void zppfa(dcomplex *ap, int n, int *info) { dcomplex t; double s; int j,jj,jm1,k,kj,kk; /* * adjust array */ ap--; jj = 0; for (j = 1;j<= n;j++) { *info = j; s = 0.0; jm1 = j - 1; kj = jj; kk = 0; if (jm1 >= 1) { for (k = 1;k<= jm1;k++) { kj++; t = Csub_d(ap[kj], zdotc(k-1,ap+(kk+1),1,ap+(jj+1),1)); kk += k; t = Cdiv_d(t,ap[kk]); ap[kj] = t; t = Cmul_d(t,Conjg_d(t)); s += t.r; } } jj += j; s = ap[jj].r - s; if (s <= 0.0 || ap[jj].i != 0.0) return; ap[jj] = Complex_d(sqrt(s),0.0); } *info = 0; }
void zsvdc(dcomplex *x, int ldx, int n, int p, dcomplex *s, dcomplex *e, dcomplex *u, int ldu, dcomplex *v, int ldv, dcomplex *work, int job, int *info) { /* complex*16 x(ldx,1),s(1),e(1),u(ldu,1),v(ldv,1),work(1) */ int i,iter,j,jobu,k,kase,kk,l,ll,lls,lm1,lp1,ls,lu,m,maxit, mm,mm1,mp1,nct,nctp1,ncu,nrt,nrtp1; dcomplex t,r; double b,c,cs,el,emm1,f,g,scale,shift,sl,sm,sn, smm1,t1,test,ztest; int wantu,wantv; /* * adjust arrays */ s--; e--; work--; /* * set the maximum number of iterations. */ maxit = 30; /* * determine what is to be computed. */ wantu = FALSE; wantv = FALSE; jobu = (job % 100)/10; ncu = n; if (jobu > 1) ncu = min(n,p); if (jobu != 0) wantu = TRUE; if ((job % 10) != 0) wantv = TRUE; /* * reduce x to bidiagonal form, storing the diagonal elements * in s and the super-diagonal elements in e. */ *info = 0; nct = min(n-1,p); nrt = min(p-2,n); nrt = max(0,nrt); lu = max(nct,nrt); if (lu >= 1) { for (l = 1;l <= lu;l++) { lp1 = l + 1; if (l <= nct) { /* * compute the transformation for the l-th column and * place the l-th diagonal in s(l). */ s[l] = Complex_d(dznrm2(n-l+1,&(X(l,l)),1), 0.0); if (cabs1(s[l]) != 0.0) { if (cabs1(X(l,l)) != 0.0) s[l] = csign(s[l],X(l,l)); zscal(n-l+1,zinv(s[l]),&(X(l,l)),1); X(l,l) = Cadd_d(Complex_d(1.0,0.0), X(l,l)); } s[l] = DCmul_d(-1.0,s[l]); } if (p >= lp1) { for (j = lp1;j <= p; j++) { if (!((l > nct) || (cabs1(s[l]) == 0.0))) { /* * apply the transformation. */ t = Cdiv_d(DCmul_d(-1.0,zdotc(n-l+1,&(X(l,l)),1,&(X(l,j)),1)),X(l,l)); zaxpy(n-l+1,t,&(X(l,l)),1,&(X(l,j)),1); } /* * place the l-th row of x into e for the * subsequent calculation of the row transformation. */ e[j] = Conjg_d(X(l,j)); } } if (wantu && l <= nct) { /* * place the transformation in u for subsequent back * multiplication. */ for (i = l;i <= n;i++) U(i,l) = X(i,l); } if (l <= nrt) { /* * compute the l-th row transformation and place the * l-th super-diagonal in e(l). */ e[l] = Complex_d(dznrm2(p-l,&(e[lp1]),1),0.0); if (cabs1(e[l]) != 0.0) { if (cabs1(e[lp1]) != 0.0) e[l] = csign(e[l],e[lp1]); zscal(p-l,zinv(e[l]),&(e[lp1]),1); e[lp1] = Cadd_d(Complex_d(1.0,0.0), e[lp1]); } e[l] = DCmul_d(-1.0,Conjg_d(e[l])); if (lp1 <= n && cabs1(e[l]) != 0.0) { /* * apply the transformation. */ for (i = lp1;i<= n;i++) work[i] = Complex_d(0.0,0.0); for (j = lp1;j<= p;j++) zaxpy(n-l,e[j],&(X(lp1,j)),1,&(work[lp1]),1); for (j = lp1;j<= p;j++) zaxpy(n-l,Conjg_d(Cdiv_d(DCmul_d(-1.0,e[j]),e[lp1])), &(work[lp1]),1,&(X(lp1,j)),1); } if (wantv) /* * place the transformation in v for subsequent * back multiplication. */ for (i = lp1;i<= p;i++) V(i,l) = e[i]; } } } /* * set up the final bidiagonal matrix or order m. */ m = min(p,n+1); nctp1 = nct + 1; nrtp1 = nrt + 1; if (nct < p) s[nctp1] = X(nctp1,nctp1); if (n < m) s[m] = Complex_d(0.0,0.0); if (nrtp1 < m) e[nrtp1] = X(nrtp1,m); e[m] = Complex_d(0.0,0.0); /* * if required, generate u. */ if (wantu) { if (ncu >= nctp1) { for (j = nctp1;j<= ncu;j++) { for (i = 1;i<= n;i++) U(i,j) = Complex_d(0.0,0.0); U(j,j) = Complex_d(1.0,0.0); } } if (nct >= 1) { for (ll = 1;ll<= nct;ll++) { l = nct - ll + 1; if (cabs1(s[l]) == 0.0) { for (i = 1;i<= n;i++) U(i,l) = Complex_d(0.0,0.0); U(l,l) = Complex_d(1.0,0.0); } else { lp1 = l + 1; if (ncu >= lp1) { for (j = lp1;j<=ncu;j++) { t = DCmul_d(-1.0,Cdiv_d(zdotc(n-l+1,&(U(l,l)),1,&(U(l,j)),1),U(l,l))); zaxpy(n-l+1,t,&(U(l,l)),1,&(U(l,j)),1); } } zscal(n-l+1,Complex_d(-1.0,0.0),&(U(l,l)),1); U(l,l) = Cadd_d(Complex_d(1.0,0.0), U(l,l)); lm1 = l - 1; if (lm1 >= 1) for (i = 1;i<= lm1;i++) U(i,l) = Complex_d(0.0,0.0); } } } } /* * if it is required, generate v. */ if (wantv) { for (ll = 1;ll<= p;ll++) { l = p - ll + 1; lp1 = l + 1; if ((l <= nrt) && (cabs1(e[l]) != 0.0)) { for (j = lp1;j<= p;j++) { dcomplex dc,dd; dc = zdotc(p-l,&(V(lp1,l)),1,&(V(lp1,j)),1); dd = V(lp1,l); t = Cdiv_d(DCmul_d(-1.0,dc),dd); zaxpy(p-l,t,&(V(lp1,l)),1,&(V(lp1,j)),1); } } for (i = 1;i<= p;i++) V(i,l) = Complex_d(0.0,0.0); V(l,l) = Complex_d(1.0,0.0); } } /* * transform s and e so that they are double precision. */ for (i = 1;i<= m;i++) { if (cabs1(s[i]) != 0.0) { t = Complex_d(Cabs_d(s[i]),0.0); r = Cdiv_d(s[i],t); s[i] = t; if (i < m) e[i] = Cdiv_d(e[i],r); if (wantu) zscal(n,r,&(U(1,i)),1); } /* * ...exit */ if (i == m) break; if (cabs1(e[i]) != 0.0) { t = Complex_d(Cabs_d(e[i]),0.0); r = Cdiv_d(t,e[i]); e[i] = t; s[i+1] = Cmul_d(s[i+1],r); if (wantv) zscal(p,r,&(V(1,i+1)),1); } } /* * main iteration loop for the singular values. */ mm = m; iter = 0; while (1) { /* * quit if all the singular values have been found. * * ...exit */ if (m == 0) { break; } /* * if too many iterations have been performed, set * flag and return. */ if (iter >= maxit) { *info = m; /* * ......exit */ break; } /* * this section of the program inspects for * negligible elements in the s and e arrays. on * completion the variables kase and l are set as follows. * * kase = 1 if s[m] and e(l-1) are negligible and l<m * kase = 2 if s(l) is negligible and l<m * kase = 3 if e(l-1) is negligible, l<m, and * s(l), ..., s[m] are not negligible (qr step). * kase = 4 if e(m-1) is negligible (convergence). */ for (ll = 1;ll<= m;ll++) { l = m - ll; if (l == 0) break; test = Cabs_d(s[l]) + Cabs_d(s[l+1]); ztest = test + Cabs_d(e[l]); if (ztest == test) { e[l] = Complex_d(0.0,0.0); break; } } if (l == m - 1) { kase = 4; } else { lp1 = l + 1; mp1 = m + 1; for (lls = lp1;lls<= mp1;lls++) { ls = m - lls + lp1; if (ls == l) break; test = 0.0; if (ls != m) test += Cabs_d(e[ls]); if (ls != l + 1) test += Cabs_d(e[ls-1]); ztest = test + Cabs_d(s[ls]); if (ztest == test) { s[ls] = Complex_d(0.0,0.0); break; } } if (ls == l) { kase = 3; } else { if (ls == m) { kase = 1; } else { kase = 2; l = ls; } } } l++; /* * perform the task indicated by kase. */ switch (kase) { /* * deflate negligible s[m]. */ case 1 : mm1 = m - 1; f = e[m-1].r; e[m-1] = Complex_d(0.0,0.0); for (kk = l;kk<= mm1;kk++) { k = mm1 - kk + l; t1 = s[k].r; drotg(&t1,&f,&cs,&sn); s[k] = Complex_d(t1,0.0); if (k != l) { f = -sn * e[k-1].r; e[k-1] = DCmul_d(cs, e[k-1]); } if (wantv) zdrot(p,&(V(1,k)),1,&(V(1,m)),1,cs,sn); } break; /* * split at negligible s(l). */ case 2 : f = e[l-1].r; e[l-1] = Complex_d(0.0,0.0); for (k = l;k<= m;k++) { t1 = s[k].r; drotg(&t1,&f,&cs,&sn); s[k] = Complex_d(t1,0.0); f = -sn*e[k].r; e[k] = DCmul_d(cs,e[k]); if (wantu) zdrot(n,&(U(1,k)),1,&(U(1,l-1)),1,cs,sn); } break; /* * perform one qr step. */ case 3 : /* * calculate the shift. */ scale = dmax1(Cabs_d(s[m]),Cabs_d(s[m-1]),Cabs_d(e[m-1]), Cabs_d(s[l]),Cabs_d(e[l])); sm = s[m].r/scale; smm1 = s[m-1].r/scale; emm1 = e[m-1].r/scale; sl = s[l].r/scale; el = e[l].r/scale; b = ((smm1 + sm)*(smm1 - sm) + emm1*emm1)/2.0; c = pow(sm*emm1,2); shift = 0.0; if (b != 0.0 || c != 0.0) { shift = sqrt(b*b+c); if (b < 0.0) shift = -shift; shift = c/(b + shift); } f = (sl + sm)*(sl - sm) + shift; g = sl*el; /* * chase zeros. */ mm1 = m - 1; for (k = l;k<= mm1;k++) { drotg(&f,&g,&cs,&sn); if (k != l) e[k-1] = Complex_d(f,0.0); f = cs * s[k].r + sn * e[k].r; e[k] = Csub_d(DCmul_d(cs,e[k]), DCmul_d(sn,s[k])); g = sn * s[k+1].r; s[k+1] = DCmul_d(cs,s[k+1]); if (wantv) zdrot(p,&(V(1,k)),1,&(V(1,k+1)),1,cs,sn); drotg(&f,&g,&cs,&sn); s[k] = Complex_d(f,0.0); f = cs * e[k].r + sn * s[k+1].r; s[k+1] = Cadd_d(DCmul_d(-sn,e[k]), DCmul_d(cs,s[k+1])); g = sn * e[k+1].r; e[k+1] = DCmul_d(cs,e[k+1]); if (wantu && k < n) zdrot(n,&(U(1,k)),1,&(U(1,k+1)),1,cs,sn); } e[m-1] = Complex_d(f,0.0); iter++; break; /* * convergence. */ case 4 : /* * make the singular value positive */ if (s[l].r < 0.0) { s[l] = DCmul_d(-1.0,s[l]); if (wantv) zscal(p,Complex_d(-1.0,0.0),&(V(1,l)),1); } /* * order the singular value. */ while (l != mm) { if (s[l].r >= s[l+1].r) break; t = s[l]; s[l] = s[l+1]; s[l+1] = t; if (wantv && l < p) zswap(p,&(V(1,l)),1,&(V(1,l+1)),1); if (wantu && l < n) zswap(n,&(U(1,l)),1,&(U(1,l+1)),1); l++; } iter = 0; m--; } } }