Example #1
0
void
cyg_hal_plf_scif_init_channel(channel_data_t* chan)
{
    cyg_uint8* base = chan->base;
    cyg_uint8 tmp;
    cyg_uint16 sr;
    int baud_rate = CYGNUM_HAL_SH_SH2_SCIF_BAUD_RATE;

    // Disable everything.
    HAL_WRITE_UINT8(base+_REG_SCSCR, 0);

    // Reset FIFO.
    HAL_WRITE_UINT8(base+_REG_SCFCR, 
                    CYGARC_REG_SCIF_SCFCR_TFRST|CYGARC_REG_SCIF_SCFCR_RFRST);
    HAL_WRITE_UINT16(base+_REG_SCFER, 0);

    // 8-1-no parity. This is also fine for IrDA mode
    HAL_WRITE_UINT8(base+_REG_SCSMR, 0);
    if (chan->irda_mode)
        HAL_WRITE_UINT8(base+_REG_SCIMR, CYGARC_REG_SCIF_SCIMR_IRMOD);
    else {
        HAL_WRITE_UINT8(base+_REG_SCIMR, 0);
    }

    // Set speed to CYGNUM_HAL_SH_SH2_SCIF_DEFAULT_BAUD_RATE
    HAL_READ_UINT8(base+_REG_SCSMR, tmp);
    tmp &= ~CYGARC_REG_SCIF_SCSMR_CKSx_MASK;
    tmp |= CYGARC_SCBRR_CKSx(baud_rate);
    HAL_WRITE_UINT8(base+_REG_SCSMR, tmp);
    HAL_WRITE_UINT8(base+_REG_SCBRR, CYGARC_SCBRR_N(baud_rate));

    // Let things settle: Here we should should wait the equivalent of
    // one bit interval,
    // i.e. 1/CYGNUM_HAL_SH_SH2_SCIF_DEFAULT_BAUD_RATE second, but
    // until we have something like the Linux delay loop, it's hard to
    // do reliably. So just move on and hope for the best (this is
    // unlikely to cause problems since the CPU has just come out of
    // reset anyway).

    // Clear status register (read back first).
    HAL_READ_UINT16(base+_REG_SCSSR, sr);
    HAL_WRITE_UINT16(base+_REG_SCSSR, 0);

    HAL_WRITE_UINT8(base+_REG_SC2SSR, CYGARC_REG_SCIF_SC2SSR_BITRATE_16|CYGARC_REG_SCIF_SC2SSR_EI);

    // Bring FIFO out of reset and set to trigger on every char in
    // FIFO (or C-c input would not be processed).
    HAL_WRITE_UINT8(base+_REG_SCFCR, 
                    CYGARC_REG_SCIF_SCFCR_RTRG_1|CYGARC_REG_SCIF_SCFCR_TTRG_1);

    // Leave Tx/Rx interrupts disabled, but enable Rx/Tx (only Rx for IrDA)
    if (chan->irda_mode)
        HAL_WRITE_UINT8(base+_REG_SCSCR, CYGARC_REG_SCIF_SCSCR_RE);
#ifdef CYGHWR_HAL_SH_SH2_SCIF_ASYNC_RXTX
    else if (chan->async_rxtx_mode)
        HAL_WRITE_UINT8(base+_REG_SCSCR, CYGARC_REG_SCIF_SCSCR_RE);
#endif 
    else
        HAL_WRITE_UINT8(base+_REG_SCSCR, CYGARC_REG_SCIF_SCSCR_TE|CYGARC_REG_SCIF_SCSCR_RE);
}
Example #2
0
void
cyg_hal_plf_scif_init_channel(channel_data_t* chan)
{
    cyg_uint8* base = chan->base;
    cyg_uint8 tmp;
    cyg_uint16 sr;

    // Disable everything.
    HAL_WRITE_UINT8(base+_REG_SCSCR, 0);

    // Reset FIFO.
    HAL_WRITE_UINT8(base+_REG_SCFCR, 
                    CYGARC_REG_SCIF_SCFCR_TFRST|CYGARC_REG_SCIF_SCFCR_RFRST);

    // 8-1-no parity.
    HAL_WRITE_UINT8(base+_REG_SCSMR, 0);

    // Set speed to CYGNUM_HAL_SH_SH3_SCIF_DEFAULT_BAUD_RATE
    HAL_READ_UINT8(base+_REG_SCSMR, tmp);
    tmp &= ~CYGARC_REG_SCIF_SCSMR_CKSx_MASK;
    tmp |= CYGARC_SCBRR_CKSx(CYGNUM_HAL_SH_SH3_SCIF_BAUD_RATE);
    HAL_WRITE_UINT8(base+_REG_SCSMR, tmp);
    HAL_WRITE_UINT8(base+_REG_SCBRR, CYGARC_SCBRR_N(CYGNUM_HAL_SH_SH3_SCIF_BAUD_RATE));

    // Let things settle: Here we should should wait the equivalent of
    // one bit interval,
    // i.e. 1/CYGNUM_HAL_SH_SH3_SCIF_DEFAULT_BAUD_RATE second, but
    // until we have something like the Linux delay loop, it's hard to
    // do reliably. So just move on and hope for the best (this is
    // unlikely to cause problems since the CPU has just come out of
    // reset anyway).

    // Clear status register (read back first).
    HAL_READ_UINT16(base+_REG_SCSSR, sr);
    HAL_WRITE_UINT16(base+_REG_SCSSR, 0);

    // Bring FIFO out of reset and set to trigger on every char in
    // FIFO (or C-c input would not be processed).
    HAL_WRITE_UINT8(base+_REG_SCFCR, 
                    CYGARC_REG_SCIF_SCFCR_RTRG_1|CYGARC_REG_SCIF_SCFCR_TTRG_1);

    // Leave Tx/Rx interrupts disabled, but enable Tx/Rx
    HAL_WRITE_UINT8(base+_REG_SCSCR, 
                    CYGARC_REG_SCIF_SCSCR_TE|CYGARC_REG_SCIF_SCSCR_RE);
}
Example #3
0
static void
cyg_hal_plf_scif_set_baud(cyg_uint8 *base, cyg_uint32 baud)
{
    cyg_uint16 tmp;
    
    // Set desired baudrate
    HAL_READ_UINT16(base+_REG_SCSMR, tmp);
    tmp &= ~CYGARC_REG_SCIF_SCSMR_CKSx_MASK;
    tmp |= CYGARC_SCBRR_CKSx(baud);
    HAL_WRITE_UINT16(base+_REG_SCSMR, tmp);
    HAL_WRITE_UINT8(base+_REG_SCBRR, 
                    CYGARC_SCBRR_N(baud));

    // Let things settle: Here we should wait the equivalent of
    // one bit interval, i.e. 1/<baudrate> second, but we'll wait twice
    // that to be sure.
    CYGACC_CALL_IF_DELAY_US(2000000/baud);
}
Example #4
0
void
cyg_hal_plf_sci_init_channel(channel_data_t* chan)
{
    cyg_uint8 tmp;
    cyg_uint8* base = chan->base;

    // Disable Tx/Rx interrupts, but enable Tx/Rx
    HAL_WRITE_UINT8(base+_REG_SCSCR,
                    CYGARC_REG_SCI_SCSCR_TE|CYGARC_REG_SCI_SCSCR_RE);

    // 8-1-no parity.
    HAL_WRITE_UINT8(base+_REG_SCSMR, 0);

    // Set speed to CYGNUM_HAL_SH_SH2_SCI_DEFAULT_BAUD_RATE
    HAL_READ_UINT8(base+_REG_SCSMR, tmp);
    tmp &= ~CYGARC_REG_SCI_SCSMR_CKSx_MASK;
    tmp |= CYGARC_SCBRR_CKSx(CYGNUM_HAL_SH_SH2_SCI_BAUD_RATE);
    HAL_WRITE_UINT8(base+_REG_SCSMR, tmp);
    HAL_WRITE_UINT8(base+_REG_SCBRR, CYGARC_SCBRR_N(CYGNUM_HAL_SH_SH2_SCI_BAUD_RATE));
}
    0,                                  // 1 stop bit
    -1,
    CYGARC_REG_SCIF_SCSMR_STOP               // 2 stop bits
};

static short select_parity[] = {
    0,                                  // No parity
    CYGARC_REG_SCIF_SCSMR_PE,                // Even parity
    CYGARC_REG_SCIF_SCSMR_PE|CYGARC_REG_SCIF_SCSMR_OE, // Odd parity
    -1,
    -1
};

static unsigned short select_baud[] = {
    0,    // Unused
    CYGARC_SCBRR_CKSx(50)<<8 | CYGARC_SCBRR_N(50),
    CYGARC_SCBRR_CKSx(75)<<8 | CYGARC_SCBRR_N(75),
    CYGARC_SCBRR_CKSx(110)<<8 | CYGARC_SCBRR_N(110),
    CYGARC_SCBRR_CKSx(134)<<8 | CYGARC_SCBRR_N(134),
    CYGARC_SCBRR_CKSx(150)<<8 | CYGARC_SCBRR_N(150),
    CYGARC_SCBRR_CKSx(200)<<8 | CYGARC_SCBRR_N(200),
    CYGARC_SCBRR_CKSx(300)<<8 | CYGARC_SCBRR_N(300),
    CYGARC_SCBRR_CKSx(600)<<8 | CYGARC_SCBRR_N(600),
    CYGARC_SCBRR_CKSx(1200)<<8 | CYGARC_SCBRR_N(1200),
    CYGARC_SCBRR_CKSx(1800)<<8 | CYGARC_SCBRR_N(1800),
    CYGARC_SCBRR_CKSx(2400)<<8 | CYGARC_SCBRR_N(2400),
    CYGARC_SCBRR_CKSx(3600)<<8 | CYGARC_SCBRR_N(3600),
    CYGARC_SCBRR_CKSx(4800)<<8 | CYGARC_SCBRR_N(4800),
    CYGARC_SCBRR_CKSx(7200)<<8 | CYGARC_SCBRR_N(7200),
    CYGARC_SCBRR_CKSx(9600)<<8 | CYGARC_SCBRR_N(9600),
    CYGARC_SCBRR_CKSx(14400)<<8 | CYGARC_SCBRR_N(14400),