Example #1
0
void FCV_SPILSSETJAC(int *flag, int *ier)
{
  CVodeMem cv_mem;

  if (*flag == 0) {
    *ier = CVSpilsSetJacTimesVecFn(CV_cvodemem, NULL);
  } else {
    cv_mem = (CVodeMem) CV_cvodemem;
    *ier = CVSpilsSetJacTimesVecFn(CV_cvodemem, FCVJtimes);
  }
}
Example #2
0
int CVSpilsSetJacTimesVecFnB(void *cvode_mem, int which, CVSpilsJacTimesVecFnB jtvB)
{
  CVodeMem cv_mem;
  CVadjMem ca_mem;
  CVodeBMem cvB_mem;
  CVSpilsMemB cvspilsB_mem; 
  void *cvodeB_mem;
  int flag;

  /* Check if cvode_mem exists */
  if (cvode_mem == NULL) {
    cvProcessError(NULL, CVSPILS_MEM_NULL, "CVSPILS", "CVSpilsSetJacTimesVecFnB", MSGS_CVMEM_NULL);
    return(CVSPILS_MEM_NULL);
  }
  cv_mem = (CVodeMem) cvode_mem;

  /* Was ASA initialized? */
  if (cv_mem->cv_adjMallocDone == FALSE) {
    cvProcessError(cv_mem, CVSPILS_NO_ADJ, "CVSPILS", "CVSpilsSetJacTimesVecFnB", MSGS_NO_ADJ);
    return(CVSPILS_NO_ADJ);
  } 
  ca_mem = cv_mem->cv_adj_mem;

  /* Check which */
  if ( which >= ca_mem->ca_nbckpbs ) {
    cvProcessError(cv_mem, CVSPILS_ILL_INPUT, "CVSPILS", "CVSpilsSetJacTimesVecFnB", MSGS_BAD_WHICH);
    return(CVSPILS_ILL_INPUT);
  }

  /* Find the CVodeBMem entry in the linked list corresponding to which */
  cvB_mem = ca_mem->cvB_mem;
  while (cvB_mem != NULL) {
    if ( which == cvB_mem->cv_index ) break;
    cvB_mem = cvB_mem->cv_next;
  }

  cvodeB_mem = (void *) (cvB_mem->cv_mem);

  if (cvB_mem->cv_lmem == NULL) {
    cvProcessError(cv_mem, CVSPILS_LMEMB_NULL, "CVSPILS", "CVSpilsSetJacTimesVecFnB", MSGS_LMEMB_NULL);
    return(CVSPILS_LMEMB_NULL);
  }
  cvspilsB_mem = (CVSpilsMemB) (cvB_mem->cv_lmem);

  jtimes_B = jtvB;

  if (jtvB != NULL) {
    flag = CVSpilsSetJacTimesVecFn(cvodeB_mem, cvSpilsJacTimesVecBWrapper);
  } else {
    flag = CVSpilsSetJacTimesVecFn(cvodeB_mem, NULL);
  }

  return(flag);
}
Example #3
0
int CVSpilsSetJacTimesVecFnB(void *cvadj_mem, CVSpilsJacTimesVecFnB jtimesB,
                             void *jac_dataB)
{
  CVadjMem ca_mem;
  CVSpilsMemB cvspilsB_mem; 
  CVodeMem cvB_mem;
  int flag;

  if (cvadj_mem == NULL) {
    CVProcessError(NULL, CVSPILS_ADJMEM_NULL, "CVSPILS", "CVSpilsSetJacTimesVecFnB", MSGS_CAMEM_NULL);
    return(CVSPILS_ADJMEM_NULL);
  }
  ca_mem = (CVadjMem) cvadj_mem;

  cvB_mem = ca_mem->cvb_mem;

  if (lmemB == NULL) {
    CVProcessError(cvB_mem, CVSPILS_LMEMB_NULL, "CVSPILS", "CVSpilsSetJacTimesVecFnB", MSGS_LMEMB_NULL);
    return(CVSPILS_LMEMB_NULL);
  }
  cvspilsB_mem = (CVSpilsMemB) lmemB;

  jtimes_B   = jtimesB;
  jac_data_B = jac_dataB;

  flag = CVSpilsSetJacTimesVecFn(cvB_mem, CVAspilsJacTimesVec, cvadj_mem);

  return(flag);
}
Example #4
0
int main()
{
  realtype abstol, reltol, t, tout;
  N_Vector u;
  UserData data;
  void *cvode_mem;
  int iout, flag;

  u = NULL;
  data = NULL;
  cvode_mem = NULL;

  /* Allocate memory, and set problem data, initial values, tolerances */ 
  u = N_VNew_Serial(NEQ);
  if(check_flag((void *)u, "N_VNew_Serial", 0)) return(1);
  data = AllocUserData();
  if(check_flag((void *)data, "AllocUserData", 2)) return(1);
  InitUserData(data);
  SetInitialProfiles(u, data->dx, data->dy);
  abstol=ATOL; 
  reltol=RTOL;

  /* Call CVodeCreate to create the solver memory and specify the 
   * Backward Differentiation Formula and the use of a Newton iteration */
  cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);
  if(check_flag((void *)cvode_mem, "CVodeCreate", 0)) return(1);

  /* Set the pointer to user-defined data */
  flag = CVodeSetUserData(cvode_mem, data);
  if(check_flag(&flag, "CVodeSetUserData", 1)) return(1);

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in u'=f(t,u), the inital time T0, and
   * the initial dependent variable vector u. */
  flag = CVodeInit(cvode_mem, f, T0, u);
  if(check_flag(&flag, "CVodeInit", 1)) return(1);

  /* Call CVodeSStolerances to specify the scalar relative tolerance
   * and scalar absolute tolerances */
  flag = CVodeSStolerances(cvode_mem, reltol, abstol);
  if (check_flag(&flag, "CVodeSStolerances", 1)) return(1);

  /* Call CVSpgmr to specify the linear solver CVSPGMR 
   * with left preconditioning and the maximum Krylov dimension maxl */
  flag = CVSpgmr(cvode_mem, PREC_LEFT, 0);
  if(check_flag(&flag, "CVSpgmr", 1)) return(1);

  /* set the JAcobian-times-vector function */
  flag = CVSpilsSetJacTimesVecFn(cvode_mem, jtv);
  if(check_flag(&flag, "CVSpilsSetJacTimesVecFn", 1)) return(1);

  /* Set the preconditioner solve and setup functions */
  flag = CVSpilsSetPreconditioner(cvode_mem, Precond, PSolve);
  if(check_flag(&flag, "CVSpilsSetPreconditioner", 1)) return(1);

  /* In loop over output points, call CVode, print results, test for error */
  printf(" \n2-species diurnal advection-diffusion problem\n\n");
  for (iout=1, tout = TWOHR; iout <= NOUT; iout++, tout += TWOHR) {
    flag = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
    PrintOutput(cvode_mem, u, t);
    if(check_flag(&flag, "CVode", 1)) break;
  }

  PrintFinalStats(cvode_mem);

  /* Free memory */
  N_VDestroy_Serial(u);
  FreeUserData(data);
  CVodeFree(&cvode_mem);

  return(0);
}
Example #5
0
int Solver::init(rhsfunc f, int argc, char **argv, bool restarting, int nout, real tstep)
{
#ifdef CHECK
  int msg_point = msg_stack.push("Initialising CVODE solver");
#endif

  /// Call the generic initialisation first
  if(GenericSolver::init(f, argc, argv, restarting, nout, tstep))
    return 1;

  // Save nout and tstep for use in run
  NOUT = nout;
  TIMESTEP = tstep;

  output.write("Initialising SUNDIALS' CVODE solver\n");

  // Set the rhs solver function
  func = f;

  // Calculate number of variables (in generic_solver)
  int local_N = getLocalN();
  
  // Get total problem size
  int neq;
  if(MPI_Allreduce(&local_N, &neq, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD)) {
    output.write("\tERROR: MPI_Allreduce failed!\n");
    return 1;
  }
  
  output.write("\t3d fields = %d, 2d fields = %d neq=%d, local_N=%d\n",
	       n3Dvars(), n2Dvars(), neq, local_N);

  // Allocate memory
  
  if((uvec = N_VNew_Parallel(MPI_COMM_WORLD, local_N, neq)) == NULL)
    bout_error("ERROR: SUNDIALS memory allocation failed\n");
  
  // Put the variables into uvec
  if(save_vars(NV_DATA_P(uvec)))
    bout_error("\tERROR: Initial variable value not set\n");
  
  /// Get options

  real abstol, reltol;
  int maxl;
  int mudq, mldq;
  int mukeep, mlkeep;
  bool use_precon, use_jacobian;
  real max_timestep;
  bool adams_moulton, func_iter; // Time-integration method
  options.setSection("solver");
  options.get("mudq", mudq, n3Dvars()*(MXSUB+2));
  options.get("mldq", mldq, n3Dvars()*(MXSUB+2));
  options.get("mukeep", mukeep, n3Dvars()+n2Dvars());
  options.get("mlkeep", mlkeep, n3Dvars()+n2Dvars());
  options.get("ATOL", abstol, 1.0e-12);
  options.get("RTOL", reltol, 1.0e-5);
  options.get("maxl", maxl, 5);
  options.get("use_precon", use_precon, false);
  options.get("use_jacobian", use_jacobian, false);
  options.get("max_timestep", max_timestep, -1.);
  
  int mxsteps; // Maximum number of steps to take between outputs
  options.get("pvode_mxstep", mxsteps, 500);
  
  options.get("adams_moulton", adams_moulton, false);
  
  int lmm = CV_BDF;
  if(adams_moulton) {
    // By default use functional iteration for Adams-Moulton
    lmm = CV_ADAMS;
    output.write("\tUsing Adams-Moulton implicit multistep method\n");
    options.get("func_iter", func_iter, true); 
  }else {
    output.write("\tUsing BDF method\n");
    // Use Newton iteration for BDF
    options.get("func_iter", func_iter, false); 
  }
  
  int iter = CV_NEWTON;
  if(func_iter)
    iter = CV_FUNCTIONAL;

  // Call CVodeCreate
  if((cvode_mem = CVodeCreate(lmm, iter)) == NULL)
    bout_error("ERROR: CVodeCreate failed\n");
  
  if( CVodeSetUserData(cvode_mem, this) < 0 ) // For callbacks, need pointer to solver object
    bout_error("ERROR: CVodeSetUserData failed\n");

  if( CVodeInit(cvode_mem, cvode_rhs, simtime, uvec) < 0 )
    bout_error("ERROR: CVodeInit failed\n");
  
  if( CVodeSStolerances(cvode_mem, reltol, abstol) < 0 )
    bout_error("ERROR: CVodeSStolerances failed\n");

  CVodeSetMaxNumSteps(cvode_mem, mxsteps);

  if(max_timestep > 0.0) {
    // Setting a maximum timestep
    CVodeSetMaxStep(cvode_mem, max_timestep);
  }
  
  /// Newton method can include Preconditioners and Jacobian function
  if(!func_iter) {
    output.write("\tUsing Newton iteration\n");
    /// Set Preconditioner
    if(use_precon) {
      
      if( CVSpgmr(cvode_mem, PREC_LEFT, maxl) != CVSPILS_SUCCESS )
	bout_error("ERROR: CVSpgmr failed\n");
      
      if(prefunc == NULL) {
	output.write("\tUsing BBD preconditioner\n");
	
	if( CVBBDPrecInit(cvode_mem, local_N, mudq, mldq, 
			  mukeep, mlkeep, ZERO, cvode_bbd_rhs, NULL) )
	  bout_error("ERROR: CVBBDPrecInit failed\n");
	
      }else {
	output.write("\tUsing user-supplied preconditioner\n");
	
	if( CVSpilsSetPreconditioner(cvode_mem, NULL, cvode_pre) )
	  bout_error("ERROR: CVSpilsSetPreconditioner failed\n");
      }
    }else {
      // Not using preconditioning
      
      output.write("\tNo preconditioning\n");
      
      if( CVSpgmr(cvode_mem, PREC_NONE, maxl) != CVSPILS_SUCCESS )
	bout_error("ERROR: CVSpgmr failed\n");
    }
    
    /// Set Jacobian-vector multiplication function
    
    if((use_jacobian) && (jacfunc != NULL)) {
      output.write("\tUsing user-supplied Jacobian function\n");
      
      if( CVSpilsSetJacTimesVecFn(cvode_mem, cvode_jac) != CVSPILS_SUCCESS )
	bout_error("ERROR: CVSpilsSetJacTimesVecFn failed\n");
    
    }else 
      output.write("\tUsing difference quotient approximation for Jacobian\n");
  }else {
    output.write("\tUsing Functional iteration\n");
  }

#ifdef CHECK
  msg_stack.pop(msg_point);
#endif

  return(0);
}