, tcph);
	} else {
		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
		    (ip6_t *)iphdr, tcph);
	}

	/*
	 * We can only proceed if peer exists, resides in the same squeue
	 * as our conn and is not raw-socket.  The squeue assignment of
	 * this eager tcp was done earlier at the time of SYN processing
	 * in ip_fanout_tcp{_v6}.  Note that similar squeues by itself
	 * doesn't guarantee a safe condition to fuse, hence we perform
	 * additional tests below.
	 */
	ASSERT(peer_connp == NULL || peer_connp != connp);
	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
	    !IPCL_IS_TCP(peer_connp)) {
		if (peer_connp != NULL) {
			TCP_STAT(tcp_fusion_unqualified);
			CONN_DEC_REF(peer_connp);
		}
		return;
	}
	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */

	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
	ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);

	/*
	 * Fuse the endpoints; we perform further checks against both
	 * tcp endpoints to ensure that a fusion is allowed to happen.
	 * In particular we bail out for non-simple TCP/IP or if IPsec/
	 * IPQoS policy/kernel SSL exists.
	 */
	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
	    !TCP_LOOPBACK_IP(tcp) && !TCP_LOOPBACK_IP(peer_tcp) &&
	    tcp->tcp_kssl_ent == NULL &&
	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) {
		mblk_t *mp;
		struct stroptions *stropt;
		queue_t *peer_rq = peer_tcp->tcp_rq;

		ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL);
		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
		ASSERT(tcp->tcp_kssl_ctx == NULL);

		/*
		 * We need to drain data on both endpoints during unfuse.
		 * If we need to send up SIGURG at the time of draining,
		 * we want to be sure that an mblk is readily available.
		 * This is why we pre-allocate the M_PCSIG mblks for both
		 * endpoints which will only be used during/after unfuse.
		 */
		if ((mp = allocb(1, BPRI_HI)) == NULL)
			goto failed;

		tcp->tcp_fused_sigurg_mp = mp;

		if ((mp = allocb(1, BPRI_HI)) == NULL)
			goto failed;

		peer_tcp->tcp_fused_sigurg_mp = mp;

		/* Allocate M_SETOPTS mblk */
		if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL)
			goto failed;

		/* Fuse both endpoints */
		peer_tcp->tcp_loopback_peer = tcp;
		tcp->tcp_loopback_peer = peer_tcp;
		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;

		/*
		 * We never use regular tcp paths in fusion and should
		 * therefore clear tcp_unsent on both endpoints.  Having
		 * them set to non-zero values means asking for trouble
		 * especially after unfuse, where we may end up sending
		 * through regular tcp paths which expect xmit_list and
		 * friends to be correctly setup.
		 */
		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;

		tcp_timers_stop(tcp);
		tcp_timers_stop(peer_tcp);

		/*
		 * At this point we are a detached eager tcp and therefore
		 * don't have a queue assigned to us until accept happens.
		 * In the mean time the peer endpoint may immediately send
		 * us data as soon as fusion is finished, and we need to be
		 * able to flow control it in case it sends down huge amount
		 * of data while we're still detached.  To prevent that we
		 * inherit the listener's q_hiwat value; this is temporary
		 * since we'll repeat the process in tcp_accept_finish().
		 */
		(void) tcp_fuse_set_rcv_hiwat(tcp,
		    tcp->tcp_saved_listener->tcp_rq->q_hiwat);

		/*
		 * Set the stream head's write offset value to zero since we
		 * won't be needing any room for TCP/IP headers; tell it to
		 * not break up the writes (this would reduce the amount of
		 * work done by kmem); and configure our receive buffer.
		 * Note that we can only do this for the active connect tcp
		 * since our eager is still detached; it will be dealt with
		 * later in tcp_accept_finish().
		 */
		DB_TYPE(mp) = M_SETOPTS;
		mp->b_wptr += sizeof (*stropt);

		stropt = (struct stroptions *)mp->b_rptr;
		stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT;
		stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE);
		stropt->so_wroff = 0;

		/*
		 * Record the stream head's high water mark for
		 * peer endpoint; this is used for flow-control
		 * purposes in tcp_fuse_output().
		 */
		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp,
		    peer_rq->q_hiwat);

		/* Send the options up */
		putnext(peer_rq, mp);
	} else {
		TCP_STAT(tcp_fusion_unqualified);
	}
	CONN_DEC_REF(peer_connp);
	return;

failed:
	if (tcp->tcp_fused_sigurg_mp != NULL) {
		freeb(tcp->tcp_fused_sigurg_mp);
		tcp->tcp_fused_sigurg_mp = NULL;
	}
	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
		freeb(peer_tcp->tcp_fused_sigurg_mp);
		peer_tcp->tcp_fused_sigurg_mp = NULL;
	}
	CONN_DEC_REF(peer_connp);
}