Example #1
0
static ALvoid EchoUpdate(ALeffectState *effect, ALCdevice *Device, const ALeffectslot *Slot)
{
    ALechoState *state = (ALechoState*)effect;
    ALuint frequency = Device->Frequency;
    ALfloat lrpan, cw, g, gain;
    ALfloat dirGain;
    ALuint i;

    state->Tap[0].delay = fastf2u(Slot->effect.Echo.Delay * frequency) + 1;
    state->Tap[1].delay = fastf2u(Slot->effect.Echo.LRDelay * frequency);
    state->Tap[1].delay += state->Tap[0].delay;

    lrpan = Slot->effect.Echo.Spread;

    state->FeedGain = Slot->effect.Echo.Feedback;

    cw = aluCos(F_PI*2.0f * LOWPASSFREQREF / frequency);
    g = 1.0f - Slot->effect.Echo.Damping;
    state->iirFilter.coeff = lpCoeffCalc(g, cw);

    gain = Slot->Gain;
    for(i = 0;i < MAXCHANNELS;i++)
    {
        state->Gain[0][i] = 0.0f;
        state->Gain[1][i] = 0.0f;
    }

    dirGain = aluFabs(lrpan);

    /* First tap panning */
    ComputeAngleGains(Device, aluAtan2(-lrpan, 0.0f), (1.0f-dirGain)*F_PI, gain, state->Gain[0]);

    /* Second tap panning */
    ComputeAngleGains(Device, aluAtan2(+lrpan, 0.0f), (1.0f-dirGain)*F_PI, gain, state->Gain[1]);
}
Example #2
0
static ALvoid ALchorusState_update(ALchorusState *state, ALCdevice *Device, const ALeffectslot *Slot)
{
    ALfloat frequency = (ALfloat)Device->Frequency;
    ALfloat rate;
    ALint phase;

    switch(Slot->EffectProps.Chorus.Waveform)
    {
    case AL_CHORUS_WAVEFORM_TRIANGLE:
        state->waveform = CWF_Triangle;
        break;
    case AL_CHORUS_WAVEFORM_SINUSOID:
        state->waveform = CWF_Sinusoid;
        break;
    }
    state->depth = Slot->EffectProps.Chorus.Depth;
    state->feedback = Slot->EffectProps.Chorus.Feedback;
    state->delay = fastf2i(Slot->EffectProps.Chorus.Delay * frequency);

    /* Gains for left and right sides */
    ComputeAngleGains(Device, atan2f(-1.0f, 0.0f), 0.0f, Slot->Gain, state->Gain[0]);
    ComputeAngleGains(Device, atan2f(+1.0f, 0.0f), 0.0f, Slot->Gain, state->Gain[1]);

    phase = Slot->EffectProps.Chorus.Phase;
    rate = Slot->EffectProps.Chorus.Rate;
    if(!(rate > 0.0f))
    {
        state->lfo_scale = 0.0f;
        state->lfo_range = 1;
        state->lfo_disp = 0;
    }
    else
    {
        /* Calculate LFO coefficient */
        state->lfo_range = fastf2u(frequency/rate + 0.5f);
        switch(state->waveform)
        {
        case CWF_Triangle:
            state->lfo_scale = 4.0f / state->lfo_range;
            break;
        case CWF_Sinusoid:
            state->lfo_scale = F_2PI / state->lfo_range;
            break;
        }

        /* Calculate lfo phase displacement */
        state->lfo_disp = fastf2i(state->lfo_range * (phase/360.0f));
    }
}
static ALvoid ALdedicatedState_update(ALdedicatedState *state, ALCdevice *device, const ALeffectslot *Slot)
{
    ALfloat Gain;
    ALsizei s;

    Gain = Slot->Gain * Slot->EffectProps.Dedicated.Gain;
    if(Slot->EffectType == AL_EFFECT_DEDICATED_DIALOGUE)
        ComputeAngleGains(device, atan2f(0.0f, 1.0f), 0.0f, Gain, state->gains);
    else if(Slot->EffectType == AL_EFFECT_DEDICATED_LOW_FREQUENCY_EFFECT)
    {
        for(s = 0;s < MaxChannels;s++)
            state->gains[s] = 0.0f;
        state->gains[LFE] = Gain;
    }
}
Example #4
0
ALvoid CalcNonAttnSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
{
    static const struct ChanMap MonoMap[1] = {
        { FrontCenter, 0.0f, 0.0f }
    }, StereoMap[2] = {
        { FrontLeft,  DEG2RAD(-30.0f), DEG2RAD(0.0f) },
        { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) }
    }, StereoWideMap[2] = {
        { FrontLeft,  DEG2RAD(-90.0f), DEG2RAD(0.0f) },
        { FrontRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
    }, RearMap[2] = {
        { BackLeft,  DEG2RAD(-150.0f), DEG2RAD(0.0f) },
        { BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) }
    }, QuadMap[4] = {
        { FrontLeft,  DEG2RAD( -45.0f), DEG2RAD(0.0f) },
        { FrontRight, DEG2RAD(  45.0f), DEG2RAD(0.0f) },
        { BackLeft,   DEG2RAD(-135.0f), DEG2RAD(0.0f) },
        { BackRight,  DEG2RAD( 135.0f), DEG2RAD(0.0f) }
    }, X51Map[6] = {
        { FrontLeft,   DEG2RAD( -30.0f), DEG2RAD(0.0f) },
        { FrontRight,  DEG2RAD(  30.0f), DEG2RAD(0.0f) },
        { FrontCenter, DEG2RAD(   0.0f), DEG2RAD(0.0f) },
        { LFE, 0.0f, 0.0f },
        { SideLeft,    DEG2RAD(-110.0f), DEG2RAD(0.0f) },
        { SideRight,   DEG2RAD( 110.0f), DEG2RAD(0.0f) }
    }, X61Map[7] = {
        { FrontLeft,    DEG2RAD(-30.0f), DEG2RAD(0.0f) },
        { FrontRight,   DEG2RAD( 30.0f), DEG2RAD(0.0f) },
        { FrontCenter,  DEG2RAD(  0.0f), DEG2RAD(0.0f) },
        { LFE, 0.0f, 0.0f },
        { BackCenter,   DEG2RAD(180.0f), DEG2RAD(0.0f) },
        { SideLeft,     DEG2RAD(-90.0f), DEG2RAD(0.0f) },
        { SideRight,    DEG2RAD( 90.0f), DEG2RAD(0.0f) }
    }, X71Map[8] = {
        { FrontLeft,   DEG2RAD( -30.0f), DEG2RAD(0.0f) },
        { FrontRight,  DEG2RAD(  30.0f), DEG2RAD(0.0f) },
        { FrontCenter, DEG2RAD(   0.0f), DEG2RAD(0.0f) },
        { LFE, 0.0f, 0.0f },
        { BackLeft,    DEG2RAD(-150.0f), DEG2RAD(0.0f) },
        { BackRight,   DEG2RAD( 150.0f), DEG2RAD(0.0f) },
        { SideLeft,    DEG2RAD( -90.0f), DEG2RAD(0.0f) },
        { SideRight,   DEG2RAD(  90.0f), DEG2RAD(0.0f) }
    };

    ALCdevice *Device = ALContext->Device;
    ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
    ALbufferlistitem *BufferListItem;
    enum FmtChannels Channels;
    ALfloat DryGain, DryGainHF, DryGainLF;
    ALfloat WetGain[MAX_SENDS];
    ALfloat WetGainHF[MAX_SENDS];
    ALfloat WetGainLF[MAX_SENDS];
    ALuint NumSends, Frequency;
    ALboolean Relative;
    const struct ChanMap *chans = NULL;
    ALuint num_channels = 0;
    ALboolean DirectChannels;
    ALboolean isbformat = AL_FALSE;
    ALfloat Pitch;
    ALuint i, j, c;

    /* Get device properties */
    NumSends  = Device->NumAuxSends;
    Frequency = Device->Frequency;

    /* Get listener properties */
    ListenerGain = ALContext->Listener->Gain;

    /* Get source properties */
    SourceVolume    = ALSource->Gain;
    MinVolume       = ALSource->MinGain;
    MaxVolume       = ALSource->MaxGain;
    Pitch           = ALSource->Pitch;
    Relative        = ALSource->HeadRelative;
    DirectChannels  = ALSource->DirectChannels;

    voice->Direct.OutBuffer = Device->DryBuffer;
    voice->Direct.OutChannels = Device->NumChannels;
    for(i = 0;i < NumSends;i++)
    {
        ALeffectslot *Slot = ALSource->Send[i].Slot;
        if(!Slot && i == 0)
            Slot = Device->DefaultSlot;
        if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
            voice->Send[i].OutBuffer = NULL;
        else
            voice->Send[i].OutBuffer = Slot->WetBuffer;
    }

    /* Calculate the stepping value */
    Channels = FmtMono;
    BufferListItem = ATOMIC_LOAD(&ALSource->queue);
    while(BufferListItem != NULL)
    {
        ALbuffer *ALBuffer;
        if((ALBuffer=BufferListItem->buffer) != NULL)
        {
            Pitch = Pitch * ALBuffer->Frequency / Frequency;
            if(Pitch > (ALfloat)MAX_PITCH)
                voice->Step = MAX_PITCH<<FRACTIONBITS;
            else
            {
                voice->Step = fastf2i(Pitch*FRACTIONONE);
                if(voice->Step == 0)
                    voice->Step = 1;
            }

            Channels = ALBuffer->FmtChannels;
            break;
        }
        BufferListItem = BufferListItem->next;
    }

    /* Calculate gains */
    DryGain  = clampf(SourceVolume, MinVolume, MaxVolume);
    DryGain  *= ALSource->Direct.Gain * ListenerGain;
    DryGainHF = ALSource->Direct.GainHF;
    DryGainLF = ALSource->Direct.GainLF;
    for(i = 0;i < NumSends;i++)
    {
        WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
        WetGain[i]  *= ALSource->Send[i].Gain * ListenerGain;
        WetGainHF[i] = ALSource->Send[i].GainHF;
        WetGainLF[i] = ALSource->Send[i].GainLF;
    }

    switch(Channels)
    {
    case FmtMono:
        chans = MonoMap;
        num_channels = 1;
        break;

    case FmtStereo:
        /* HACK: Place the stereo channels at +/-90 degrees when using non-
         * HRTF stereo output. This helps reduce the "monoization" caused
         * by them panning towards the center. */
        if(Device->FmtChans == DevFmtStereo && !Device->Hrtf)
            chans = StereoWideMap;
        else
            chans = StereoMap;
        num_channels = 2;
        break;

    case FmtRear:
        chans = RearMap;
        num_channels = 2;
        break;

    case FmtQuad:
        chans = QuadMap;
        num_channels = 4;
        break;

    case FmtX51:
        chans = X51Map;
        num_channels = 6;
        break;

    case FmtX61:
        chans = X61Map;
        num_channels = 7;
        break;

    case FmtX71:
        chans = X71Map;
        num_channels = 8;
        break;

    case FmtBFormat2D:
        num_channels = 3;
        isbformat = AL_TRUE;
        DirectChannels = AL_FALSE;
        break;

    case FmtBFormat3D:
        num_channels = 4;
        isbformat = AL_TRUE;
        DirectChannels = AL_FALSE;
        break;
    }

    if(isbformat)
    {
        ALfloat N[3], V[3], U[3];
        aluMatrix matrix;

        /* AT then UP */
        N[0] = ALSource->Orientation[0][0];
        N[1] = ALSource->Orientation[0][1];
        N[2] = ALSource->Orientation[0][2];
        aluNormalize(N);
        V[0] = ALSource->Orientation[1][0];
        V[1] = ALSource->Orientation[1][1];
        V[2] = ALSource->Orientation[1][2];
        aluNormalize(V);
        if(!Relative)
        {
            const aluMatrix *lmatrix = &ALContext->Listener->Params.Matrix;
            aluVector at, up;
            aluVectorSet(&at, N[0], N[1], N[2], 0.0f);
            aluVectorSet(&up, V[0], V[1], V[2], 0.0f);
            aluMatrixVector(&at, lmatrix);
            aluMatrixVector(&up, lmatrix);
            N[0] = at.v[0]; N[1] = at.v[1]; N[2] = at.v[2];
            V[0] = up.v[0]; V[1] = up.v[1]; V[2] = up.v[2];
        }
        /* Build and normalize right-vector */
        aluCrossproduct(N, V, U);
        aluNormalize(U);

        aluMatrixSet(&matrix,
            1.0f,  0.0f,  0.0f,  0.0f,
            0.0f, -N[2], -N[0],  N[1],
            0.0f,  U[2],  U[0], -U[1],
            0.0f, -V[2], -V[0],  V[1]
        );

        for(c = 0;c < num_channels;c++)
        {
            MixGains *gains = voice->Direct.Gains[c];
            ALfloat Target[MAX_OUTPUT_CHANNELS];

            ComputeBFormatGains(Device, matrix.m[c], DryGain, Target);
            for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
                gains[i].Target = Target[i];
        }
        UpdateDryStepping(&voice->Direct, num_channels, (voice->Direct.Moving ? 64 : 0));
        voice->Direct.Moving = AL_TRUE;

        voice->IsHrtf = AL_FALSE;
        for(i = 0;i < NumSends;i++)
            WetGain[i] *= 1.4142f;
    }
    else if(DirectChannels != AL_FALSE)
    {
        if(Device->Hrtf)
        {
            voice->Direct.OutBuffer += voice->Direct.OutChannels;
            voice->Direct.OutChannels = 2;
            for(c = 0;c < num_channels;c++)
            {
                MixGains *gains = voice->Direct.Gains[c];

                for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
                    gains[j].Target = 0.0f;

                if(chans[c].channel == FrontLeft)
                    gains[0].Target = DryGain;
                else if(chans[c].channel == FrontRight)
                    gains[1].Target = DryGain;
            }
        }
        else for(c = 0;c < num_channels;c++)
        {
            MixGains *gains = voice->Direct.Gains[c];
            int idx;

            for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
                gains[j].Target = 0.0f;
            if((idx=GetChannelIdxByName(Device, chans[c].channel)) != -1)
                gains[idx].Target = DryGain;
        }
        UpdateDryStepping(&voice->Direct, num_channels, (voice->Direct.Moving ? 64 : 0));
        voice->Direct.Moving = AL_TRUE;

        voice->IsHrtf = AL_FALSE;
    }
    else if(Device->Hrtf_Mode == FullHrtf)
    {
        voice->Direct.OutBuffer += voice->Direct.OutChannels;
        voice->Direct.OutChannels = 2;
        for(c = 0;c < num_channels;c++)
        {
            if(chans[c].channel == LFE)
            {
                /* Skip LFE */
                voice->Direct.Hrtf[c].Params.Delay[0] = 0;
                voice->Direct.Hrtf[c].Params.Delay[1] = 0;
                for(i = 0;i < HRIR_LENGTH;i++)
                {
                    voice->Direct.Hrtf[c].Params.Coeffs[i][0] = 0.0f;
                    voice->Direct.Hrtf[c].Params.Coeffs[i][1] = 0.0f;
                }
            }
            else
            {
                /* Get the static HRIR coefficients and delays for this
                 * channel. */
                GetLerpedHrtfCoeffs(Device->Hrtf,
                                    chans[c].elevation, chans[c].angle, 1.0f, DryGain,
                                    voice->Direct.Hrtf[c].Params.Coeffs,
                                    voice->Direct.Hrtf[c].Params.Delay);
            }
        }
        voice->Direct.Counter = 0;
        voice->Direct.Moving  = AL_TRUE;

        voice->IsHrtf = AL_TRUE;
    }
    else
    {
        for(c = 0;c < num_channels;c++)
        {
            MixGains *gains = voice->Direct.Gains[c];
            ALfloat Target[MAX_OUTPUT_CHANNELS];

            /* Special-case LFE */
            if(chans[c].channel == LFE)
            {
                int idx;
                for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
                    gains[i].Target = 0.0f;
                if((idx=GetChannelIdxByName(Device, chans[c].channel)) != -1)
                    gains[idx].Target = DryGain;
                continue;
            }

            ComputeAngleGains(Device, chans[c].angle, chans[c].elevation, DryGain, Target);
            for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
                gains[i].Target = Target[i];
        }
        UpdateDryStepping(&voice->Direct, num_channels, (voice->Direct.Moving ? 64 : 0));
        voice->Direct.Moving = AL_TRUE;

        voice->IsHrtf = AL_FALSE;
    }
    for(i = 0;i < NumSends;i++)
    {
        voice->Send[i].Gain.Target = WetGain[i];
        UpdateWetStepping(&voice->Send[i], (voice->Send[i].Moving ? 64 : 0));
        voice->Send[i].Moving = AL_TRUE;
    }

    {
        ALfloat gainhf = maxf(0.01f, DryGainHF);
        ALfloat gainlf = maxf(0.01f, DryGainLF);
        ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
        ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
        for(c = 0;c < num_channels;c++)
        {
            voice->Direct.Filters[c].ActiveType = AF_None;
            if(gainhf != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_LowPass;
            if(gainlf != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_HighPass;
            ALfilterState_setParams(
                &voice->Direct.Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
                hfscale, 0.0f
            );
            ALfilterState_setParams(
                &voice->Direct.Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
                lfscale, 0.0f
            );
        }
    }
    for(i = 0;i < NumSends;i++)
    {
        ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
        ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
        ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
        ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
        for(c = 0;c < num_channels;c++)
        {
            voice->Send[i].Filters[c].ActiveType = AF_None;
            if(gainhf != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_LowPass;
            if(gainlf != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_HighPass;
            ALfilterState_setParams(
                &voice->Send[i].Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
                hfscale, 0.0f
            );
            ALfilterState_setParams(
                &voice->Send[i].Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
                lfscale, 0.0f
            );
        }
    }
}