Example #1
0
void AddTests(void) {
	assert(NULL != CU_get_registry());
	assert(!CU_is_test_running());
	if(CUE_SUCCESS != CU_register_suites(suites)) {
		fprintf(stderr, "Register suites failed - %s ", CU_get_error_msg());
		exit(EXIT_FAILURE);
	}
}
Example #2
0
int main(int argc, char** argv)
{
  CU_pFailureRecord FailureList;
  CU_RunSummary *pRunSummary;
  int FailRec;

  if(CU_initialize_registry())
  {
    fprintf(stderr, "Initialization of Test Registry failed.'n");
    return -1;
  }

  assert(CU_get_registry());
  assert(!CU_is_test_running());

  if(CU_register_suites(suites) != CUE_SUCCESS)
  {
    fprintf(stderr, "Register suites failed - %s\n", CU_get_error_msg());
    return -1;
  }

  CU_set_output_filename("lib-c");
  CU_list_tests_to_file();
  CU_automated_run_tests();

  pRunSummary = CU_get_run_summary();
  printf("Results:\n");
  printf("  Number of suites run: %d\n", pRunSummary->nSuitesRun);
  printf("  Number of suites failed: %d\n", pRunSummary->nSuitesFailed);
  printf("  Number of tests run: %d\n", pRunSummary->nTestsRun);
  printf("  Number of tests failed: %d\n", pRunSummary->nTestsFailed);
  printf("  Number of asserts: %d\n", pRunSummary->nAsserts);
  printf("  Number of asserts failed: %d\n", pRunSummary->nAssertsFailed);
  printf("  Number of failures: %d\n", pRunSummary->nFailureRecords);

  /* Print any failures */
  if (pRunSummary->nFailureRecords)
  {
    printf("\nFailures:\n");
    FailRec = 1;
    for (FailureList = CU_get_failure_list(); FailureList; FailureList = FailureList->pNext)
    {
      printf("%d. File: %s  Line: %u   Test: %s\n",
             FailRec,
             FailureList->strFileName,
             FailureList->uiLineNumber,
             (FailureList->pTest)->pName);
      printf("  %s\n",
             FailureList->strCondition);
      FailRec++;
    }
    printf("\n");
  }

  CU_cleanup_registry();

  return 0;
}
Example #3
0
void add_tests()
{
	assert(NULL != CU_get_registry());
	assert(!CU_is_test_running());
	
	if(CUE_SUCCESS != CU_register_suites(suites)) {
		exit(EXIT_FAILURE);
	}
}
    CU_SUITE_INFO_NULL
};


static void contact_provider_add_tests(void)
{
    CU_get_registry();
    if (CU_is_test_running())
        return;


    if (CUE_SUCCESS != CU_register_suites(contact_provider_suites))
Example #5
0
File: tests.c Project: jjgreen/lcrp
void tests_load(void)
{
  assert(NULL != CU_get_registry());
  assert(!CU_is_test_running());

  if (CU_register_suites(suites) != CUE_SUCCESS)
    {
      fprintf(stderr, "suite registration failed - %s\n",
              CU_get_error_msg());
      exit(EXIT_FAILURE);
    }
}
Example #6
0
int AddTests(void)
{
	ASSERT(CU_get_registry() != NULL);
	ASSERT(CU_is_test_running() == FALSE);
	
	if (CU_register_suites(test_suites) != CUE_SUCCESS)
	{
		DbgLog(__FILE__, "%d CU_register_suites failed - %s\n", __LINE__, CU_get_error_msg());
		return 1;
	}
	return 0;
}
Example #7
0
void add_tests(void)
{
    assert(NULL != CU_get_registry());
    assert(!CU_is_test_running());

    CU_pSuite pSuite;

    pSuite = CU_add_suite("suite_success_both", suite_success_init, suite_success_clean);
    CU_add_test(pSuite, "testSuccess1", testSuccess1);
    CU_add_test(pSuite, "testSuccess2", testSuccess2);
    CU_add_test(pSuite, "testSuccess3", testSuccess3);
}
Example #8
0
int
main(int argc, char *argv[])
{
	char *testname_re = NULL;
	int lun;
	CU_BasicRunMode mode = CU_BRM_VERBOSE;
	CU_ErrorAction error_action = CUEA_IGNORE;
	int res;
	struct scsi_readcapacity10 *rc10;
	struct scsi_task *inq_task = NULL;
	struct scsi_task *inq_lbp_task = NULL;
	struct scsi_task *inq_bdc_task = NULL;
	struct scsi_task *inq_bl_task = NULL;
	struct scsi_task *rc16_task = NULL;
	struct scsi_task *rsop_task = NULL;
	int full_size;
	int is_usb = 0;
	int xml_mode = 0;
	static struct option long_opts[] = {
		{ "help", no_argument, 0, '?' },
		{ "list", no_argument, 0, 'l' },
		{ "initiator-name", required_argument, 0, 'i' },
		{ "initiator-name-2", required_argument, 0, 'I' },
		{ "test", required_argument, 0, 't' },
		{ "dataloss", no_argument, 0, 'd' },
		{ "allow-sanitize", no_argument, 0, 'S' },
		{ "ignore", no_argument, 0, 'g' },
		{ "fail", no_argument, 0, 'f' },
		{ "abort", no_argument, 0, 'A' },
		{ "silent", no_argument, 0, 's' },
		{ "normal", no_argument, 0, 'n' },
		{ "usb", no_argument, 0, 'u' },
		{ "verbose", no_argument, 0, 'v' },
		{ "xml", no_argument, 0, 'x' },
		{ "Verbose-scsi", no_argument, 0, 'V' },
		{ NULL, 0, 0, 0 }
	};
	int i, c;
	int opt_idx = 0;

	while ((c = getopt_long(argc, argv, "?hli:I:t:sdgfAsSnuvxV", long_opts,
		    &opt_idx)) > 0) {
		switch (c) {
		case 'h':
		case '?':
			print_usage();
			return 0;
		case 'l':
			list_all_tests();
			return 0;
		case 'i':
			initiatorname1 = strdup(optarg);
			break;
		case 'I':
			initiatorname2 = strdup(optarg);
			break;
		case 't':
			testname_re = strdup(optarg);
			break;
		case 'd':
			data_loss++;
			break;
		case 'g':
			error_action = CUEA_IGNORE; /* default */
			break;
		case 'f':
			error_action = CUEA_FAIL;
			break;
		case 'A':
			error_action = CUEA_ABORT;
			break;
		case 's':
			mode = CU_BRM_SILENT;
			break;
		case 'S':
			allow_sanitize = 1;
			break;
		case 'n':
			mode = CU_BRM_NORMAL;
			break;
		case 'u':
			is_usb = 1;
			break;
		case 'v':
			mode = CU_BRM_VERBOSE;	/* default */
			break;
		case 'x':
		        xml_mode = 1;
			break;
		case 'V':
			loglevel = LOG_VERBOSE;
			break;
		default:
			fprintf(stderr,
			    "error: unknown option return: %c (option %s)\n",
			    c, argv[optind]);
			return 1;
		}
	}

	if (optind < argc) {
		tgt_url = strdup(argv[optind++]);
	}
	if (optind < argc) {
		fprintf(stderr, "error: too many arguments\n");
		print_usage();
		return 1;
	}

	/* XXX why is this done? */
	real_iscsi_queue_pdu = dlsym(RTLD_NEXT, "iscsi_queue_pdu");

	if (tgt_url == NULL) {
		fprintf(stderr, "You must specify the URL\n");
		print_usage();
		if (testname_re)
			free(testname_re);
		return 10;
	}

	iscsic = iscsi_context_login(initiatorname1, tgt_url, &lun);
	if (iscsic == NULL) {
		printf("Failed to login to target\n");
		return -1;
	}

	/*
	 * find the size of the LUN
	 * All devices support readcapacity10 but only some support
	 * readcapacity16
	 */
	task = iscsi_readcapacity10_sync(iscsic, lun, 0, 0);
	if (task == NULL) {
		printf("Failed to send READCAPACITY10 command: %s\n",
		    iscsi_get_error(iscsic));
		iscsi_destroy_context(iscsic);
		return -1;
	}
	if (task->status != SCSI_STATUS_GOOD) {
		printf("READCAPACITY10 command: failed with sense. %s\n",
		    iscsi_get_error(iscsic));
		scsi_free_scsi_task(task);
		iscsi_destroy_context(iscsic);
		return -1;
	}
	rc10 = scsi_datain_unmarshall(task);
	if (rc10 == NULL) {
		printf("failed to unmarshall READCAPACITY10 data. %s\n",
		    iscsi_get_error(iscsic));
		scsi_free_scsi_task(task);
		iscsi_destroy_context(iscsic);
		return -1;
	}
	block_size = rc10->block_size;
	num_blocks = rc10->lba + 1;
	scsi_free_scsi_task(task);

	rc16_task = iscsi_readcapacity16_sync(iscsic, lun);
	if (rc16_task == NULL) {
		printf("Failed to send READCAPACITY16 command: %s\n",
		    iscsi_get_error(iscsic));
		iscsi_destroy_context(iscsic);
		return -1;
	}
	if (rc16_task->status == SCSI_STATUS_GOOD) {
		rc16 = scsi_datain_unmarshall(rc16_task);
		if (rc16 == NULL) {
			printf("failed to unmarshall READCAPACITY16 data. %s\n",
			    iscsi_get_error(iscsic));
			scsi_free_scsi_task(rc16_task);
			iscsi_destroy_context(iscsic);
			return -1;
		}
		block_size = rc16->block_length;
		num_blocks = rc16->returned_lba + 1;
		lbppb = 1 << rc16->lbppbe;
	}

	inq_task = iscsi_inquiry_sync(iscsic, lun, 0, 0, 64);
	if (inq_task == NULL || inq_task->status != SCSI_STATUS_GOOD) {
		printf("Inquiry command failed : %s\n", iscsi_get_error(iscsic));
		return -1;
	}
	full_size = scsi_datain_getfullsize(inq_task);
	if (full_size > inq_task->datain.size) {
		scsi_free_scsi_task(inq_task);

		/* we need more data for the full list */
		inq_task = iscsi_inquiry_sync(iscsic, lun, 0, 0, full_size);
		if (inq_task == NULL) {
			printf("Inquiry command failed : %s\n",
			    iscsi_get_error(iscsic));
			return -1;
		}
	}
	inq = scsi_datain_unmarshall(inq_task);
	if (inq == NULL) {
		printf("failed to unmarshall inquiry datain blob\n");
		scsi_free_scsi_task(inq_task);
		return -1;
	}

	sbc3_support = 0;
	for (i = 0; i < 8; i++) {
		if (inq->version_descriptor[i] == 0x04C0) {
			sbc3_support = 1;
		}
	}

	/* try reading block limits vpd */
	inq_bl_task = iscsi_inquiry_sync(iscsic, lun, 1, SCSI_INQUIRY_PAGECODE_BLOCK_LIMITS, 64);
	if (inq_bl_task && inq_bl_task->status != SCSI_STATUS_GOOD) {
		scsi_free_scsi_task(inq_bl_task);
		inq_bl_task = NULL;
	}
	if (inq_bl_task) {
		full_size = scsi_datain_getfullsize(inq_bl_task);
		if (full_size > inq_bl_task->datain.size) {
			scsi_free_scsi_task(inq_bl_task);

			if ((inq_bl_task = iscsi_inquiry_sync(iscsic, lun, 1, SCSI_INQUIRY_PAGECODE_BLOCK_LIMITS, full_size)) == NULL) {
				printf("Inquiry command failed : %s\n", iscsi_get_error(iscsic));
				return -1;
			}
		}

		inq_bl = scsi_datain_unmarshall(inq_bl_task);
		if (inq_bl == NULL) {
			printf("failed to unmarshall inquiry datain blob\n");
			return -1;
		}
	}

	/* try reading block device characteristics vpd */
	inq_bdc_task = iscsi_inquiry_sync(iscsic, lun, 1, SCSI_INQUIRY_PAGECODE_BLOCK_DEVICE_CHARACTERISTICS, 255);
	if (inq_bdc_task == NULL) {
		printf("Failed to read Block Device Characteristics page\n");
	}
	if (inq_bdc_task) {
		inq_bdc = scsi_datain_unmarshall(inq_bdc_task);
		if (inq_bdc == NULL) {
			printf("failed to unmarshall inquiry datain blob\n");
			return -1;
		}
	}

	/* if thin provisioned we also need to read the VPD page for it */
	if (rc16 && rc16->lbpme != 0){
		inq_lbp_task = iscsi_inquiry_sync(iscsic, lun, 1, SCSI_INQUIRY_PAGECODE_LOGICAL_BLOCK_PROVISIONING, 64);
		if (inq_lbp_task == NULL || inq_lbp_task->status != SCSI_STATUS_GOOD) {
			printf("Inquiry command failed : %s\n", iscsi_get_error(iscsic));
			return -1;
		}
		full_size = scsi_datain_getfullsize(inq_lbp_task);
		if (full_size > inq_lbp_task->datain.size) {
			scsi_free_scsi_task(inq_lbp_task);

			/* we need more data for the full list */
			if ((inq_lbp_task = iscsi_inquiry_sync(iscsic, lun, 1, SCSI_INQUIRY_PAGECODE_LOGICAL_BLOCK_PROVISIONING, full_size)) == NULL) {
				printf("Inquiry command failed : %s\n", iscsi_get_error(iscsic));
				return -1;
			}
		}

		inq_lbp = scsi_datain_unmarshall(inq_lbp_task);
		if (inq_lbp == NULL) {
			printf("failed to unmarshall inquiry datain blob\n");
			return -1;
		}
	}

	rsop_task = iscsi_report_supported_opcodes_sync(iscsic, lun,
		1, SCSI_REPORT_SUPPORTING_OPS_ALL, 0, 0, 65535);
	if (rsop_task == NULL) {
		printf("Failed to send REPORT_SUPPORTED_OPCODES command: %s\n",
		    iscsi_get_error(iscsic));
		iscsi_destroy_context(iscsic);
		return -1;
	}
	if (rsop_task->status == SCSI_STATUS_GOOD) {
		rsop = scsi_datain_unmarshall(rsop_task);
		if (rsop == NULL) {
			printf("failed to unmarshall REPORT_SUPPORTED_OPCODES "
			       "data. %s\n",
			       iscsi_get_error(iscsic));
			scsi_free_scsi_task(rsop_task);
		}
	}

	/* check if the device is write protected or not */
	task = iscsi_modesense6_sync(iscsic, lun, 0, SCSI_MODESENSE_PC_CURRENT,
				     SCSI_MODEPAGE_RETURN_ALL_PAGES,
				     0, 255);
	if (task == NULL) {
		printf("Failed to send MODE_SENSE6 command: %s\n",
		    iscsi_get_error(iscsic));
		iscsi_destroy_context(iscsic);
		return -1;
	}
	if (task->status == SCSI_STATUS_GOOD) {
		struct scsi_mode_sense *ms;

		ms = scsi_datain_unmarshall(task);
		if (ms == NULL) {
			printf("failed to unmarshall mode sense datain blob\n");
			scsi_free_scsi_task(task);
			return -1;
		}
		readonly = !!(ms->device_specific_parameter & 0x80);
	}
	scsi_free_scsi_task(task);

	iscsi_logout_sync(iscsic);
	iscsi_destroy_context(iscsic);

	if (is_usb) {
		printf("USB device. Clamping maximum transfer length to 120k\n");
		maximum_transfer_length = 120 *1024 / block_size;
	}

	if (CU_initialize_registry() != 0) {
		fprintf(stderr, "error: unable to initialize test registry\n");
		return 1;
	}
	if (CU_is_test_running()) {
		fprintf(stderr, "error: test suite(s) already running!?\n");
		exit(1);
	}

	parse_and_add_tests(testname_re);
	if (testname_re)
		free(testname_re);

	CU_basic_set_mode(mode);
	CU_set_error_action(error_action);
	printf("\n");

	/*
	 * this actually runs the tests ...
	 */

	if (xml_mode) {
	  CU_list_tests_to_file();
	  CU_automated_run_tests();
	} else {
	  res = CU_basic_run_tests();
	  printf("Tests completed with return value: %d\n", res);
	}

	CU_cleanup_registry();
	free(discard_const(tgt_url));

	if (inq_task != NULL) {
		scsi_free_scsi_task(inq_task);
	}
	if (inq_bl_task != NULL) {
		scsi_free_scsi_task(inq_bl_task);
	}
	if (inq_lbp_task != NULL) {
		scsi_free_scsi_task(inq_lbp_task);
	}
	if (inq_bdc_task != NULL) {
		scsi_free_scsi_task(inq_bdc_task);
	}
	if (rc16_task != NULL) {
		scsi_free_scsi_task(rc16_task);
	}
	if (rsop_task != NULL) {
		scsi_free_scsi_task(rsop_task);
	}

	return 0;
}
Example #9
0
int
main(int argc, char *argv[])
{
	char *testname_re = NULL;
	CU_BasicRunMode mode = CU_BRM_VERBOSE;
	CU_ErrorAction error_action = CUEA_IGNORE;
	int res;
	struct scsi_readcapacity10 *rc10;
	struct scsi_task *inq_task = NULL;
	struct scsi_task *inq_lbp_task = NULL;
	struct scsi_task *inq_bdc_task = NULL;
	struct scsi_task *inq_bl_task = NULL;
	struct scsi_task *rc16_task = NULL;
	struct scsi_task *rsop_task = NULL;
	int full_size;
	int xml_mode = 0;
	static struct option long_opts[] = {
		{ "help", no_argument, 0, '?' },
		{ "list", no_argument, 0, 'l' },
		{ "initiator-name", required_argument, 0, 'i' },
		{ "initiator-name-2", required_argument, 0, 'I' },
		{ "test", required_argument, 0, 't' },
		{ "dataloss", no_argument, 0, 'd' },
		{ "allow-sanitize", no_argument, 0, 'S' },
		{ "ignore", no_argument, 0, 'g' },
		{ "fail", no_argument, 0, 'f' },
		{ "abort", no_argument, 0, 'A' },
		{ "silent", no_argument, 0, 's' },
		{ "normal", no_argument, 0, 'n' },
		{ "verbose", no_argument, 0, 'v' },
		{ "xml", no_argument, 0, 'x' },
		{ "Verbose-scsi", no_argument, 0, 'V' },
		{ NULL, 0, 0, 0 }
	};
	int i, c;
	int opt_idx = 0;

	while ((c = getopt_long(argc, argv, "?hli:I:t:sdgfAsSnvxV", long_opts,
		    &opt_idx)) > 0) {
		switch (c) {
		case 'h':
		case '?':
			print_usage();
			return 0;
		case 'l':
			list_all_tests();
			return 0;
		case 'i':
			initiatorname1 = strdup(optarg);
			break;
		case 'I':
			initiatorname2 = strdup(optarg);
			break;
		case 't':
			testname_re = strdup(optarg);
			break;
		case 'd':
			data_loss++;
			break;
		case 'g':
			error_action = CUEA_IGNORE; /* default */
			break;
		case 'f':
			error_action = CUEA_FAIL;
			break;
		case 'A':
			error_action = CUEA_ABORT;
			break;
		case 's':
			mode = CU_BRM_SILENT;
			break;
		case 'S':
			allow_sanitize = 1;
			break;
		case 'n':
			mode = CU_BRM_NORMAL;
			break;
		case 'v':
			mode = CU_BRM_VERBOSE;	/* default */
			break;
		case 'x':
		        xml_mode = 1;
			break;
		case 'V':
			loglevel = LOG_VERBOSE;
			break;
		default:
			fprintf(stderr,
			    "error: unknown option return: %c (option %s)\n",
			    c, argv[optind]);
			return 1;
		}
	}

	/* parse all trailing arguments as device paths */
	mp_num_sds = 0;
	while (optind < argc) {
		if (mp_num_sds >= MPATH_MAX_DEVS) {
			fprintf(stderr, "Too many multipath device URLs\n");
			print_usage();
			free(testname_re);
			return 10;
		}

		mp_sds[mp_num_sds] = malloc(sizeof(struct scsi_device));
		memset(mp_sds[mp_num_sds], '\0', sizeof(struct scsi_device));
		mp_sds[mp_num_sds]->sgio_fd = -1;

		if (!strncmp(argv[optind], "iscsi://", 8)) {
			mp_sds[mp_num_sds]->iscsi_url = strdup(argv[optind++]);
#ifdef HAVE_SG_IO
		} else {
			mp_sds[mp_num_sds]->sgio_dev = strdup(argv[optind++]);
#endif
		}
		mp_num_sds++;
	}

	/* So that we can override iscsi_queue_pdu in tests
	 * and replace or mutate the blob that we are about to write to the
	 * wire.
	 * This allows such tests to do their mutates and then call out
	 * to the real queueing function once they have modified the data.
	 */
	real_iscsi_queue_pdu = dlsym(RTLD_NEXT, "iscsi_queue_pdu");

	if ((mp_num_sds == 0) || (mp_sds[0]->iscsi_url == NULL
					&& mp_sds[0]->sgio_dev == NULL)) {
#ifdef HAVE_SG_IO
		fprintf(stderr, "You must specify either an iSCSI URL or a device file\n");
#else
		fprintf(stderr, "You must specify an iSCSI URL\n");
#endif
		print_usage();
		if (testname_re)
			free(testname_re);
		return 10;
	}

	/* sd remains an alias for the first device */
	sd = mp_sds[0];

	for (i = 0; i < mp_num_sds; i++) {
		res = connect_scsi_device(mp_sds[i], initiatorname1);
		if (res < 0) {
			fprintf(stderr,
				"Failed to connect to SCSI device %d\n", i);
			goto err_sds_free;
		}
	}

	if (mp_num_sds > 1) {
		/* check that all multipath sds identify as the same LU */
		res = mpath_check_matching_ids(mp_num_sds, mp_sds);
		if (res < 0) {
			fprintf(stderr, "multipath devices don't match\n");
			goto err_sds_free;
		}
	}

	/*
	 * find the size of the LUN
	 * All devices support readcapacity10 but only some support
	 * readcapacity16
	 */
	task = NULL;
	readcapacity10(sd, &task, 0, 0, EXPECT_STATUS_GOOD);
	if (task == NULL) {
		printf("Failed to send READCAPACITY10 command: %s\n", sd->error_str);
		goto err_sds_free;
	}
	if (task->status != SCSI_STATUS_GOOD) {
		printf("READCAPACITY10 command: failed with sense. %s\n", sd->error_str);
		scsi_free_scsi_task(task);
		goto err_sds_free;
	}
	rc10 = scsi_datain_unmarshall(task);
	if (rc10 == NULL) {
		printf("failed to unmarshall READCAPACITY10 data.\n");
		scsi_free_scsi_task(task);
		goto err_sds_free;
	}
	block_size = rc10->block_size;
	num_blocks = rc10->lba + 1;
	scsi_free_scsi_task(task);

	rc16_task = NULL;
	readcapacity16(sd, &rc16_task, 96, EXPECT_STATUS_GOOD);
	if (rc16_task == NULL) {
		printf("Failed to send READCAPACITY16 command: %s\n", sd->error_str);
		goto err_sds_free;
	}
	if (rc16_task->status == SCSI_STATUS_GOOD) {
		rc16 = scsi_datain_unmarshall(rc16_task);
		if (rc16 == NULL) {
			printf("failed to unmarshall READCAPACITY16 data. %s\n", sd->error_str);
			scsi_free_scsi_task(rc16_task);
			goto err_sds_free;
		}
		block_size = rc16->block_length;
		num_blocks = rc16->returned_lba + 1;
		lbppb = 1 << rc16->lbppbe;
	}

	inq_task = NULL;
	inquiry(sd, &inq_task, 0, 0, 64, EXPECT_STATUS_GOOD);
	if (inq_task == NULL || inq_task->status != SCSI_STATUS_GOOD) {
		printf("Inquiry command failed : %s\n", sd->error_str);
		goto err_sds_free;
	}
	full_size = scsi_datain_getfullsize(inq_task);
	if (full_size > inq_task->datain.size) {
		scsi_free_scsi_task(inq_task);

		/* we need more data for the full list */
		inq_task = NULL;
		inquiry(sd, &inq_task, 0, 0, full_size, EXPECT_STATUS_GOOD);
		if (inq_task == NULL) {
			printf("Inquiry command failed : %s\n", sd->error_str);
			goto err_sds_free;
		}
	}
	inq = scsi_datain_unmarshall(inq_task);
	if (inq == NULL) {
		printf("failed to unmarshall inquiry datain blob\n");
		scsi_free_scsi_task(inq_task);
		goto err_sds_free;
	}

	sbc3_support = 0;
	for (i = 0; i < 8; i++) {
		if (inq->version_descriptor[i] == 0x04C0) {
			sbc3_support = 1;
		}
	}

	/* try reading block limits vpd */
	inq_bl_task = NULL;
	inquiry(sd, &inq_bl_task, 1, SCSI_INQUIRY_PAGECODE_BLOCK_LIMITS, 64, EXPECT_STATUS_GOOD);
	if (inq_bl_task && inq_bl_task->status != SCSI_STATUS_GOOD) {
		scsi_free_scsi_task(inq_bl_task);
		inq_bl_task = NULL;
	}
	if (inq_bl_task) {
		full_size = scsi_datain_getfullsize(inq_bl_task);
		if (full_size > inq_bl_task->datain.size) {
			scsi_free_scsi_task(inq_bl_task);

			inq_bl_task = NULL;
			inquiry(sd, &inq_bl_task, 1, SCSI_INQUIRY_PAGECODE_BLOCK_LIMITS, full_size,
				EXPECT_STATUS_GOOD);
			if (inq_bl_task == NULL) {
				printf("Inquiry command failed : %s\n", sd->error_str);
				goto err_sds_free;
			}
		}

		inq_bl = scsi_datain_unmarshall(inq_bl_task);
		if (inq_bl == NULL) {
			printf("failed to unmarshall inquiry datain blob\n");
			goto err_sds_free;
		}
	}

	/* try reading block device characteristics vpd */
	inquiry(sd, &inq_bdc_task, 1, SCSI_INQUIRY_PAGECODE_BLOCK_DEVICE_CHARACTERISTICS, 255,
		EXPECT_STATUS_GOOD);
	if (inq_bdc_task == NULL || inq_bdc_task->status != SCSI_STATUS_GOOD) {
		printf("Failed to read Block Device Characteristics page\n");
	} else {
		inq_bdc = scsi_datain_unmarshall(inq_bdc_task);
		if (inq_bdc == NULL) {
			printf("failed to unmarshall inquiry datain blob\n");
			goto err_sds_free;
		}
	}

	/* if thin provisioned we also need to read the VPD page for it */
	if (rc16 && rc16->lbpme != 0){
		inq_lbp_task = NULL;
		inquiry(sd, &inq_lbp_task, 1, SCSI_INQUIRY_PAGECODE_LOGICAL_BLOCK_PROVISIONING, 64,
			EXPECT_STATUS_GOOD);
		if (inq_lbp_task == NULL || inq_lbp_task->status != SCSI_STATUS_GOOD) {
			printf("Inquiry command failed : %s\n", sd->error_str);
			goto err_sds_free;
		}
		full_size = scsi_datain_getfullsize(inq_lbp_task);
		if (full_size > inq_lbp_task->datain.size) {
			scsi_free_scsi_task(inq_lbp_task);

			/* we need more data for the full list */
			inq_lbp_task = NULL;
			inquiry(sd, &inq_lbp_task, 1, SCSI_INQUIRY_PAGECODE_LOGICAL_BLOCK_PROVISIONING,
				full_size, EXPECT_STATUS_GOOD);
			if (inq_lbp_task == NULL) {
				printf("Inquiry command failed : %s\n", sd->error_str);
				goto err_sds_free;
			}
		}

		inq_lbp = scsi_datain_unmarshall(inq_lbp_task);
		if (inq_lbp == NULL) {
			printf("failed to unmarshall inquiry datain blob\n");
			goto err_sds_free;
		}
	}

	rsop_task = NULL;
	report_supported_opcodes(sd, &rsop_task, 1, SCSI_REPORT_SUPPORTING_OPS_ALL, 0, 0, 65535,
				 EXPECT_STATUS_GOOD);
	if (rsop_task == NULL) {
		printf("Failed to send REPORT_SUPPORTED_OPCODES command: %s\n", sd->error_str);
		goto err_sds_free;
	}
	if (rsop_task->status == SCSI_STATUS_GOOD) {
		rsop = scsi_datain_unmarshall(rsop_task);
		if (rsop == NULL) {
			printf("failed to unmarshall REPORT_SUPPORTED_OPCODES data.\n");
			scsi_free_scsi_task(rsop_task);
			rsop_task = NULL;
		}
	}

	/* check if the device is write protected or not */
	task = NULL;
	modesense6(sd, &task, 0, SCSI_MODESENSE_PC_CURRENT, SCSI_MODEPAGE_RETURN_ALL_PAGES, 0, 255,
		   EXPECT_STATUS_GOOD);
	if (task == NULL) {
		printf("Failed to send MODE_SENSE6 command: %s\n", sd->error_str);
		goto err_sds_free;
	}
	if (task->status == SCSI_STATUS_GOOD) {
		struct scsi_mode_sense *ms;

		ms = scsi_datain_unmarshall(task);
		if (ms == NULL) {
			printf("failed to unmarshall mode sense datain blob\n");
			scsi_free_scsi_task(task);
			goto err_sds_free;
		}
		readonly = !!(ms->device_specific_parameter & 0x80);
	}
	scsi_free_scsi_task(task);

	if (maxsectbytes) {
		maximum_transfer_length = maxsectbytes / block_size;
		printf("Bus transfer size is limited to %d bytes. Clamping "
		       "max transfers accordingly.\n", maxsectbytes);
	}

	if (CU_initialize_registry() != 0) {
		fprintf(stderr, "error: unable to initialize test registry\n");
		goto err_sds_free;
	}
	if (CU_is_test_running()) {
		fprintf(stderr, "error: test suite(s) already running!?\n");
		exit(1);
	}

	parse_and_add_tests(testname_re);
	if (testname_re)
		free(testname_re);

	CU_basic_set_mode(mode);
	CU_set_error_action(error_action);
	printf("\n");

	/*
	 * this actually runs the tests ...
	 */

	if (xml_mode) {
	  CU_list_tests_to_file();
	  CU_automated_run_tests();
	} else {
	  res = CU_basic_run_tests();
	  printf("Tests completed with return value: %d\n", res);
	}

	CU_cleanup_registry();

	if (inq_task != NULL) {
		scsi_free_scsi_task(inq_task);
	}
	if (inq_bl_task != NULL) {
		scsi_free_scsi_task(inq_bl_task);
	}
	if (inq_lbp_task != NULL) {
		scsi_free_scsi_task(inq_lbp_task);
	}
	if (inq_bdc_task != NULL) {
		scsi_free_scsi_task(inq_bdc_task);
	}
	if (rc16_task != NULL) {
		scsi_free_scsi_task(rc16_task);
	}
	if (rsop_task != NULL) {
		scsi_free_scsi_task(rsop_task);
	}
	for (i = 0; i < mp_num_sds; i++) {
		free_scsi_device(mp_sds[i]);
	}

	return 0;

err_sds_free:
	for (i = 0; i < mp_num_sds; i++) {
		free_scsi_device(mp_sds[i]);
	}
	return -1;
}