Example #1
0
/*
 * Internal cpu startup sequencer
 * The sequence is as follows:
 *
 * MASTER	SLAVE
 * -------	----------
 * assume the kernel data is initialized
 * clear the proxy bit
 * start the slave cpu
 * wait for the slave cpu to set the proxy
 *
 *		the slave runs slave_startup and then sets the proxy
 *		the slave waits for the master to add slave to the ready set
 *
 * the master finishes the initialization and
 * adds the slave to the ready set
 *
 *		the slave exits the startup thread and is running
 */
void
start_cpu(int cpuid, void(*flag_func)(int))
{
	extern void cpu_startup(int);
	int timout;

	ASSERT(MUTEX_HELD(&cpu_lock));

	/*
	 * Before we begin the dance, tell DTrace that we're about to start
	 * a CPU.
	 */
	if (dtrace_cpustart_init != NULL)
		(*dtrace_cpustart_init)();

	/* start the slave cpu */
	CPUSET_DEL(proxy_ready_set, cpuid);
	if (prom_test("SUNW,start-cpu-by-cpuid") == 0) {
		(void) prom_startcpu_bycpuid(cpuid, (caddr_t)&cpu_startup,
		    cpuid);
	} else {
		/* "by-cpuid" interface didn't exist.  Do it the old way */
		pnode_t nodeid = cpunodes[cpuid].nodeid;

		ASSERT(nodeid != (pnode_t)0);
		(void) prom_startcpu(nodeid, (caddr_t)&cpu_startup, cpuid);
	}

	/* wait for the slave cpu to check in. */
	for (timout = CPU_WAKEUP_GRACE_MSEC; timout; timout--) {
		if (CPU_IN_SET(proxy_ready_set, cpuid))
			break;
		DELAY(1000);
	}
	if (timout == 0) {
		panic("cpu%d failed to start (2)", cpuid);
	}

	/*
	 * The slave has started; we can tell DTrace that it's safe again.
	 */
	if (dtrace_cpustart_fini != NULL)
		(*dtrace_cpustart_fini)();

	/* run the master side of stick synchronization for the slave cpu */
	sticksync_master();

	/*
	 * deal with the cpu flags in a phase-specific manner
	 * for various reasons, this needs to run after the slave
	 * is checked in but before the slave is released.
	 */
	(*flag_func)(cpuid);

	/* release the slave */
	CPUSET_ADD(cpu_ready_set, cpuid);
}
Example #2
0
static int
kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg)
{
    int rc, i;

    for (rc = 0, i = 0; i < NCPU; i++) {
        if (CPU_IN_SET(cpu_ready_set, i))
            rc += cb(i, arg);
    }

    return (rc);
}
static void
resume_cpus(void)
{
	int i;

	for (i = 1; i < ncpus; i++) {
		if (cpu[i] == NULL)
			continue;

		if (!CPU_IN_SET(cpu_suspend_lost_set, i)) {
			SUSPEND_DEBUG("xen_vcpu_up %d\n", i);
			mach_cpucontext_restore(cpu[i]);
			(void) xen_vcpu_up(i);
		}
	}

	mp_leave_barrier();
}
static void
suspend_cpus(void)
{
	int i;

	SUSPEND_DEBUG("suspend_cpus\n");

	mp_enter_barrier();

	for (i = 1; i < ncpus; i++) {
		if (!CPU_IN_SET(cpu_suspend_lost_set, i)) {
			SUSPEND_DEBUG("xen_vcpu_down %d\n", i);
			(void) xen_vcpu_down(i);
		}

		mach_cpucontext_reset(cpu[i]);
	}
}
Example #5
0
static void
pwrnow_power(cpuset_t set, uint32_t req_state)
{
	/*
	 * If thread is already running on target CPU then just
	 * make the transition request. Otherwise, we'll need to
	 * make a cross-call.
	 */
	kpreempt_disable();
	if (CPU_IN_SET(set, CPU->cpu_id)) {
		pwrnow_pstate_transition(req_state);
		CPUSET_DEL(set, CPU->cpu_id);
	}
	if (!CPUSET_ISNULL(set)) {
		xc_call((xc_arg_t)req_state, NULL, NULL,
		    CPUSET2BV(set), (xc_func_t)pwrnow_pstate_transition);
	}
	kpreempt_enable();
}
Example #6
0
/* ARGSUSED */
void
cmp_error_resteer(processorid_t cpuid)
{
#ifndef	_CMP_NO_ERROR_STEERING
	cpuset_t mycores;
	cpu_t *cpu;
	chipid_t chipid;
	int i;

	if (!cmp_cpu_is_cmp(cpuid))
		return;

	ASSERT(MUTEX_HELD(&cpu_lock));
	chipid = cpunodes[cpuid].portid;
	mycores = chips[chipid];

	/* Look for an online sibling core */
	for (i = 0; i < NCPU; i++) {
		if (i == cpuid)
			continue;

		if (CPU_IN_SET(mycores, i) &&
		    (cpu = cpu_get(i)) != NULL && cpu_is_active(cpu)) {
			/* Found one, reset error steering  */
			xc_one(i, (xcfunc_t *)set_cmp_error_steering, 0, 0);
			break;
		}
	}

	/* No online sibling cores, point to this core.  */
	if (i == NCPU) {
		xc_one(cpuid, (xcfunc_t *)set_cmp_error_steering, 0, 0);
	}
#else
	/* Not all CMP's support (e.g. Olympus-C by Fujitsu) error steering */
	return;
#endif /* _CMP_NO_ERROR_STEERING */
}
Example #7
0
/*
 * Drop the prom lock if it is held by the current CPU.  If the lock is held
 * recursively, return without clearing prom_cpu.  If the hold count is now
 * zero, clear prom_cpu and cv_signal any waiting CPU.
 */
void
kern_postprom(void)
{
	processorid_t cpuid = getprocessorid();
	cpu_t *cp = cpu[cpuid];

	if (panicstr)
		return; /* do not modify lock further if we have panicked */

	if (prom_cpu != cp)
		panic("kern_postprom: not owner, cp=%p owner=%p",
		    (void *)cp, (void *)prom_cpu);

	if (prom_holdcnt == 0)
		panic("kern_postprom: prom_holdcnt == 0, owner=%p",
		    (void *)prom_cpu);

	if (atomic_dec_32_nv(&prom_holdcnt) != 0)
		return; /* prom lock is held recursively by this CPU */

	if ((boothowto & RB_DEBUG) && prom_exit_enter_debugger)
		kmdb_enter();

	prom_thread = NULL;
	membar_producer();

	prom_cpu = NULL;
	membar_producer();

	if (CPU_IN_SET(cpu_ready_set, cpuid) && cp->cpu_m.mutex_ready) {
		mutex_enter(&prom_mutex);
		cv_signal(&prom_cv);
		mutex_exit(&prom_mutex);
		kpreempt_enable();
	}
}
Example #8
0
/*ARGSUSED*/
void
start_other_cpus(int flag)
{
	int cpuid;
	extern void idlestop_init(void);
	int bootcpu;

	/*
	 * Check if cpu_bringup_set has been explicitly set before
	 * initializing it.
	 */
	if (CPUSET_ISNULL(cpu_bringup_set)) {
		CPUSET_ALL(cpu_bringup_set);
	}

	if (&cpu_feature_init)
		cpu_feature_init();

	/*
	 * Initialize CPC.
	 */
	kcpc_hw_init();

	mutex_enter(&cpu_lock);

	/*
	 * Initialize our own cpu_info.
	 */
	init_cpu_info(CPU);

	/*
	 * Initialize CPU 0 cpu module private data area, including scrubber.
	 */
	cpu_init_private(CPU);
	populate_idstr(CPU);

	/*
	 * perform such initialization as is needed
	 * to be able to take CPUs on- and off-line.
	 */
	cpu_pause_init();
	xc_init();		/* initialize processor crosscalls */
	idlestop_init();

	if (!use_mp) {
		mutex_exit(&cpu_lock);
		cmn_err(CE_CONT, "?***** Not in MP mode\n");
		return;
	}
	/*
	 * should we be initializing this cpu?
	 */
	bootcpu = getprocessorid();

	/*
	 * launch all the slave cpus now
	 */
	for (cpuid = 0; cpuid < NCPU; cpuid++) {
		pnode_t nodeid = cpunodes[cpuid].nodeid;

		if (nodeid == (pnode_t)0)
			continue;

		if (cpuid == bootcpu) {
			if (!CPU_IN_SET(cpu_bringup_set, cpuid)) {
				cmn_err(CE_WARN, "boot cpu not a member "
				    "of cpu_bringup_set, adding it");
				CPUSET_ADD(cpu_bringup_set, cpuid);
			}
			continue;
		}
		if (!CPU_IN_SET(cpu_bringup_set, cpuid))
			continue;

		ASSERT(cpu[cpuid] == NULL);

		if (setup_cpu_common(cpuid)) {
			cmn_err(CE_PANIC, "cpu%d: setup failed", cpuid);
		}

		common_startup_init(cpu[cpuid], cpuid);

		start_cpu(cpuid, cold_flag_set);
		/*
		 * Because slave_startup() gets fired off after init()
		 * starts, we can't use the '?' trick to do 'boot -v'
		 * printing - so we always direct the 'cpu .. online'
		 * messages to the log.
		 */
		cmn_err(CE_CONT, "!cpu%d initialization complete - online\n",
		    cpuid);

		cpu_state_change_notify(cpuid, CPU_SETUP);

		if (dtrace_cpu_init != NULL)
			(*dtrace_cpu_init)(cpuid);
	}

	/*
	 * since all the cpus are online now, redistribute interrupts to them.
	 */
	intr_redist_all_cpus();

	mutex_exit(&cpu_lock);

	/*
	 * Start the Ecache scrubber.  Must be done after all calls to
	 * cpu_init_private for every cpu (including CPU 0).
	 */
	cpu_init_cache_scrub();

	if (&cpu_mp_init)
		cpu_mp_init();
}
Example #9
0
/*
 * Startup function executed on 'other' CPUs.  This is the first
 * C function after cpu_start sets up the cpu registers.
 */
static void
slave_startup(void)
{
	struct cpu	*cp = CPU;
	ushort_t	original_flags = cp->cpu_flags;

	mach_htraptrace_configure(cp->cpu_id);
	cpu_intrq_register(CPU);
	cp->cpu_m.mutex_ready = 1;

	/* acknowledge that we are done with initialization */
	CPUSET_ADD(proxy_ready_set, cp->cpu_id);

	/* synchronize STICK */
	sticksync_slave();

	if (boothowto & RB_DEBUG)
		kdi_dvec_cpu_init(cp);

	/*
	 * the slave will wait here forever -- assuming that the master
	 * will get back to us.  if it doesn't we've got bigger problems
	 * than a master not replying to this slave.
	 * the small delay improves the slave's responsiveness to the
	 * master's ack and decreases the time window between master and
	 * slave operations.
	 */
	while (!CPU_IN_SET(cpu_ready_set, cp->cpu_id))
		DELAY(1);

	/*
	 * The CPU is now in cpu_ready_set, safely able to take pokes.
	 */
	cp->cpu_m.poke_cpu_outstanding = B_FALSE;

	/* enable interrupts */
	(void) spl0();

	/*
	 * Signature block update to indicate that this CPU is in OS now.
	 * This needs to be done after the PIL is lowered since on
	 * some platforms the update code may block.
	 */
	CPU_SIGNATURE(OS_SIG, SIGST_RUN, SIGSUBST_NULL, cp->cpu_id);

	/*
	 * park the slave thread in a safe/quiet state and wait for the master
	 * to finish configuring this CPU before proceeding to thread_exit().
	 */
	while (((volatile ushort_t)cp->cpu_flags) & CPU_QUIESCED)
		DELAY(1);

	/*
	 * Initialize CPC CPU state.
	 */
	kcpc_hw_startup_cpu(original_flags);

	/*
	 * Notify the PG subsystem that the CPU  has started
	 */
	pg_cmt_cpu_startup(CPU);

	/*
	 * Now we are done with the startup thread, so free it up.
	 */
	thread_exit();
	cmn_err(CE_PANIC, "slave_startup: cannot return");
	/*NOTREACHED*/
}
Example #10
0
void
softint(void)
{
	softcall_t *sc = NULL;
	void (*func)();
	caddr_t arg;
	int cpu_id = CPU->cpu_id;

	mutex_enter(&softcall_lock);

	if (softcall_state & (SOFT_STEAL|SOFT_PEND)) {
		softcall_state = SOFT_DRAIN;
	} else  {
		/*
		 * The check for softcall_cpuset being
		 * NULL is required because it may get
		 * called very early during boot.
		 */
		if (softcall_cpuset != NULL &&
		    CPU_IN_SET(*softcall_cpuset, cpu_id))
			CPUSET_DEL(*softcall_cpuset, cpu_id);
		mutex_exit(&softcall_lock);
		goto out;
	}

	/*
	 * Setting softcall_latest_cpuid to current CPU ensures
	 * that there is only one active softlevel1 handler to
	 * process softcall queues.
	 *
	 * Since softcall_lock lock is dropped before calling
	 * func (callback), we need softcall_latest_cpuid
	 * to prevent two softlevel1 hanlders working on the
	 * queue when the first softlevel1 handler gets
	 * stuck due to high interrupt load.
	 */
	softcall_latest_cpuid = cpu_id;

	/* add ourself to the cpuset */
	if (!CPU_IN_SET(*softcall_cpuset, cpu_id))
		CPUSET_ADD(*softcall_cpuset, cpu_id);

	for (;;) {
		softcall_tick = lbolt;
		if ((sc = softhead) != NULL) {
			func = sc->sc_func;
			arg = sc->sc_arg;
			softhead = sc->sc_next;
			sc->sc_next = softfree;
			softfree = sc;
		}

		if (sc == NULL) {
			if (CPU_IN_SET(*softcall_cpuset, cpu_id))
				CPUSET_DEL(*softcall_cpuset, cpu_id);

			softcall_state = SOFT_IDLE;
			ASSERT(softcall_latest_cpuid == cpu_id);
			softcall_latest_cpuid = -1;

			mutex_exit(&softcall_lock);
			break;
		}

		mutex_exit(&softcall_lock);
		func(arg);
		mutex_enter(&softcall_lock);

		/*
		 * No longer need softcall processing from current
		 * interrupt handler because either
		 *  (a) softcall is in SOFT_IDLE state or
		 *  (b) There is a CPU already draining softcall
		 *	queue and the current softlevel1 is no
		 *	longer required.
		 */
		if (softcall_latest_cpuid != cpu_id) {
			if (CPU_IN_SET(*softcall_cpuset, cpu_id))
				CPUSET_DEL(*softcall_cpuset, cpu_id);

			mutex_exit(&softcall_lock);
			break;
		}
	}

out:
	if ((func = kdi_softcall_func) != NULL) {
		kdi_softcall_func = NULL;
		func();
	}
}
Example #11
0
/*
 * Gets called when softcall queue is not moving forward. We choose
 * a CPU and poke except the ones which are already poked.
 */
static int
softcall_choose_cpu()
{
	cpu_t *cplist = CPU;
	cpu_t *cp;
	int intr_load = INT_MAX;
	int cpuid = -1;
	cpuset_t poke;
	int s;

	ASSERT(getpil() >= DISP_LEVEL);
	ASSERT(ncpus > 1);
	ASSERT(MUTEX_HELD(&softcall_lock));

	CPUSET_ZERO(poke);

	/*
	 * The hint is to start from current CPU.
	 */
	cp = cplist;
	do {
		if (CPU_IN_SET(*softcall_cpuset, cp->cpu_id) ||
		    (cp->cpu_flags & CPU_ENABLE) == 0)
			continue;

		/* if CPU is not busy */
		if (cp->cpu_intrload == 0) {
			cpuid = cp->cpu_id;
			break;
		}

		if (cp->cpu_intrload < intr_load) {
			cpuid = cp->cpu_id;
			intr_load = cp->cpu_intrload;
		} else if (cp->cpu_intrload == intr_load) {
			/*
			 * We want to poke CPUs having similar
			 * load because we don't know which CPU is
			 * can acknowledge level1 interrupt. The
			 * list of such CPUs should not be large.
			 */
			if (cpuid != -1) {
				/*
				 * Put the last CPU chosen because
				 * it also has same interrupt load.
				 */
				CPUSET_ADD(poke, cpuid);
				cpuid = -1;
			}

			CPUSET_ADD(poke, cp->cpu_id);
		}
	} while ((cp = cp->cpu_next_onln) != cplist);

	/* if we found a CPU which suits best to poke */
	if (cpuid != -1) {
		CPUSET_ZERO(poke);
		CPUSET_ADD(poke, cpuid);
	}

	if (CPUSET_ISNULL(poke)) {
		mutex_exit(&softcall_lock);
		return (0);
	}

	/*
	 * We first set the bit in cpuset and then poke.
	 */
	CPUSET_XOR(*softcall_cpuset, poke);
	mutex_exit(&softcall_lock);

	/*
	 * If softcall() was called at low pil then we may
	 * get preempted before we raise PIL. It should be okay
	 * because we are just going to poke CPUs now or at most
	 * another thread may start choosing CPUs in this routine.
	 */
	s = splhigh();
	siron_poke_cpu(poke);
	splx(s);
	return (1);
}
Example #12
0
/*
 * Gets called when softcall queue is not moving forward. We choose
 * a CPU and poke except the ones which are already poked.
 */
static int
softcall_choose_cpu()
{
	cpu_t *cplist = CPU;
	cpu_t *cp;
	int intr_load = INT_MAX;
	int cpuid = -1;
	cpuset_t poke;
	int s;

	ASSERT(getpil() >= DISP_LEVEL);
	ASSERT(ncpus > 1);
	ASSERT(MUTEX_HELD(&softcall_lock));

	CPUSET_ZERO(poke);

	/*
	 * The hint is to start from current CPU.
	 */
	cp = cplist;
	do {
		/*
		 * Don't select this CPU if :
		 *   - in cpuset already
		 *   - CPU is not accepting interrupts
		 *   - CPU is being offlined
		 */
		if (CPU_IN_SET(*softcall_cpuset, cp->cpu_id) ||
		    (cp->cpu_flags & CPU_ENABLE) == 0 ||
		    (cp == cpu_inmotion))
			continue;
#if defined(__x86)
		/*
		 * Don't select this CPU if a hypervisor indicates it
		 * isn't currently scheduled onto a physical cpu.  We are
		 * looking for a cpu that can respond quickly and the time
		 * to get the virtual cpu scheduled and switched to running
		 * state is likely to be relatively lengthy.
		 */
		if (vcpu_on_pcpu(cp->cpu_id) == VCPU_NOT_ON_PCPU)
			continue;
#endif	/* __x86 */

		/* if CPU is not busy */
		if (cp->cpu_intrload == 0) {
			cpuid = cp->cpu_id;
			break;
		}

		if (cp->cpu_intrload < intr_load) {
			cpuid = cp->cpu_id;
			intr_load = cp->cpu_intrload;
		} else if (cp->cpu_intrload == intr_load) {
			/*
			 * We want to poke CPUs having similar
			 * load because we don't know which CPU is
			 * can acknowledge level1 interrupt. The
			 * list of such CPUs should not be large.
			 */
			if (cpuid != -1) {
				/*
				 * Put the last CPU chosen because
				 * it also has same interrupt load.
				 */
				CPUSET_ADD(poke, cpuid);
				cpuid = -1;
			}

			CPUSET_ADD(poke, cp->cpu_id);
		}
	} while ((cp = cp->cpu_next_onln) != cplist);

	/* if we found a CPU which suits best to poke */
	if (cpuid != -1) {
		CPUSET_ZERO(poke);
		CPUSET_ADD(poke, cpuid);
	}

	if (CPUSET_ISNULL(poke)) {
		mutex_exit(&softcall_lock);
		return (0);
	}

	/*
	 * We first set the bit in cpuset and then poke.
	 */
	CPUSET_XOR(*softcall_cpuset, poke);
	mutex_exit(&softcall_lock);

	/*
	 * If softcall() was called at low pil then we may
	 * get preempted before we raise PIL. It should be okay
	 * because we are just going to poke CPUs now or at most
	 * another thread may start choosing CPUs in this routine.
	 */
	s = splhigh();
	siron_poke_cpu(poke);
	splx(s);
	return (1);
}
Example #13
0
void
kern_preprom(void)
{
	for (;;) {
		/*
		 * Load the current CPU pointer and examine the mutex_ready bit.
		 * It doesn't matter if we are preempted here because we are
		 * only trying to determine if we are in the *set* of mutex
		 * ready CPUs.  We cannot disable preemption until we confirm
		 * that we are running on a CPU in this set, since a call to
		 * kpreempt_disable() requires access to curthread.
		 */
		processorid_t cpuid = getprocessorid();
		cpu_t *cp = cpu[cpuid];
		cpu_t *prcp;

		if (panicstr)
			return; /* just return if we are currently panicking */

		if (CPU_IN_SET(cpu_ready_set, cpuid) && cp->cpu_m.mutex_ready) {
			/*
			 * Disable premption, and reload the current CPU.  We
			 * can't move from a mutex_ready cpu to a non-ready cpu
			 * so we don't need to re-check cp->cpu_m.mutex_ready.
			 */
			kpreempt_disable();
			cp = CPU;
			ASSERT(cp->cpu_m.mutex_ready);

			/*
			 * Try the lock.  If we don't get the lock, re-enable
			 * preemption and see if we should sleep.  If we are
			 * already the lock holder, remove the effect of the
			 * previous kpreempt_disable() before returning since
			 * preemption was disabled by an earlier kern_preprom.
			 */
			prcp = atomic_cas_ptr((void *)&prom_cpu, NULL, cp);
			if (prcp == NULL ||
			    (prcp == cp && prom_thread == curthread)) {
				if (prcp == cp)
					kpreempt_enable();
				break;
			}

			kpreempt_enable();

			/*
			 * We have to be very careful here since both prom_cpu
			 * and prcp->cpu_m.mutex_ready can be changed at any
			 * time by a non mutex_ready cpu holding the lock.
			 * If the owner is mutex_ready, holding prom_mutex
			 * prevents kern_postprom() from completing.  If the
			 * owner isn't mutex_ready, we only know it will clear
			 * prom_cpu before changing cpu_m.mutex_ready, so we
			 * issue a membar after checking mutex_ready and then
			 * re-verify that prom_cpu is still held by the same
			 * cpu before actually proceeding to cv_wait().
			 */
			mutex_enter(&prom_mutex);
			prcp = prom_cpu;
			if (prcp != NULL && prcp->cpu_m.mutex_ready != 0) {
				membar_consumer();
				if (prcp == prom_cpu)
					cv_wait(&prom_cv, &prom_mutex);
			}
			mutex_exit(&prom_mutex);

		} else {
			/*
			 * If we are not yet mutex_ready, just attempt to grab
			 * the lock.  If we get it or already hold it, break.
			 */
			ASSERT(getpil() == PIL_MAX);
			prcp = atomic_cas_ptr((void *)&prom_cpu, NULL, cp);
			if (prcp == NULL || prcp == cp)
				break;
		}
	}

	/*
	 * We now hold the prom_cpu lock.  Increment the hold count by one
	 * and assert our current state before returning to the caller.
	 */
	atomic_inc_32(&prom_holdcnt);
	ASSERT(prom_holdcnt >= 1);
	prom_thread = curthread;
}