/************************************************************************* * This function is the entry point of refinement **************************************************************************/ void MocRefine2Way2(CtrlType *ctrl, GraphType *orggraph, GraphType *graph, float *tpwgts, float *ubvec) { IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->UncoarsenTmr)); /* Compute the parameters of the coarsest graph */ MocCompute2WayPartitionParams(ctrl, graph); for (;;) { ASSERT(CheckBnd(graph)); IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->RefTmr)); switch (ctrl->RType) { case RTYPE_FM: MocBalance2Way2(ctrl, graph, tpwgts, ubvec); MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, ubvec, 8); break; default: errexit("Unknown refinement type: %d\n", ctrl->RType); } IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->RefTmr)); if (graph == orggraph) break; graph = graph->finer; IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->ProjectTmr)); MocProject2WayPartition(ctrl, graph); IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->ProjectTmr)); } IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->UncoarsenTmr)); }
void Refine2Way(ctrl_t *ctrl, graph_t *orggraph, graph_t *graph, real_t *tpwgts) { IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_startcputimer(ctrl->UncoarsenTmr)); /* Compute the parameters of the coarsest graph */ Compute2WayPartitionParams(ctrl, graph); for (;;) { ASSERT(CheckBnd(graph)); IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_startcputimer(ctrl->RefTmr)); Balance2Way(ctrl, graph, tpwgts); FM_2WayRefine(ctrl, graph, tpwgts, ctrl->niter); IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_stopcputimer(ctrl->RefTmr)); if (graph == orggraph) break; graph = graph->finer; IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_startcputimer(ctrl->ProjectTmr)); Project2WayPartition(ctrl, graph); IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_stopcputimer(ctrl->ProjectTmr)); } IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_stopcputimer(ctrl->UncoarsenTmr)); }
/************************************************************************* * This function is the entry point of refinement **************************************************************************/ void MocRefine2Way(CtrlType *ctrl, GraphType *orggraph, GraphType *graph, float *tpwgts, float ubfactor) { int i; float tubvec[MAXNCON]; for (i=0; i<graph->ncon; i++) tubvec[i] = 1.0; IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->UncoarsenTmr)); /* Compute the parameters of the coarsest graph */ MocCompute2WayPartitionParams(ctrl, graph); for (;;) { ASSERT(CheckBnd(graph)); IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->RefTmr)); switch (ctrl->RType) { case RTYPE_FM: MocBalance2Way(ctrl, graph, tpwgts, 1.03); MocFM_2WayEdgeRefine(ctrl, graph, tpwgts, 8); break; case 2: MocBalance2Way(ctrl, graph, tpwgts, 1.03); MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, tubvec, 8); break; default: errexit("Unknown refinement type: %d\n", ctrl->RType); } IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->RefTmr)); if (graph == orggraph) break; graph = graph->finer; IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->ProjectTmr)); MocProject2WayPartition(ctrl, graph); IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->ProjectTmr)); } MocBalance2Way(ctrl, graph, tpwgts, 1.01); MocFM_2WayEdgeRefine(ctrl, graph, tpwgts, 8); IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->UncoarsenTmr)); }
void FM_2WayCutRefine(ctrl_t *ctrl, graph_t *graph, real_t *ntpwgts, idx_t niter) { idx_t i, ii, j, k, kwgt, nvtxs, nbnd, nswaps, from, to, pass, me, limit, tmp; idx_t *xadj, *vwgt, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind, *pwgts; idx_t *moved, *swaps, *perm; rpq_t *queues[2]; idx_t higain, mincut, mindiff, origdiff, initcut, newcut, mincutorder, avgvwgt; idx_t tpwgts[2]; WCOREPUSH; nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; pwgts = graph->pwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = iwspacemalloc(ctrl, nvtxs); swaps = iwspacemalloc(ctrl, nvtxs); perm = iwspacemalloc(ctrl, nvtxs); tpwgts[0] = graph->tvwgt[0]*ntpwgts[0]; tpwgts[1] = graph->tvwgt[0]-tpwgts[0]; limit = gk_min(gk_max(0.01*nvtxs, 15), 100); avgvwgt = gk_min((pwgts[0]+pwgts[1])/20, 2*(pwgts[0]+pwgts[1])/nvtxs); queues[0] = rpqCreate(nvtxs); queues[1] = rpqCreate(nvtxs); IFSET(ctrl->dbglvl, METIS_DBG_REFINE, Print2WayRefineStats(ctrl, graph, ntpwgts, 0, -2)); origdiff = iabs(tpwgts[0]-pwgts[0]); iset(nvtxs, -1, moved); for (pass=0; pass<niter; pass++) { /* Do a number of passes */ rpqReset(queues[0]); rpqReset(queues[1]); mincutorder = -1; newcut = mincut = initcut = graph->mincut; mindiff = iabs(tpwgts[0]-pwgts[0]); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert boundary nodes in the priority queues */ nbnd = graph->nbnd; irandArrayPermute(nbnd, perm, nbnd, 1); for (ii=0; ii<nbnd; ii++) { i = perm[ii]; ASSERT(ed[bndind[i]] > 0 || id[bndind[i]] == 0); ASSERT(bndptr[bndind[i]] != -1); rpqInsert(queues[where[bndind[i]]], bndind[i], ed[bndind[i]]-id[bndind[i]]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { from = (tpwgts[0]-pwgts[0] < tpwgts[1]-pwgts[1] ? 0 : 1); to = (from+1)%2; if ((higain = rpqGetTop(queues[from])) == -1) break; ASSERT(bndptr[higain] != -1); newcut -= (ed[higain]-id[higain]); INC_DEC(pwgts[to], pwgts[from], vwgt[higain]); if ((newcut < mincut && iabs(tpwgts[0]-pwgts[0]) <= origdiff+avgvwgt) || (newcut == mincut && iabs(tpwgts[0]-pwgts[0]) < mindiff)) { mincut = newcut; mindiff = iabs(tpwgts[0]-pwgts[0]); mincutorder = nswaps; } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); INC_DEC(pwgts[from], pwgts[to], vwgt[higain]); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; IFSET(ctrl->dbglvl, METIS_DBG_MOVEINFO, printf("Moved %6"PRIDX" from %"PRIDX". [%3"PRIDX" %3"PRIDX"] %5"PRIDX" [%4"PRIDX" %4"PRIDX"]\n", higain, from, ed[higain]-id[higain], vwgt[higain], newcut, pwgts[0], pwgts[1])); /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update its boundary information and queue position */ if (bndptr[k] != -1) { /* If k was a boundary vertex */ if (ed[k] == 0) { /* Not a boundary vertex any more */ BNDDelete(nbnd, bndind, bndptr, k); if (moved[k] == -1) /* Remove it if in the queues */ rpqDelete(queues[where[k]], k); } else { /* If it has not been moved, update its position in the queue */ if (moved[k] == -1) rpqUpdate(queues[where[k]], k, ed[k]-id[k]); } } else { if (ed[k] > 0) { /* It will now become a boundary vertex */ BNDInsert(nbnd, bndind, bndptr, k); if (moved[k] == -1) rpqInsert(queues[where[k]], k, ed[k]-id[k]); } } } } /**************************************************************** * Roll back computations *****************************************************************/ for (i=0; i<nswaps; i++) moved[swaps[i]] = -1; /* reset moved array */ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); INC_DEC(pwgts[to], pwgts[(to+1)%2], vwgt[higain]); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } graph->mincut = mincut; graph->nbnd = nbnd; IFSET(ctrl->dbglvl, METIS_DBG_REFINE, Print2WayRefineStats(ctrl, graph, ntpwgts, 0, mincutorder)); if (mincutorder <= 0 || mincut == initcut) break; } rpqDestroy(queues[0]); rpqDestroy(queues[1]); WCOREPOP; }
void FM_Mc2WayCutRefine(ctrl_t *ctrl, graph_t *graph, real_t *ntpwgts, idx_t niter) { idx_t i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass, me, limit, tmp, cnum; idx_t *xadj, *adjncy, *vwgt, *adjwgt, *pwgts, *where, *id, *ed, *bndptr, *bndind; idx_t *moved, *swaps, *perm, *qnum; idx_t higain, mincut, initcut, newcut, mincutorder; real_t *invtvwgt, *ubfactors, *minbalv, *newbalv; real_t origbal, minbal, newbal, rgain, ffactor; rpq_t **queues; WCOREPUSH; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; invtvwgt = graph->invtvwgt; where = graph->where; id = graph->id; ed = graph->ed; pwgts = graph->pwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = iwspacemalloc(ctrl, nvtxs); swaps = iwspacemalloc(ctrl, nvtxs); perm = iwspacemalloc(ctrl, nvtxs); qnum = iwspacemalloc(ctrl, nvtxs); ubfactors = rwspacemalloc(ctrl, ncon); newbalv = rwspacemalloc(ctrl, ncon); minbalv = rwspacemalloc(ctrl, ncon); limit = gk_min(gk_max(0.01*nvtxs, 25), 150); /* Determine a fudge factor to allow the refinement routines to get out of tight balancing constraints. */ ffactor = .5/gk_max(20, nvtxs); /* Initialize the queues */ queues = (rpq_t **)wspacemalloc(ctrl, 2*ncon*sizeof(rpq_t *)); for (i=0; i<2*ncon; i++) queues[i] = rpqCreate(nvtxs); for (i=0; i<nvtxs; i++) qnum[i] = iargmax_nrm(ncon, vwgt+i*ncon, invtvwgt); /* Determine the unbalance tolerance for each constraint. The tolerance is equal to the maximum of the original load imbalance and the user-supplied allowed tolerance. The rationale behind this approach is to allow the refinement routine to improve the cut, without having to worry about fixing load imbalance problems. The load imbalance is addressed by the balancing routines. */ origbal = ComputeLoadImbalanceDiffVec(graph, 2, ctrl->pijbm, ctrl->ubfactors, ubfactors); for (i=0; i<ncon; i++) ubfactors[i] = (ubfactors[i] > 0 ? ctrl->ubfactors[i]+ubfactors[i] : ctrl->ubfactors[i]); IFSET(ctrl->dbglvl, METIS_DBG_REFINE, Print2WayRefineStats(ctrl, graph, ntpwgts, origbal, -2)); iset(nvtxs, -1, moved); for (pass=0; pass<niter; pass++) { /* Do a number of passes */ for (i=0; i<2*ncon; i++) rpqReset(queues[i]); mincutorder = -1; newcut = mincut = initcut = graph->mincut; minbal = ComputeLoadImbalanceDiffVec(graph, 2, ctrl->pijbm, ubfactors, minbalv); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert boundary nodes in the priority queues */ nbnd = graph->nbnd; irandArrayPermute(nbnd, perm, nbnd/5, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; ASSERT(ed[i] > 0 || id[i] == 0); ASSERT(bndptr[i] != -1); //rgain = 1.0*(ed[i]-id[i])/sqrt(vwgt[i*ncon+qnum[i]]+1); //rgain = (ed[i]-id[i] > 0 ? 1.0*(ed[i]-id[i])/sqrt(vwgt[i*ncon+qnum[i]]+1) : ed[i]-id[i]); rgain = ed[i]-id[i]; rpqInsert(queues[2*qnum[i]+where[i]], i, rgain); } for (nswaps=0; nswaps<nvtxs; nswaps++) { SelectQueue(graph, ctrl->pijbm, ubfactors, queues, &from, &cnum); to = (from+1)%2; if (from == -1 || (higain = rpqGetTop(queues[2*cnum+from])) == -1) break; ASSERT(bndptr[higain] != -1); newcut -= (ed[higain]-id[higain]); iaxpy(ncon, 1, vwgt+higain*ncon, 1, pwgts+to*ncon, 1); iaxpy(ncon, -1, vwgt+higain*ncon, 1, pwgts+from*ncon, 1); newbal = ComputeLoadImbalanceDiffVec(graph, 2, ctrl->pijbm, ubfactors, newbalv); if ((newcut < mincut && newbal <= ffactor) || (newcut == mincut && (newbal < minbal || (newbal == minbal && BetterBalance2Way(ncon, minbalv, newbalv))))) { mincut = newcut; minbal = newbal; mincutorder = nswaps; rcopy(ncon, newbalv, minbalv); } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); iaxpy(ncon, 1, vwgt+higain*ncon, 1, pwgts+from*ncon, 1); iaxpy(ncon, -1, vwgt+higain*ncon, 1, pwgts+to*ncon, 1); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; if (ctrl->dbglvl&METIS_DBG_MOVEINFO) { printf("Moved%6"PRIDX" from %"PRIDX"(%"PRIDX") Gain:%5"PRIDX", " "Cut:%5"PRIDX", NPwgts:", higain, from, cnum, ed[higain]-id[higain], newcut); for (l=0; l<ncon; l++) printf("(%.3"PRREAL" %.3"PRREAL")", pwgts[l]*invtvwgt[l], pwgts[ncon+l]*invtvwgt[l]); printf(" %+.3"PRREAL" LB: %.3"PRREAL"(%+.3"PRREAL")\n", minbal, ComputeLoadImbalance(graph, 2, ctrl->pijbm), newbal); } /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update its boundary information and queue position */ if (bndptr[k] != -1) { /* If k was a boundary vertex */ if (ed[k] == 0) { /* Not a boundary vertex any more */ BNDDelete(nbnd, bndind, bndptr, k); if (moved[k] == -1) /* Remove it if in the queues */ rpqDelete(queues[2*qnum[k]+where[k]], k); } else { /* If it has not been moved, update its position in the queue */ if (moved[k] == -1) { //rgain = 1.0*(ed[k]-id[k])/sqrt(vwgt[k*ncon+qnum[k]]+1); //rgain = (ed[k]-id[k] > 0 ? // 1.0*(ed[k]-id[k])/sqrt(vwgt[k*ncon+qnum[k]]+1) : ed[k]-id[k]); rgain = ed[k]-id[k]; rpqUpdate(queues[2*qnum[k]+where[k]], k, rgain); } } } else { if (ed[k] > 0) { /* It will now become a boundary vertex */ BNDInsert(nbnd, bndind, bndptr, k); if (moved[k] == -1) { //rgain = 1.0*(ed[k]-id[k])/sqrt(vwgt[k*ncon+qnum[k]]+1); //rgain = (ed[k]-id[k] > 0 ? // 1.0*(ed[k]-id[k])/sqrt(vwgt[k*ncon+qnum[k]]+1) : ed[k]-id[k]); rgain = ed[k]-id[k]; rpqInsert(queues[2*qnum[k]+where[k]], k, rgain); } } } } } /**************************************************************** * Roll back computations *****************************************************************/ for (i=0; i<nswaps; i++) moved[swaps[i]] = -1; /* reset moved array */ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); iaxpy(ncon, 1, vwgt+higain*ncon, 1, pwgts+to*ncon, 1); iaxpy(ncon, -1, vwgt+higain*ncon, 1, pwgts+((to+1)%2)*ncon, 1); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } graph->mincut = mincut; graph->nbnd = nbnd; IFSET(ctrl->dbglvl, METIS_DBG_REFINE, Print2WayRefineStats(ctrl, graph, ntpwgts, minbal, mincutorder)); if (mincutorder <= 0 || mincut == initcut) break; } for (i=0; i<2*ncon; i++) rpqDestroy(queues[i]); WCOREPOP; }
/************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ void MocGeneral2WayBalance2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec) { int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, limit, tmp, cnum; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *moved, *swaps, *perm, *qnum; float *nvwgt, *npwgts, origbal[MAXNCON], minbal[MAXNCON], newbal[MAXNCON]; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut, newcut, mincutorder; float *maxwgt, *minwgt, tvec[MAXNCON]; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; nvwgt = graph->nvwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); limit = amin(amax(0.01*nvtxs, 15), 100); /* Setup the weight intervals of the two subdomains */ minwgt = fwspacemalloc(ctrl, 2*ncon); maxwgt = fwspacemalloc(ctrl, 2*ncon); for (i=0; i<2; i++) { for (j=0; j<ncon; j++) { maxwgt[i*ncon+j] = tpwgts[i]*ubvec[j]; minwgt[i*ncon+j] = tpwgts[i]*(1.0/ubvec[j]); } } /* Initialize the queues */ for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); } for (i=0; i<nvtxs; i++) qnum[i] = samax(ncon, nvwgt+i*ncon); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, origbal); for (i=0; i<ncon; i++) minbal[i] = origbal[i]; newcut = mincut = graph->mincut; mincutorder = -1; if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: ", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut); for (i=0; i<ncon; i++) printf("%.3f ", origbal[i]); printf("[B]\n"); } idxset(nvtxs, -1, moved); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert all nodes in the priority queues */ nbnd = graph->nbnd; RandomPermute(nvtxs, perm, 1); for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { if (AreAllBelow(ncon, minbal, ubvec)) break; SelectQueue3(ncon, npwgts, tpwgts, &from, &cnum, parts, maxwgt); to = (from+1)%2; if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1) break; saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); newcut -= (ed[higain]-id[higain]); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, newbal); if (IsBetter2wayBalance(ncon, newbal, minbal, ubvec) || (IsBetter2wayBalance(ncon, newbal, origbal, ubvec) && newcut < mincut)) { mincut = newcut; for (i=0; i<ncon; i++) minbal[i] = newbal[i]; mincutorder = nswaps; } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut); for (i=0; i<ncon; i++) printf("(%.3f, %.3f) ", npwgts[i], npwgts[ncon+i]); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, tvec); printf(", LB: "); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); if (mincutorder == nswaps) printf(" *\n"); else printf("\n"); } /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update the queue position */ if (moved[k] == -1) PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]); /* Update its boundary information */ if (ed[k] == 0 && bndptr[k] != -1) BNDDelete(nbnd, bndind, bndptr, k); else if (ed[k] > 0 && bndptr[k] == -1) BNDInsert(nbnd, bndind, bndptr, k); } } /**************************************************************** * Roll back computations *****************************************************************/ for (i=0; i<nswaps; i++) moved[swaps[i]] = -1; /* reset moved array */ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd); for (i=0; i<ncon; i++) printf("(%.3f, %.3f) ", npwgts[i], npwgts[ncon+i]); printf("], LB: "); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, tvec); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); printf("\n"); } graph->mincut = mincut; graph->nbnd = nbnd; for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); fwspacefree(ctrl, 2*ncon); fwspacefree(ctrl, 2*ncon); }
/************************************************************************* * This function balances two partitions by moving the highest gain * (including negative gain) vertices to the other domain. * It is used only when tha unbalance is due to non contigous * subdomains. That is, the are no boundary vertices. * It moves vertices from the domain that is overweight to the one that * is underweight. **************************************************************************/ void MocInit2WayBalance(CtrlType *ctrl, GraphType *graph, float *tpwgts) { int i, ii, j, k, l, kwgt, nvtxs, nbnd, ncon, nswaps, from, to, pass, me, cnum, tmp; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *perm, *qnum; float *nvwgt, *npwgts; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; adjncy = graph->adjncy; nvwgt = graph->nvwgt; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); /* This is called for initial partitioning so we know from where to pick nodes */ from = 1; to = (from+1)%2; if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f [B]\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); } for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); } ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); ASSERT(CheckGraph(graph)); /* Compute the queues in which each vertex will be assigned to */ for (i=0; i<nvtxs; i++) qnum[i] = samax(ncon, nvwgt+i*ncon); /* Insert the nodes of the proper partition in the appropriate priority queue */ RandomPermute(nvtxs, perm, 1); for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; if (where[i] == from) { if (ed[i] > 0) PQueueInsert(&parts[qnum[i]][0], i, ed[i]-id[i]); else PQueueInsert(&parts[qnum[i]][1], i, ed[i]-id[i]); } } mincut = graph->mincut; nbnd = graph->nbnd; for (nswaps=0; nswaps<nvtxs; nswaps++) { if (AreAnyVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, nvwgt, tpwgts[from])) break; if ((cnum = SelectQueueOneWay(ncon, npwgts, tpwgts, from, parts)) == -1) break; if ((higain = PQueueGetMax(&parts[cnum][0])) == -1) higain = PQueueGetMax(&parts[cnum][1]); mincut -= (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); where[higain] = to; if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). [%5d] %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], mincut); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); if (ed[higain] == 0 && id[higain] > 0) printf("\t Pulled from the interior!\n"); } /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update the queue position */ if (where[k] == from) { if (ed[k] > 0 && bndptr[k] == -1) { /* It moves in boundary */ PQueueDelete(&parts[qnum[k]][1], k, oldgain); PQueueInsert(&parts[qnum[k]][0], k, ed[k]-id[k]); } else { /* It must be in the boundary already */ if (bndptr[k] == -1) printf("What you thought was wrong!\n"); PQueueUpdate(&parts[qnum[k]][0], k, oldgain, ed[k]-id[k]); } } /* Update its boundary information */ if (ed[k] == 0 && bndptr[k] != -1) BNDDelete(nbnd, bndind, bndptr, k); else if (ed[k] > 0 && bndptr[k] == -1) BNDInsert(nbnd, bndind, bndptr, k); } ASSERTP(ComputeCut(graph, where) == mincut, ("%d != %d\n", ComputeCut(graph, where), mincut)); } if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d, NBND: %6d, NPwgts: ", mincut, nbnd); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); } graph->mincut = mincut; graph->nbnd = nbnd; for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ void MocGeneral2WayBalance(CtrlType *ctrl, GraphType *graph, float *tpwgts, float lbfactor) { int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass, me, limit, tmp, cnum; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *moved, *swaps, *perm, *qnum; float *nvwgt, *npwgts, mindiff[MAXNCON], origbal, minbal, newbal; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut, newcut, mincutorder; int qsizes[MAXNCON][2]; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; nvwgt = graph->nvwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); limit = amin(amax(0.01*nvtxs, 15), 100); /* Initialize the queues */ for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); qsizes[i][0] = qsizes[i][1] = 0; } for (i=0; i<nvtxs; i++) { qnum[i] = samax(ncon, nvwgt+i*ncon); qsizes[qnum[i]][where[i]]++; } /* printf("Weight Distribution: \t"); for (i=0; i<ncon; i++) printf(" [%d %d]", qsizes[i][0], qsizes[i][1]); printf("\n"); */ for (from=0; from<2; from++) { for (j=0; j<ncon; j++) { if (qsizes[j][from] == 0) { for (i=0; i<nvtxs; i++) { if (where[i] != from) continue; k = samax2(ncon, nvwgt+i*ncon); if (k == j && qsizes[qnum[i]][from] > qsizes[j][from] && nvwgt[i*ncon+qnum[i]] < 1.3*nvwgt[i*ncon+j]) { qsizes[qnum[i]][from]--; qsizes[j][from]++; qnum[i] = j; } } } } } /* printf("Weight Distribution (after):\t "); for (i=0; i<ncon; i++) printf(" [%d %d]", qsizes[i][0], qsizes[i][1]); printf("\n"); */ for (i=0; i<ncon; i++) mindiff[i] = fabs(tpwgts[0]-npwgts[i]); minbal = origbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); newcut = mincut = graph->mincut; mincutorder = -1; if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f [B]\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, origbal); } idxset(nvtxs, -1, moved); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert all nodes in the priority queues */ nbnd = graph->nbnd; RandomPermute(nvtxs, perm, 1); for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { if (minbal < lbfactor) break; SelectQueue(ncon, npwgts, tpwgts, &from, &cnum, parts); to = (from+1)%2; if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1) break; saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); newcut -= (ed[higain]-id[higain]); newbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); if (newbal < minbal || (newbal == minbal && (newcut < mincut || (newcut == mincut && BetterBalance(ncon, npwgts, tpwgts, mindiff))))) { mincut = newcut; minbal = newbal; mincutorder = nswaps; for (i=0; i<ncon; i++) mindiff[i] = fabs(tpwgts[0]-npwgts[i]); } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", %.3f LB: %.3f\n", minbal, newbal); } /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update the queue position */ if (moved[k] == -1) PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]); /* Update its boundary information */ if (ed[k] == 0 && bndptr[k] != -1) BNDDelete(nbnd, bndind, bndptr, k); else if (ed[k] > 0 && bndptr[k] == -1) BNDInsert(nbnd, bndind, bndptr, k); } } /**************************************************************** * Roll back computations *****************************************************************/ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("], LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); } graph->mincut = mincut; graph->nbnd = nbnd; for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ void FM_2WayEdgeRefine(CtrlType *ctrl, GraphType *graph, int *tpwgts, int npasses) { int i, ii, j, k, kwgt, nvtxs, nbnd, nswaps, from, to, pass, me, limit, tmp; idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind, *pwgts; idxtype *moved, *swaps, *perm; PQueueType parts[2]; int higain, oldgain, mincut, mindiff, origdiff, initcut, newcut, mincutorder, avgvwgt; nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; pwgts = graph->pwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); limit = (int) amin(amax(0.01*nvtxs, 15), 100); avgvwgt = amin((pwgts[0]+pwgts[1])/20, 2*(pwgts[0]+pwgts[1])/nvtxs); tmp = graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]; PQueueInit(ctrl, &parts[0], nvtxs, tmp); PQueueInit(ctrl, &parts[1], nvtxs, tmp); IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions: [%6d %6d] T[%6d %6d], Nv-Nb[%6d %6d]. ICut: %6d\n", pwgts[0], pwgts[1], tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut)); origdiff = abs(tpwgts[0]-pwgts[0]); idxset(nvtxs, -1, moved); for (pass=0; pass<npasses; pass++) { /* Do a number of passes */ PQueueReset(&parts[0]); PQueueReset(&parts[1]); mincutorder = -1; newcut = mincut = initcut = graph->mincut; mindiff = abs(tpwgts[0]-pwgts[0]); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert boundary nodes in the priority queues */ nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = perm[ii]; ASSERT(ed[bndind[i]] > 0 || id[bndind[i]] == 0); ASSERT(bndptr[bndind[i]] != -1); PQueueInsert(&parts[where[bndind[i]]], bndind[i], ed[bndind[i]]-id[bndind[i]]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { from = (tpwgts[0]-pwgts[0] < tpwgts[1]-pwgts[1] ? 0 : 1); to = (from+1)%2; if ((higain = PQueueGetMax(&parts[from])) == -1) break; ASSERT(bndptr[higain] != -1); newcut -= (ed[higain]-id[higain]); INC_DEC(pwgts[to], pwgts[from], vwgt[higain]); if ((newcut < mincut && abs(tpwgts[0]-pwgts[0]) <= origdiff+avgvwgt) || (newcut == mincut && abs(tpwgts[0]-pwgts[0]) < mindiff)) { mincut = newcut; mindiff = abs(tpwgts[0]-pwgts[0]); mincutorder = nswaps; } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); INC_DEC(pwgts[from], pwgts[to], vwgt[higain]); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("Moved %6d from %d. [%3d %3d] %5d [%4d %4d]\n", higain, from, ed[higain]-id[higain], vwgt[higain], newcut, pwgts[0], pwgts[1])); /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update its boundary information and queue position */ if (bndptr[k] != -1) { /* If k was a boundary vertex */ if (ed[k] == 0) { /* Not a boundary vertex any more */ BNDDelete(nbnd, bndind, bndptr, k); if (moved[k] == -1) /* Remove it if in the queues */ PQueueDelete(&parts[where[k]], k, oldgain); } else { /* If it has not been moved, update its position in the queue */ if (moved[k] == -1) PQueueUpdate(&parts[where[k]], k, oldgain, ed[k]-id[k]); } } else { if (ed[k] > 0) { /* It will now become a boundary vertex */ BNDInsert(nbnd, bndind, bndptr, k); if (moved[k] == -1) PQueueInsert(&parts[where[k]], k, ed[k]-id[k]); } } } } /**************************************************************** * Roll back computations *****************************************************************/ for (i=0; i<nswaps; i++) moved[swaps[i]] = -1; /* reset moved array */ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); INC_DEC(pwgts[to], pwgts[(to+1)%2], vwgt[higain]); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } IFSET(ctrl->dbglvl, DBG_REFINE, printf("\tMinimum cut: %6d at %5d, PWGTS: [%6d %6d], NBND: %6d\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd)); graph->mincut = mincut; graph->nbnd = nbnd; if (mincutorder == -1 || mincut == initcut) break; } PQueueFree(ctrl, &parts[0]); PQueueFree(ctrl, &parts[1]); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ void MocFM_2WayEdgeRefine(CtrlType *ctrl, GraphType *graph, float *tpwgts, int npasses) { int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass, me, limit, tmp, cnum; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *moved, *swaps, *perm, *qnum; float *nvwgt, *npwgts, mindiff[MAXNCON], origbal, minbal, newbal; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut, initcut, newcut, mincutorder; float rtpwgts[2]; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; nvwgt = graph->nvwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); limit = amin(amax(0.01*nvtxs, 25), 150); /* Initialize the queues */ for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); } for (i=0; i<nvtxs; i++) qnum[i] = samax(ncon, nvwgt+i*ncon); origbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); rtpwgts[0] = origbal*tpwgts[0]; rtpwgts[1] = origbal*tpwgts[1]; /* if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, origbal); } */ idxset(nvtxs, -1, moved); for (pass=0; pass<npasses; pass++) { /* Do a number of passes */ for (i=0; i<ncon; i++) { PQueueReset(&parts[i][0]); PQueueReset(&parts[i][1]); } mincutorder = -1; newcut = mincut = initcut = graph->mincut; for (i=0; i<ncon; i++) mindiff[i] = fabs(tpwgts[0]-npwgts[i]); minbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert boundary nodes in the priority queues */ nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; ASSERT(ed[i] > 0 || id[i] == 0); ASSERT(bndptr[i] != -1); PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { SelectQueue(ncon, npwgts, rtpwgts, &from, &cnum, parts); to = (from+1)%2; if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1) break; ASSERT(bndptr[higain] != -1); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); newcut -= (ed[higain]-id[higain]); newbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); if ((newcut < mincut && newbal-origbal <= .00001) || (newcut == mincut && (newbal < minbal || (newbal == minbal && BetterBalance(ncon, npwgts, tpwgts, mindiff))))) { mincut = newcut; minbal = newbal; mincutorder = nswaps; for (i=0; i<ncon; i++) mindiff[i] = fabs(tpwgts[0]-npwgts[i]); } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; /* if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", %.3f LB: %.3f\n", minbal, newbal); } */ /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update its boundary information and queue position */ if (bndptr[k] != -1) { /* If k was a boundary vertex */ if (ed[k] == 0) { /* Not a boundary vertex any more */ BNDDelete(nbnd, bndind, bndptr, k); if (moved[k] == -1) /* Remove it if in the queues */ PQueueDelete(&parts[qnum[k]][where[k]], k, oldgain); } else { /* If it has not been moved, update its position in the queue */ if (moved[k] == -1) PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]); } } else { if (ed[k] > 0) { /* It will now become a boundary vertex */ BNDInsert(nbnd, bndind, bndptr, k); if (moved[k] == -1) PQueueInsert(&parts[qnum[k]][where[k]], k, ed[k]-id[k]); } } } } /**************************************************************** * Roll back computations *****************************************************************/ for (i=0; i<nswaps; i++) moved[swaps[i]] = -1; /* reset moved array */ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } /* if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("], LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); } */ graph->mincut = mincut; graph->nbnd = nbnd; if (mincutorder == -1 || mincut == initcut) break; } for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function balances two partitions by moving boundary nodes * from the domain that is overweight to the one that is underweight. **************************************************************************/ void Bnd2WayBalance(CtrlType *ctrl, GraphType *graph, int *tpwgts) { int i, ii, j, k, kwgt, nvtxs, nbnd, nswaps, from, to, pass, me, tmp; idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind, *pwgts; idxtype *moved, *perm; PQueueType parts; int higain, oldgain, mincut, mindiff; nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; pwgts = graph->pwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); /* Determine from which domain you will be moving data */ mindiff = abs(tpwgts[0]-pwgts[0]); from = (pwgts[0] < tpwgts[0] ? 1 : 0); to = (from+1)%2; IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions: [%6d %6d] T[%6d %6d], Nv-Nb[%6d %6d]. ICut: %6d [B]\n", pwgts[0], pwgts[1], tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut)); tmp = graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]; PQueueInit(ctrl, &parts, nvtxs, tmp); idxset(nvtxs, -1, moved); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert the boundary nodes of the proper partition whose size is OK in the priority queue */ nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = perm[ii]; ASSERT(ed[bndind[i]] > 0 || id[bndind[i]] == 0); ASSERT(bndptr[bndind[i]] != -1); if (where[bndind[i]] == from && vwgt[bndind[i]] <= mindiff) PQueueInsert(&parts, bndind[i], ed[bndind[i]]-id[bndind[i]]); } mincut = graph->mincut; for (nswaps=0; nswaps<nvtxs; nswaps++) { if ((higain = PQueueGetMax(&parts)) == -1) break; ASSERT(bndptr[higain] != -1); if (pwgts[to]+vwgt[higain] > tpwgts[to]) break; mincut -= (ed[higain]-id[higain]); INC_DEC(pwgts[to], pwgts[from], vwgt[higain]); where[higain] = to; moved[higain] = nswaps; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("Moved %6d from %d. [%3d %3d] %5d [%4d %4d]\n", higain, from, ed[higain]-id[higain], vwgt[higain], mincut, pwgts[0], pwgts[1])); /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update its boundary information and queue position */ if (bndptr[k] != -1) { /* If k was a boundary vertex */ if (ed[k] == 0) { /* Not a boundary vertex any more */ BNDDelete(nbnd, bndind, bndptr, k); if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff) /* Remove it if in the queues */ PQueueDelete(&parts, k, oldgain); } else { /* If it has not been moved, update its position in the queue */ if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff) PQueueUpdate(&parts, k, oldgain, ed[k]-id[k]); } } else { if (ed[k] > 0) { /* It will now become a boundary vertex */ BNDInsert(nbnd, bndind, bndptr, k); if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff) PQueueInsert(&parts, k, ed[k]-id[k]); } } } } IFSET(ctrl->dbglvl, DBG_REFINE, printf("\tMinimum cut: %6d, PWGTS: [%6d %6d], NBND: %6d\n", mincut, pwgts[0], pwgts[1], nbnd)); graph->mincut = mincut; graph->nbnd = nbnd; PQueueFree(ctrl, &parts); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }