void CmShow::SaveShow(CMat& img, CStr& title)
{
    if (title.size() == 0)
        return;

    int mDepth = CV_MAT_DEPTH(img.type());
    double scale = (mDepth == CV_32F || mDepth == CV_64F ? 255 : 1);
    if (title.size() > 4 && title[title.size() - 4] == '.')
        imwrite(title, img*scale);
    else if (title.size())
        imshow(title, img);        
}
Example #2
0
 //! convert OpenCV data type to hppDataType
 inline int toHppType(const int cvType)
 {
     int depth = CV_MAT_DEPTH(cvType);
     int hppType = depth == CV_8U ? HPP_DATA_TYPE_8U :
                  depth == CV_16U ? HPP_DATA_TYPE_16U :
                  depth == CV_16S ? HPP_DATA_TYPE_16S :
                  depth == CV_32S ? HPP_DATA_TYPE_32S :
                  depth == CV_32F ? HPP_DATA_TYPE_32F :
                  depth == CV_64F ? HPP_DATA_TYPE_64F : -1;
     CV_Assert( hppType >= 0 );
     return hppType;
 }
Example #3
0
/*! Find Canny edges
	\param input input (mat) image (must be color or gray 8-bit image)
	\param output edges (mat) image (single channel)
	\param threshold1 minimum threshold 
	\param threshold2 maximum threshold
	\param apertureSize aperture size for Sobel operator
	\return <a>true</a> if edges were computed successfully
 
	The maximum threshold is set to three times the value of
	<a>threshold1</a>, unless <a>threshold2</a> is greater than 0.
	 
	\note See OpenCV reference for an explanation on the thresholds
	and aperture size.
 */
bool findCannyEdges(const Mat& input, Mat& output, 
					double threshold1, double threshold2, int apertureSize)
{
	// check input type
	if (input.type() != CV_8UC1 &&
		input.type() != CV_8UC3)
	{
		ofLog(OF_LOG_WARNING, "in findCannyEdges, input image format is invalid");
		return false;
	}
	
	// set threshold2 if necessary
	if (threshold2 <= 0.0) threshold2 = threshold1*3;
	
	// create output image
	if (output.empty() || 
		!sameProperties(input, output))
	{
		output.create(input.rows, 
					  input.cols, 
					  CV_MAKETYPE(CV_MAT_DEPTH(input.depth()),1));
	}
	
	// convert input image to single channel if necessary
	Mat gray;
	if (input.channels() == 3)
	{
		gray.create(input.rows, 
					input.cols, 
					CV_MAKETYPE(CV_MAT_DEPTH(input.depth()),1));
		cvtColor(input, gray, CV_RGB2GRAY);
	}
	else {
		gray = input;
	}
		
	// find edges
	Canny(gray, output, threshold1, threshold2, apertureSize);
	return true;
}
Example #4
0
// Internal, used by toCvCopy and cvtColor
CvImagePtr toCvCopyImpl(const cv::Mat& source,
                        const std_msgs::Header& src_header,
                        const std::string& src_encoding,
                        const std::string& dst_encoding)
{
  // Copy metadata
  CvImagePtr ptr = boost::make_shared<CvImage>();
  ptr->header = src_header;
  
  // Copy to new buffer if same encoding requested
  if (dst_encoding.empty() || dst_encoding == src_encoding)
  {
    ptr->encoding = src_encoding;
    source.copyTo(ptr->image);
  }
  else
  {
    // Convert the source data to the desired encoding
    const std::vector<int> conversion_codes = getConversionCode(src_encoding, dst_encoding);
    cv::Mat image1 = source;
    cv::Mat image2;
    for(size_t i=0; i<conversion_codes.size(); ++i) {
      int conversion_code = conversion_codes[i];
      if (conversion_code == SAME_FORMAT)
      {
        // Same number of channels, but different bit depth
        int src_depth = enc::bitDepth(src_encoding);
        int dst_depth = enc::bitDepth(dst_encoding);
        // Keep the number of channels for now but changed to the final depth
        int image2_type = CV_MAKETYPE(CV_MAT_DEPTH(getCvType(dst_encoding)), image1.channels());

        // Do scaling between CV_8U [0,255] and CV_16U [0,65535] images.
        if (src_depth == 8 && dst_depth == 16)
          image1.convertTo(image2, image2_type, 65535. / 255.);
        else if (src_depth == 16 && dst_depth == 8)
          image1.convertTo(image2, image2_type, 255. / 65535.);
        else
          image1.convertTo(image2, image2_type);
      }
      else
      {
        // Perform color conversion
        cv::cvtColor(image1, image2, conversion_code);
      }
      image1 = image2;
    }
    ptr->image = image2;
    ptr->encoding = dst_encoding;
  }

  return ptr;
}
Example #5
0
double CxCore_MulSpectrumsTest::get_success_error_level( int test_case_idx, int i, int j )
{
    CV_UNUSED(test_case_idx);
    CV_Assert(i == OUTPUT);
    CV_Assert(j == 0);
    int elem_depth = CV_MAT_DEPTH(cvGetElemType(test_array[i][j]));
    CV_Assert(elem_depth == CV_32F || elem_depth == CV_64F);

    element_wise_relative_error = false;
    double maxInputValue = 1000; // ArrayTest::get_minmax_bounds
    double err = 8 * maxInputValue;  // result = A*B + C*D
    return (elem_depth == CV_32F ? FLT_EPSILON : DBL_EPSILON) * err;
}
Example #6
0
int cv::connectedComponents(InputArray _img, OutputArray _labels, int connectivity, int ltype){
    const cv::Mat img = _img.getMat();
    _labels.create(img.size(), CV_MAT_DEPTH(ltype));
    cv::Mat labels = _labels.getMat();
    connectedcomponents::NoOp sop;
    if(ltype == CV_16U){
        return connectedComponents_sub1(img, labels, connectivity, sop);
    }else if(ltype == CV_32S){
        return connectedComponents_sub1(img, labels, connectivity, sop);
    }else{
        CV_Error(CV_StsUnsupportedFormat, "the type of labels must be 16u or 32s");
        return 0;
    }
}
Example #7
0
static bool ocl_accumulate( InputArray _src, InputArray _src2, InputOutputArray _dst, double alpha,
                            InputArray _mask, int op_type )
{
    CV_Assert(op_type == ACCUMULATE || op_type == ACCUMULATE_SQUARE ||
              op_type == ACCUMULATE_PRODUCT || op_type == ACCUMULATE_WEIGHTED);

    int stype = _src.type(), cn = CV_MAT_CN(stype);
    int sdepth = CV_MAT_DEPTH(stype), ddepth = _dst.depth();

    bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0,
            haveMask = !_mask.empty();

    if (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F))
        return false;

    const char * const opMap[4] = { "ACCUMULATE", "ACCUMULATE_SQUARE", "ACCUMULATE_PRODUCT",
                                   "ACCUMULATE_WEIGHTED" };

    ocl::Kernel k("accumulate", ocl::imgproc::accumulate_oclsrc,
                  format("-D %s%s -D srcT=%s -D cn=%d -D dstT=%s%s",
                         opMap[op_type], haveMask ? " -D HAVE_MASK" : "",
                         ocl::typeToStr(sdepth), cn, ocl::typeToStr(ddepth),
                         doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
    if (k.empty())
        return false;

    UMat src = _src.getUMat(), src2 = _src2.getUMat(), dst = _dst.getUMat(), mask = _mask.getUMat();

    ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
            src2arg = ocl::KernelArg::ReadOnlyNoSize(src2),
            dstarg = ocl::KernelArg::ReadWrite(dst),
            maskarg = ocl::KernelArg::ReadOnlyNoSize(mask);

    int argidx = k.set(0, srcarg);
    if (op_type == ACCUMULATE_PRODUCT)
        argidx = k.set(argidx, src2arg);
    argidx = k.set(argidx, dstarg);
    if (op_type == ACCUMULATE_WEIGHTED)
    {
        if (ddepth == CV_32F)
            argidx = k.set(argidx, (float)alpha);
        else
            argidx = k.set(argidx, alpha);
    }
    if (haveMask)
        k.set(argidx, maskarg);

    size_t globalsize[2] = { src.cols, src.rows };
    return k.run(2, globalsize, NULL, false);
}
Example #8
0
static bool matchTemplate_CCOEFF(InputArray _image, InputArray _templ, OutputArray _result)
{
    matchTemplate(_image, _templ, _result, CV_TM_CCORR);

    UMat image_sums, temp;
    integral(_image, temp);

    if (temp.depth() == CV_64F)
        temp.convertTo(image_sums, CV_32F);
    else
        image_sums = temp;

    int type = image_sums.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);

    ocl::Kernel k("matchTemplate_Prepared_CCOEFF", ocl::imgproc::match_template_oclsrc,
                  format("-D CCOEFF -D T=%s -D elem_type=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn));
    if (k.empty())
        return false;

    UMat templ = _templ.getUMat();
    Size size = _image.size(), tsize = templ.size();
    _result.create(size.height - templ.rows + 1, size.width - templ.cols + 1, CV_32F);
    UMat result = _result.getUMat();

    if (cn == 1)
    {
        float templ_sum = static_cast<float>(sum(_templ)[0]) / tsize.area();

        k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result),
                templ.rows, templ.cols, templ_sum);
    }
    else
    {
        Vec4f templ_sum = Vec4f::all(0);
        templ_sum = sum(templ) / tsize.area();

        if (cn == 2)
            k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols,
                   templ_sum[0], templ_sum[1]);
        else if (cn==3)
            k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols,
                   templ_sum[0], templ_sum[1], templ_sum[2]);
        else
            k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols,
                   templ_sum[0], templ_sum[1], templ_sum[2], templ_sum[3]);
    }

    size_t globalsize[2] = { result.cols, result.rows };
    return k.run(2, globalsize, NULL, false);
}
void CV_MHIBaseTest::get_minmax_bounds( int i, int j, int type, CvScalar* low, CvScalar* high )
{
    CvArrTest::get_minmax_bounds( i, j, type, low, high );
    if( i == INPUT && CV_MAT_DEPTH(type) == CV_8U )
    {
        *low = cvScalarAll(cvRound(-1./silh_ratio)+2.);
        *high = cvScalarAll(2);
    }
    else if( i == mhi_i || i == mhi_ref_i )
    {
        *low = cvScalarAll(-exp(max_log_duration));
        *high = cvScalarAll(0.);
    }
}
Example #10
0
static bool ocl_dot( InputArray _src1, InputArray _src2, double & res )
{
    UMat src1 = _src1.getUMat().reshape(1), src2 = _src2.getUMat().reshape(1);

    int type = src1.type(), depth = CV_MAT_DEPTH(type),
            kercn = ocl::predictOptimalVectorWidth(src1, src2);
    bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;

    if ( !doubleSupport && depth == CV_64F )
        return false;

    int dbsize = ocl::Device::getDefault().maxComputeUnits();
    size_t wgs = ocl::Device::getDefault().maxWorkGroupSize();
    int ddepth = std::max(CV_32F, depth);

    int wgs2_aligned = 1;
    while (wgs2_aligned < (int)wgs)
        wgs2_aligned <<= 1;
    wgs2_aligned >>= 1;

    char cvt[40];
    ocl::Kernel k("reduce", ocl::core::reduce_oclsrc,
                  format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstTK=%s -D ddepth=%d -D convertToDT=%s -D OP_DOT "
                         "-D WGS=%d -D WGS2_ALIGNED=%d%s%s%s -D kercn=%d",
                         ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)), ocl::typeToStr(depth),
                         ocl::typeToStr(ddepth), ocl::typeToStr(CV_MAKE_TYPE(ddepth, kercn)),
                         ddepth, ocl::convertTypeStr(depth, ddepth, kercn, cvt),
                         (int)wgs, wgs2_aligned, doubleSupport ? " -D DOUBLE_SUPPORT" : "",
                         _src1.isContinuous() ? " -D HAVE_SRC_CONT" : "",
                         _src2.isContinuous() ? " -D HAVE_SRC2_CONT" : "", kercn));
    if (k.empty())
        return false;

    UMat db(1, dbsize, ddepth);

    ocl::KernelArg src1arg = ocl::KernelArg::ReadOnlyNoSize(src1),
            src2arg = ocl::KernelArg::ReadOnlyNoSize(src2),
            dbarg = ocl::KernelArg::PtrWriteOnly(db);

    k.args(src1arg, src1.cols, (int)src1.total(), dbsize, dbarg, src2arg);

    size_t globalsize = dbsize * wgs;
    if (k.run(1, &globalsize, &wgs, false))
    {
        res = sum(db.getMat(ACCESS_READ))[0];
        return true;
    }
    return false;
}
Example #11
0
static bool ocl_pyrUp( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType)
{
    int type = _src.type(), depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);

    if (channels > 4 || borderType != BORDER_DEFAULT)
        return false;

    bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
    if (depth == CV_64F && !doubleSupport)
        return false;

    Size ssize = _src.size();
    if ((_dsz.area() != 0) && (_dsz != Size(ssize.width * 2, ssize.height * 2)))
        return false;

    UMat src = _src.getUMat();
    Size dsize = Size(ssize.width * 2, ssize.height * 2);
    _dst.create( dsize, src.type() );
    UMat dst = _dst.getUMat();

    int float_depth = depth == CV_64F ? CV_64F : CV_32F;
    const int local_size = 16;
    char cvt[2][50];
    String buildOptions = format(
            "-D T=%s -D FT=%s -D convertToT=%s -D convertToFT=%s%s "
            "-D T1=%s -D cn=%d -D LOCAL_SIZE=%d",
            ocl::typeToStr(type), ocl::typeToStr(CV_MAKETYPE(float_depth, channels)),
            ocl::convertTypeStr(float_depth, depth, channels, cvt[0]),
            ocl::convertTypeStr(depth, float_depth, channels, cvt[1]),
            doubleSupport ? " -D DOUBLE_SUPPORT" : "",
            ocl::typeToStr(depth), channels, local_size
    );
    size_t globalThreads[2] = { dst.cols, dst.rows };
    size_t localThreads[2] = { local_size, local_size };
    ocl::Kernel k;
    if (ocl::Device::getDefault().isIntel() && channels == 1)
    {
        k.create("pyrUp_unrolled", ocl::imgproc::pyr_up_oclsrc, buildOptions);
        globalThreads[0] = dst.cols/2; globalThreads[1] = dst.rows/2;
    }
    else
        k.create("pyrUp", ocl::imgproc::pyr_up_oclsrc, buildOptions);

    if (k.empty())
        return false;

    k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst));
    return k.run(2, globalThreads, localThreads, false);
}
Example #12
0
static bool ocl_pyrDown( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType)
{
    int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);

    bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
    if (cn > 4 || (depth == CV_64F && !doubleSupport))
        return false;

    Size ssize = _src.size();
    Size dsize = _dsz.area() == 0 ? Size((ssize.width + 1) / 2, (ssize.height + 1) / 2) : _dsz;
    if (dsize.height < 2 || dsize.width < 2)
        return false;

    CV_Assert( ssize.width > 0 && ssize.height > 0 &&
            std::abs(dsize.width*2 - ssize.width) <= 2 &&
            std::abs(dsize.height*2 - ssize.height) <= 2 );

    UMat src = _src.getUMat();
    _dst.create( dsize, src.type() );
    UMat dst = _dst.getUMat();

    int float_depth = depth == CV_64F ? CV_64F : CV_32F;
    const int local_size = 256;
    int kercn = 1;
    if (depth == CV_8U && float_depth == CV_32F && cn == 1 && ocl::Device::getDefault().isIntel())
        kercn = 4;
    const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP",
                                       "BORDER_REFLECT_101" };
    char cvt[2][50];
    String buildOptions = format(
            "-D T=%s -D FT=%s -D convertToT=%s -D convertToFT=%s%s "
            "-D T1=%s -D cn=%d -D kercn=%d -D fdepth=%d -D %s -D LOCAL_SIZE=%d",
            ocl::typeToStr(type), ocl::typeToStr(CV_MAKETYPE(float_depth, cn)),
            ocl::convertTypeStr(float_depth, depth, cn, cvt[0]),
            ocl::convertTypeStr(depth, float_depth, cn, cvt[1]),
            doubleSupport ? " -D DOUBLE_SUPPORT" : "", ocl::typeToStr(depth),
            cn, kercn, float_depth, borderMap[borderType], local_size
    );
    ocl::Kernel k("pyrDown", ocl::imgproc::pyr_down_oclsrc, buildOptions);
    if (k.empty())
        return false;

    k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst));

    size_t localThreads[2]  = { local_size/kercn, 1 };
    size_t globalThreads[2] = { (src.cols + (kercn-1))/kercn, (dst.rows + 1) / 2 };
    return k.run(2, globalThreads, localThreads, false);
}
Example #13
0
void BackgroundSubtractorMOG::initialize(Size _frameSize, int _frameType)
{
    frameSize = _frameSize;
    frameType = _frameType;
    nframes = 0;
    
    int nchannels = CV_MAT_CN(frameType);
    CV_Assert( CV_MAT_DEPTH(frameType) == CV_8U );
    
    // for each gaussian mixture of each pixel bg model we store ...
    // the mixture sort key (w/sum_of_variances), the mixture weight (w),
    // the mean (nchannels values) and
    // the diagonal covariance matrix (another nchannels values)
    bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + 2*nchannels), CV_32F );
    bgmodel = Scalar::all(0);
}
Example #14
0
static void libopencv_(Main_opencvMat2torch)(CvMat *source, THTensor *dest) {

  int mat_step;
  CvSize mat_size;
  THTensor *tensor;
  // type dependent variables
  float * data_32F;
  float * data_32Fp;
  double * data_64F;
  double * data_64Fp;
  uchar * data_8U;
  uchar * data_8Up;
  char * data_8S;
  char * data_8Sp;
  unsigned int * data_16U;
  unsigned int * data_16Up;
  short * data_16S;
  short * data_16Sp;
  switch (CV_MAT_DEPTH(source->type))
    {
    case CV_32F:
      cvGetRawData(source, (uchar**)&data_32F, &mat_step, &mat_size);
      // Resize target
      THTensor_(resize3d)(dest, 1, source->rows, source->cols);
      tensor = THTensor_(newContiguous)(dest);
      data_32Fp = data_32F;
      // copy
      TH_TENSOR_APPLY(real, tensor,
                      *tensor_data = ((real)(*data_32Fp));
                      // step through channels of ipl
                      data_32Fp++;
                      );
      THTensor_(free)(tensor);
      break;
    case CV_64F:
      cvGetRawData(source, (uchar**)&data_64F, &mat_step, &mat_size);
      // Resize target
      THTensor_(resize3d)(dest, 1, source->rows, source->cols);
      tensor = THTensor_(newContiguous)(dest);

      data_64Fp = data_64F;
      // copy
      TH_TENSOR_APPLY(real, tensor,
                      *tensor_data = ((real)(*data_64Fp));
                      // step through channels of ipl
                      data_64Fp++;
                      );
  void FilterBase::apply(cv::InputArray _src, cv::OutputArray _dst, const int &ddepth){
    int stype = _src.type();
    int dcn = _src.channels();
    int depth = CV_MAT_DEPTH(stype);

    if (0 <= ddepth)
      depth = ddepth;

    Mat src, dst;
    src = _src.getMat();

    Size sz = src.size();

    _dst.create(sz, CV_MAKETYPE(depth, dcn));
    dst = _dst.getMat();

    int imageWidth = src.rows;
    int imageHeight = src.cols;

    Mat srcChannels[3];
    split(src, srcChannels);

    int margineWidth = kernel.cols / 2;
    int margineHeight = kernel.rows / 2;
    double kernelElemCount = (double)(kernel.cols * kernel.rows);

    for(int ch = 0; ch < dcn; ++ch){
      for(int y = 0; y < imageHeight; ++y){
	Vec3d  *ptr = dst.ptr<Vec3d>(y);
	for(int x = 0; x < imageWidth; ++x){
	  if (isEdge(x, y, imageWidth, imageHeight, margineWidth, margineWidth)){
	    ptr[x][ch]
	      = calcKernelOutputAtEdge(srcChannels[ch],
				       kernel, x, y,
				       imageWidth, imageHeight,
				       margineWidth, margineHeight);
	  }else{
	    ptr[x][ch]
	      = calcKernelOutput(srcChannels[ch],
				 kernel, x, y,
				 margineWidth, margineHeight,				 
				 kernelElemCount);
	  }
	}
      }
    }
  }
Example #16
0
void cv::Sobel( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
                int ksize, double scale, double delta, int borderType )
{
    int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
    if (ddepth < 0)
        ddepth = sdepth;
    int dtype = CV_MAKE_TYPE(ddepth, cn);
    _dst.create( _src.size(), dtype );

#ifdef HAVE_TEGRA_OPTIMIZATION
    if (scale == 1.0 && delta == 0)
    {
        Mat src = _src.getMat(), dst = _dst.getMat();
        if (ksize == 3 && tegra::sobel3x3(src, dst, dx, dy, borderType))
            return;
        if (ksize == -1 && tegra::scharr(src, dst, dx, dy, borderType))
            return;
    }
#endif

#ifdef HAVE_IPP
    if (ksize < 0)
    {
        if (IPPDerivScharr(_src, _dst, ddepth, dx, dy, scale, delta, borderType))
            return;
    }
    else if (0 < ksize)
    {
        if (IPPDerivSobel(_src, _dst, ddepth, dx, dy, ksize, scale, delta, borderType))
            return;
    }
#endif
    int ktype = std::max(CV_32F, std::max(ddepth, sdepth));

    Mat kx, ky;
    getDerivKernels( kx, ky, dx, dy, ksize, false, ktype );
    if( scale != 1 )
    {
        // usually the smoothing part is the slowest to compute,
        // so try to scale it instead of the faster differenciating part
        if( dx == 0 )
            kx *= scale;
        else
            ky *= scale;
    }
    sepFilter2D( _src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
}
Example #17
0
void UMat::copyTo(OutputArray _dst, InputArray _mask) const
{
    if( _mask.empty() )
    {
        copyTo(_dst);
        return;
    }
#ifdef HAVE_OPENCL
    int cn = channels(), mtype = _mask.type(), mdepth = CV_MAT_DEPTH(mtype), mcn = CV_MAT_CN(mtype);
    CV_Assert( mdepth == CV_8U && (mcn == 1 || mcn == cn) );

    if (ocl::useOpenCL() && _dst.isUMat() && dims <= 2)
    {
        UMatData * prevu = _dst.getUMat().u;
        _dst.create( dims, size, type() );

        UMat dst = _dst.getUMat();

        bool haveDstUninit = false;
        if( prevu != dst.u ) // do not leave dst uninitialized
            haveDstUninit = true;

        String opts = format("-D COPY_TO_MASK -D T1=%s -D scn=%d -D mcn=%d%s",
                             ocl::memopTypeToStr(depth()), cn, mcn,
                             haveDstUninit ? " -D HAVE_DST_UNINIT" : "");

        ocl::Kernel k("copyToMask", ocl::core::copyset_oclsrc, opts);
        if (!k.empty())
        {
            k.args(ocl::KernelArg::ReadOnlyNoSize(*this),
                   ocl::KernelArg::ReadOnlyNoSize(_mask.getUMat()),
                   haveDstUninit ? ocl::KernelArg::WriteOnly(dst) :
                                   ocl::KernelArg::ReadWrite(dst));

            size_t globalsize[2] = { cols, rows };
            if (k.run(2, globalsize, NULL, false))
            {
                CV_IMPL_ADD(CV_IMPL_OCL);
                return;
            }
        }
    }
#endif
    Mat src = getMat(ACCESS_READ);
    src.copyTo(_dst, _mask);
}
Example #18
0
static bool ocl_norm( InputArray _src, int normType, InputArray _mask, double & result )
{
    const ocl::Device & d = ocl::Device::getDefault();

#ifdef __ANDROID__
    if (d.isNVidia())
        return false;
#endif
    const int cn = _src.channels();
    if (cn > 4)
        return false;
    int type = _src.type(), depth = CV_MAT_DEPTH(type);
    bool doubleSupport = d.doubleFPConfig() > 0,
            haveMask = _mask.kind() != _InputArray::NONE;

    if ( !(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR) ||
         (!doubleSupport && depth == CV_64F))
        return false;

    UMat src = _src.getUMat();

    if (normType == NORM_INF)
    {
        if (!ocl_minMaxIdx(_src, NULL, &result, NULL, NULL, _mask,
                           std::max(depth, CV_32S), depth != CV_8U && depth != CV_16U))
            return false;
    }
    else if (normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR)
    {
        Scalar sc;
        bool unstype = depth == CV_8U || depth == CV_16U;

        if ( !ocl_sum(haveMask ? src : src.reshape(1), sc, normType == NORM_L2 || normType == NORM_L2SQR ?
                    OCL_OP_SUM_SQR : (unstype ? OCL_OP_SUM : OCL_OP_SUM_ABS), _mask) )
            return false;

        double s = 0.0;
        for (int i = 0; i < (haveMask ? cn : 1); ++i)
            s += sc[i];

        result = normType == NORM_L1 || normType == NORM_L2SQR ? s : std::sqrt(s);
    }

    return true;
}
Example #19
0
/* motion templates */
CV_IMPL void
cvUpdateMotionHistory( const void* silhouette, void* mhimg,
                       double timestamp, double mhi_duration )
{
    CvSize size;
    CvMat  silhstub, *silh = (CvMat*)silhouette;
    CvMat  mhistub, *mhi = (CvMat*)mhimg;
    int mhi_step, silh_step;

    CV_FUNCNAME( "cvUpdateMHIByTime" );

    __BEGIN__;

    CV_CALL( silh = cvGetMat( silh, &silhstub ));
    CV_CALL( mhi = cvGetMat( mhi, &mhistub ));

    if( !CV_IS_MASK_ARR( silh ))
        CV_ERROR( CV_StsBadMask, "" );

    if( CV_MAT_CN( mhi->type ) > 1 )
        CV_ERROR( CV_BadNumChannels, "" );

    if( CV_MAT_DEPTH( mhi->type ) != CV_32F )
        CV_ERROR( CV_BadDepth, "" );

    if( !CV_ARE_SIZES_EQ( mhi, silh ))
        CV_ERROR( CV_StsUnmatchedSizes, "" );

    size = cvGetMatSize( mhi );

    mhi_step = mhi->step;
    silh_step = silh->step;

    if( CV_IS_MAT_CONT( mhi->type & silh->type ))
    {
        size.width *= size.height;
        mhi_step = silh_step = CV_STUB_STEP;
        size.height = 1;
    }

    IPPI_CALL( icvUpdateMotionHistory_8u32f_C1IR( (const uchar*)(silh->data.ptr), silh_step,
                                                  mhi->data.fl, mhi_step, size,
                                                  (float)timestamp, (float)mhi_duration ));
    __END__;
}
Example #20
0
OCL_PERF_TEST_P(ConvertToFixture, ConvertTo,
                ::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
{
    const Size_MatType_t params = GetParam();
    const Size srcSize = get<0>(params);
    const int type = get<1>(params), ddepth = CV_MAT_DEPTH(type) == CV_8U ? CV_32F : CV_8U,
        cn = CV_MAT_CN(type), dtype = CV_MAKE_TYPE(ddepth, cn);

    checkDeviceMaxMemoryAllocSize(srcSize, type);
    checkDeviceMaxMemoryAllocSize(srcSize, dtype);

    UMat src(srcSize, type), dst(srcSize, dtype);
    declare.in(src, WARMUP_RNG).out(dst);

    OCL_TEST_CYCLE() src.convertTo(dst, dtype);

    SANITY_CHECK(dst);
}
Example #21
0
File: LBSP.cpp Project: caomw/litiv
void LBSP::calcDescImgDiff(const cv::Mat& oDesc1, const cv::Mat& oDesc2, cv::Mat& oOutput, bool bForceMergeChannels) {
    static_assert(LBSP::DESC_SIZE_BITS<=UCHAR_MAX,"bad assumptions in impl below");
    static_assert(LBSP::DESC_SIZE==2,"bad assumptions in impl below");
    CV_DbgAssert(oDesc1.size()==oDesc2.size() && oDesc1.type()==oDesc2.type());
    CV_DbgAssert(oDesc1.type()==CV_16UC1 || oDesc1.type()==CV_16UC3);
    CV_DbgAssert(CV_MAT_DEPTH(oDesc1.type())==CV_16U);
    CV_DbgAssert(oDesc1.step.p[0]==oDesc2.step.p[0] && oDesc1.step.p[1]==oDesc2.step.p[1]);
    const float fScaleFactor = (float)UCHAR_MAX/(LBSP::DESC_SIZE_BITS);
    const size_t nChannels = CV_MAT_CN(oDesc1.type());
    const size_t _step_row = oDesc1.step.p[0];
    if(nChannels==1) {
        oOutput.create(oDesc1.size(),CV_8UC1);
        oOutput = cv::Scalar(0);
        for(int i=0; i<oDesc1.rows; ++i) {
            const size_t idx = _step_row*i;
            const ushort* const desc1_ptr = (ushort*)(oDesc1.data+idx);
            const ushort* const desc2_ptr = (ushort*)(oDesc2.data+idx);
            for(int j=0; j<oDesc1.cols; ++j)
                oOutput.at<uchar>(i,j) = (uchar)(fScaleFactor*DistanceUtils::hdist(desc1_ptr[j],desc2_ptr[j]));
        }
    }
    else { //nChannels==3
        if(bForceMergeChannels)
            oOutput.create(oDesc1.size(),CV_8UC1);
        else
            oOutput.create(oDesc1.size(),CV_8UC3);
        oOutput = cv::Scalar::all(0);
        for(int i=0; i<oDesc1.rows; ++i) {
            const size_t idx =  _step_row*i;
            const ushort* const desc1_ptr = (ushort*)(oDesc1.data+idx);
            const ushort* const desc2_ptr = (ushort*)(oDesc2.data+idx);
            uchar* output_ptr = oOutput.data + oOutput.step.p[0]*i;
            for(int j=0; j<oDesc1.cols; ++j) {
                for(size_t n=0;n<3; ++n) {
                    const size_t idx2 = 3*j+n;
                    if(bForceMergeChannels)
                        output_ptr[j] += (uchar)((fScaleFactor*DistanceUtils::hdist(desc1_ptr[idx2],desc2_ptr[idx2]))/3);
                    else
                        output_ptr[idx2] = (uchar)(fScaleFactor*DistanceUtils::hdist(desc1_ptr[idx2],desc2_ptr[idx2]));
                }
            }
        }
    }
}
Example #22
0
    virtual void SetUp()
    {
        devInfo = std::tr1::get<0>(GetParam());
        type = std::tr1::get<1>(GetParam());

        cv::gpu::setDevice(devInfo.deviceID());

        cv::RNG& rng = cvtest::TS::ptr()->get_rng();

        size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));

        int depth = CV_MAT_DEPTH(type);
        int num_channels = CV_MAT_CN(type);
        src.reserve(num_channels);
        for (int i = 0; i < num_channels; ++i)
            src.push_back(cv::Mat(size, depth, cv::Scalar::all(i)));

        cv::merge(src, dst_gold);
    }
Example #23
0
void cv::Scharr( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
                 double scale, double delta, int borderType )
{
    int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
    if (ddepth < 0)
        ddepth = sdepth;
    int dtype = CV_MAKETYPE(ddepth, cn);
    _dst.create( _src.size(), dtype );

#ifdef HAVE_TEGRA_OPTIMIZATION
    if (tegra::useTegra() && scale == 1.0 && delta == 0)
    {
        Mat src = _src.getMat(), dst = _dst.getMat();
        if (tegra::scharr(src, dst, dx, dy, borderType))
            return;
    }
#endif

#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
    CV_IPP_CHECK()
    {
        if (IPPDerivScharr(_src, _dst, ddepth, dx, dy, scale, delta, borderType))
        {
            CV_IMPL_ADD(CV_IMPL_IPP);
            return;
        }
    }
#endif
    int ktype = std::max(CV_32F, std::max(ddepth, sdepth));

    Mat kx, ky;
    getScharrKernels( kx, ky, dx, dy, false, ktype );
    if( scale != 1 )
    {
        // usually the smoothing part is the slowest to compute,
        // so try to scale it instead of the faster differenciating part
        if( dx == 0 )
            kx *= scale;
        else
            ky *= scale;
    }
    sepFilter2D( _src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
}
Example #24
0
static bool ocl_pyrDown( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType)
{
    int type = _src.type(), depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);

    if (channels > 4 || borderType != BORDER_DEFAULT)
        return false;

    bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
    if ((depth == CV_64F) && !(doubleSupport))
        return false;

    Size ssize = _src.size();
    Size dsize = _dsz.area() == 0 ? Size((ssize.width + 1) / 2, (ssize.height + 1) / 2) : _dsz;
    CV_Assert( ssize.width > 0 && ssize.height > 0 &&
            std::abs(dsize.width*2 - ssize.width) <= 2 &&
            std::abs(dsize.height*2 - ssize.height) <= 2 );

    UMat src = _src.getUMat();
    _dst.create( dsize, src.type() );
    UMat dst = _dst.getUMat();

    int float_depth = depth == CV_64F ? CV_64F : CV_32F;
    char cvt[2][50];
    String buildOptions = format(
            "-D T=%s -D FT=%s -D convertToT=%s -D convertToFT=%s%s "
            "-D T1=%s -D cn=%d",
            ocl::typeToStr(type), ocl::typeToStr(CV_MAKETYPE(float_depth, channels)),
            ocl::convertTypeStr(float_depth, depth, channels, cvt[0]),
            ocl::convertTypeStr(depth, float_depth, channels, cvt[1]),
            doubleSupport ? " -D DOUBLE_SUPPORT" : "",
            ocl::typeToStr(depth), channels
    );
    ocl::Kernel k("pyrDown", ocl::imgproc::pyr_down_oclsrc, buildOptions);
    if (k.empty())
        return false;

    k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst));

    size_t localThreads[2]  = { 256, 1 };
    size_t globalThreads[2] = { src.cols, dst.rows };
    return k.run(2, globalThreads, localThreads, false);
}
Example #25
0
static bool ocl_threshold( InputArray _src, OutputArray _dst, double & thresh, double maxval, int thresh_type )
{
    int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type),
        kercn = ocl::predictOptimalVectorWidth(_src, _dst), ktype = CV_MAKE_TYPE(depth, kercn);
    bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;

    if ( !(thresh_type == THRESH_BINARY || thresh_type == THRESH_BINARY_INV || thresh_type == THRESH_TRUNC ||
           thresh_type == THRESH_TOZERO || thresh_type == THRESH_TOZERO_INV) ||
         (!doubleSupport && depth == CV_64F))
        return false;

    const char * const thresholdMap[] = { "THRESH_BINARY", "THRESH_BINARY_INV", "THRESH_TRUNC",
                                          "THRESH_TOZERO", "THRESH_TOZERO_INV" };
    ocl::Device dev = ocl::Device::getDefault();
    int stride_size = dev.isIntel() && (dev.type() & ocl::Device::TYPE_GPU) ? 4 : 1;

    ocl::Kernel k("threshold", ocl::imgproc::threshold_oclsrc,
                  format("-D %s -D T=%s -D T1=%s -D STRIDE_SIZE=%d%s", thresholdMap[thresh_type],
                         ocl::typeToStr(ktype), ocl::typeToStr(depth), stride_size,
                         doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
    if (k.empty())
        return false;

    UMat src = _src.getUMat();
    _dst.create(src.size(), type);
    UMat dst = _dst.getUMat();

    if (depth <= CV_32S)
        thresh = cvFloor(thresh);

    const double min_vals[] = { 0, CHAR_MIN, 0, SHRT_MIN, INT_MIN, -FLT_MAX, -DBL_MAX, 0 };
    double min_val = min_vals[depth];

    k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst, cn, kercn),
           ocl::KernelArg::Constant(Mat(1, 1, depth, Scalar::all(thresh))),
           ocl::KernelArg::Constant(Mat(1, 1, depth, Scalar::all(maxval))),
           ocl::KernelArg::Constant(Mat(1, 1, depth, Scalar::all(min_val))));

    size_t globalsize[2] = { dst.cols * cn / kercn, dst.rows };
    globalsize[1] = (globalsize[1] + stride_size - 1) / stride_size;
    return k.run(2, globalsize, NULL, false);
}
Example #26
0
OCL_PERF_TEST_P(BlendLinearFixture, BlendLinear, ::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES_134))
{
    Size_MatType_t params = GetParam();
    const Size srcSize = get<0>(params);
    const int srcType = get<1>(params);
    const double eps = CV_MAT_DEPTH(srcType) <= CV_32S ? 1.0 : 0.2;

    checkDeviceMaxMemoryAllocSize(srcSize, srcType);

    UMat src1(srcSize, srcType), src2(srcSize, srcType), dst(srcSize, srcType);
    UMat weights1(srcSize, CV_32FC1), weights2(srcSize, CV_32FC1);

    declare.in(src1, src2, WARMUP_RNG).in(weights1, weights2, WARMUP_READ).out(dst);
    randu(weights1, 0, 1);
    randu(weights2, 0, 1);

    OCL_TEST_CYCLE() cv::blendLinear(src1, src2, weights1, weights2, dst);

    SANITY_CHECK(dst, eps);
}
void PrintMat(CvMat *A){
	int i, j;
	for (i = 0; i < A->rows; i++){
		printf("\n"); 
		switch (CV_MAT_DEPTH(A->type)){
			case CV_32F:
			case CV_64F:
				for (j = 0; j < A->cols; j++)
					printf ("%8.3f", (float)cvGetReal2D(A, i, j));
				break;
			case CV_8U:
			case CV_16U:
				for(j = 0; j < A->cols; j++)
					printf ("%6d",(int)cvGetReal2D(A, i, j));
				break;
			default:
			break;
		}
	}
	printf("\n");
}
Example #28
0
/*! Get new frame
	\return <true> if video capture object is opened
 */
bool 
ofxCv2FrameGrabber::getNewFrame()
{
	if (!cap.isOpened()) { return false; }
	
	Mat frame;
	cap >> frame;
	
	if (frame.cols != cvImage.cols || 
		frame.rows != cvImage.rows ||
		frame.channels() != cvImage.channels() ||
		frame.depth() != cvImage.depth())
	{
		cvImage.create(frame.rows, frame.cols, CV_MAKETYPE(CV_MAT_DEPTH(frame.depth()),frame.channels()));
	}
	cvtColor(frame, cvImage, CV_BGR2RGB);
	
	textureIsDirty = true;
	
	return true;
}
Example #29
0
static bool ocl_blendLinear( InputArray _src1, InputArray _src2, InputArray _weights1, InputArray _weights2, OutputArray _dst )
{
    int type = _src1.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);

    char cvt[30];
    ocl::Kernel k("blendLinear", ocl::imgproc::blend_linear_oclsrc,
                  format("-D T=%s -D cn=%d -D convertToT=%s", ocl::typeToStr(depth),
                         cn, ocl::convertTypeStr(CV_32F, depth, 1, cvt)));
    if (k.empty())
        return false;

    UMat src1 = _src1.getUMat(), src2 = _src2.getUMat(), weights1 = _weights1.getUMat(),
            weights2 = _weights2.getUMat(), dst = _dst.getUMat();

    k.args(ocl::KernelArg::ReadOnlyNoSize(src1), ocl::KernelArg::ReadOnlyNoSize(src2),
           ocl::KernelArg::ReadOnlyNoSize(weights1), ocl::KernelArg::ReadOnlyNoSize(weights2),
           ocl::KernelArg::WriteOnly(dst));

    size_t globalsize[2] = { (size_t)dst.cols, (size_t)dst.rows };
    return k.run(2, globalsize, NULL, false);
}
Example #30
0
DLLEXP void DispCvArrMultiChannel( CvArr *a, char *varName /*= VAR_NAME(varName)*/ )
{
	CvMat tmpHeader, *m;
	m = cvGetMat(a, &tmpHeader);
	int cnNum = CV_MAT_CN(m->type), depth = CV_MAT_DEPTH(m->type);
	CvMat **p = new CvMat *[4];
	for (int i = 0; i < 4; i++)
		p[i] = ( i >= cnNum ? NULL : 
		cvCreateMat(m->rows, m->cols, CV_MAKETYPE(depth, 1)) );
	cvSplit(m, p[0], p[1], p[2], p[3]);
	for (int i = 0; i < cnNum; i++)
	{
		CString str;
		str.Format("%s : channel %d", varName, i);
		DispCvArr(p[i], str.GetBuffer());
	}

	for (int i = 0; i < cnNum; i++)
		cvReleaseMat(&p[i]);
	delete []p;
}